光伏发电关键技术及电动汽车充电站可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光伏发电和电动汽车是新能源领域的两大重要发展方向。本文以光伏发电系统中的光伏电池和光伏逆变器,以及电动汽车充电站为研究对象,对光伏电池外特性、光伏逆变器控制算法和电动汽车充电站可靠性等问题进行了系统深入的研究。
     论文首先以单体光伏电池和光伏电池板的构成关系为依据,推导出了二者的输出特性方程,给出了仿真模型建立方法,并在此基础上,推导出了复杂光照情况下光伏阵列的输出特性方程。根据输出特性方程,重点对基于最优梯度法的最大功率点跟踪算法进行了深入研究,提出了一种基于近似梯度法的最大功率点跟踪算法,该算法结合了最优梯度法自动调整搜索步长、自动判断搜索方向,以及干扰观测法硬件电路实现简单的优点,提高了算法的实用性和有效性。
     针对已有光伏并网逆变器模糊控制算法过多依赖专家经验且需要对隶属度函数、模糊规则反复调试的缺点,在建立逆变器输出级数学模型的基础上,提出了一种基于T-S模糊模型的并网电流调节算法,该算法可根据电路离散模型精确调整功率开关管占空比,实现并网电流对参考电流的快速且精确跟踪。
     针对T-S模糊控制算法无法处理电路未知或不精确参数的缺点,对光伏并网逆变器预测电流控制算法进行了深入研究,进一步提出了一种改进型预测电流控制算法。该算法通过对控制目标进行优化设计,减少了预测过程中的假设近似环节,从而降低了电感值未知导致的电路模型参数偏差对系统稳定性的影响,改善了预测算法的可靠性和准确性,提高了系统稳定所允许的模型电感和实际电感的不匹配程度。
     针对预测电流控制算法忽略线阻且未考虑干扰信号的缺点,提出了一种适用于光伏并网逆变器的自适应控制算法,该算法基于李雅普诺夫直接法进行设计,在达到控制目标和保证系统稳定的前提下,实现了根据实时采样数据对电路未知参数进行自适应调节,并在此基础上进一步研究了干扰信号对该算法的影响,实现了干扰信号的实时预测,从而极大增强了系统对噪声的抑制能力。
     从可靠性分析的角度对电动汽车充电站典型拓扑结构进行了研究,提出了一种多负载系统可靠度计算方法,基于该方法计算出了典型拓扑结构下充电站的可靠度和平均无故障工作时间。通过对典型拓扑结构的对比研究,权衡可靠性和经济性两项指标,提出了冷备用冗余供电方式充电站和分布式充电站,最终将冷备用冗余供电方式引入到分布式充电站中,提出了一种N+1冗余供电的分布式充电站结构,通过对这三种充电站进行可靠性对比分析,验证了N+1冗余供电的分布式充电站是综合可靠性和经济性两方面优势的最优方案。
Photovoltaic power generation and electric vehicle are two important directions in the field of renewable energy. This thesis focuses on photovoltaic module (array) and photovoltaic inverter in the photovoltaic power generation system, and electric vehicle charging station, which includes external characteristics of photovoltaic module (array), control strategies of photovoltaic inverter and reliability of electric vehicle charging station.
     Firstly, this thesis derives the characteristics equations of photovoltaic cell and photovoltaic module based on their relation and gives the method of establishing simulation model, on the basis of which the characteristics equation of photovoltaic array under complex irradiation is derived. According to the characteristics equation, maximum power point tracking algorithm using steepest ascent method is deeply studied. And a new maximum power point tracking algorithm using approximate gradient method is proposed to automatically judge the searching direction and adjust the step size as steepest ascent method does, and to adopt simple hardware as perturbation and observation method does. The proposed algorithm can improve practicability and validity of traditional algorithms.
     Secondly, to overcome the defect of the existing fuzzy control algorithms of photovoltaic grid-connected inverter, such as relying on experience of experts excessively, adjusting membership and fuzzy rules repeatedly, a grid current regulating algorithm using T-S fuzzy model is proposed on the basis of establishing mathematical model of inverter. Simulation result demonstrates that the algorithm can adjust the duty cycle accurately and make grid current track the reference current rapidly and accurately.
     Thirdly, for the purpose of overcoming the defect of being unable to deal with unknown or inaccurate parameters for T-S fuzzy control, predictive current control algorithm of photovoltaic grid-connected inverter is deeply studied and an improved predictive current control algorithm is further proposed. The proposed algorithm is optimized through adjusting the control objective, which can reduce the influence had on stability by parameter deviation as a result of unknown inductance, improve the reliability and accuracy of algorithm and increase the dismatch of model inductance and actual inductance on the premise of stability.
     Fourthly, aiming at overcoming the defect of neglecting resistance and disturbance signals of predictive current control algorithm, a self-adaptive control algorithm suitable for photovoltaic grid-connected inverter is proposed. The proposed algorithm is designed based on Lyapunov's direct method, which can realize adaptive adjustment of the unknown parameters according to realtime data, on the premise of reaching control objective and stability. Then the influence had on the proposed algorithm by disturbance signals is further studied, which can realize realtime prediction of disturbance signals and improve greatly the interference rejection capability.
     Finally, typical topologies of electric vehicle charging station are studied with reliability analysis methods. A kind of reliability calculation method suitable for multi-stress system is proposed, based on which both reliability and mean time to failure of typical topologies are calculated. Through comparison of typical topologies, taking account of reliability and economics, two kinds of charging station, namely cold-standby redundancy power supplying mode charging station and distributed charging station are proposed. Then through introducing cold-standby redundancy power supplying mode to distributed charging station, a kind of distributed charging station with N+1 redundancy is proposed. Through comparison of reliability for the three proposed kinds of topologies, distributed charging station with N+1 redundancy is verified to be the optimum structure integrating both reliability and economics.
引文
[1]Parida B, Iniyan S, Goic R. A review of solar photovoltaic technologies [J]. Renewable and Sustainable Energy Reviews,2011,15(3):1625-1636.
    [2]滕乐天,姜久春,何维国.电动汽车充电机(站)设计[M].北京:中国电力出版社,2009.
    [3]Quan L, Peter W. A review of the single phase photovoltaic module integrated converter topologies with three different DC link configurations [J]. IEEE Transactions on Power Electronics,2008,23(3):1320-1333.
    [4]赵争鸣,刘建政,孙晓瑛,等.太阳能光伏发电及其应用[M].北京:科学出版社,2005.
    [5]Walker G R. Evaluating MPPT converter topologies using a MATLAB PV model [J]. Journal of Electrical and Electronics Engineering,2001,21(1):49-55.
    [6]Gow J A, Manning C D. Development of a photovoltaic array model for use in power-electro-nics simulation studies [C].IEE Proceedings on Electric Power Applications,1999,146(2): 193-200.
    [7]崔岩,蔡炳煌,李大勇,等.太阳能光伏模板仿真模型的研究[J].系统仿真学报,2006,18(4):829-834.
    [8]黄宏生.光伏最大功率跟踪系统的研究[D].汕头:汕头大学,2003.
    [9]茆美琴,余世杰,苏建徽.带有MPPT功能的光伏阵列MATLAB通用仿真模型[J].系统仿真学报,2005,17(5):1248-1251.
    [10]Stjepanovic A, Softie F, Bundalo Z, et al. Solar tracking system and modeling of PV module [C]. Proceedings of the 33rd International Convention MIPRO,2010,105-109.
    [11]Hiren P, Vivek A. MATLAB-based modeling to study the effects of partial shading on PV array characteristics [J]. IEEE Transactions on Energy Conversion,2008,23(1):302-310.
    [12]陈如亮,崔岩,李大勇,等.光照不均匀情况下光伏组件仿真模型的研究[J].系统仿真学报,2008,20(7):1681-1690.
    [13]Engin K, Mutlu B, Metin C. Development of a suitable model for characterizing photovoltaic arrays with shaded solar cells [J]. Solar Energy,2007,81(8):977-992.
    [14]Alonso G M C, Ruiz J M, Chenlo F. Experimental study of mismatch and shading effects in the Ⅰ-Ⅴ characteristic of a photovoltaic module [J]. Solar Energy Materials & Solar Cells, 2006,90(3):329-340.
    [15]Kawamura H, Naka K, Yonekura N, et al. Simulation of Ⅰ-Ⅴ characteristics of a PV module with shaded PV cells [J]. Solar Energy Materials & Solar Cells,2003,75(3-4):613-621.
    [16]翟载腾,程晓舫,丁金磊,等.被部分遮挡的串联光伏组件输出特性[J].中国科学技术大学学报,2009,39(4):398-402.
    [17]Liu X, Lopes L A C. An improved perturbation and observation maximum power point tracking algorithm for PV arrays [C]. The 35th IEEE Power Electronics Specialists Conferenc-e,2004,3:2005-2010.
    [18]Femia N, Petrone G. Optimization of perturb and observe maximum power point tracking method [J]. IEEE Transactions on Power Electronics,2005,20(4):963-973.
    [19]Liu F R, Duan S X, Liu B Y, et al. A variable step size INC MPPT method for PV systems [J]. IEEE Transactions on Industrial Electronics,2008,55(7):2622-2628.
    [20]Mohamad A S M, Seyed M M B, Ewald F F. Microprocessor-controlled new class of optimal battery chargers for photovoltaic applications [J]. IEEE Transactions on Energy Conversion, 2004,19(3):599-606.
    [21]Tafticht T, Agbossou K, Doumbia M L, et al. An improved maximum power point tracking method for photovoltaic systems [J]. Renewable Energy,2008,33(7):1508-1516.
    [22]赵为.太阳能光伏并网发电系统的研究[D].合肥:合肥工业大学,2003.
    [23]Anjidani M, Effati S. Steepest descent method for solving zero-one nonlinear propramming problems [J]. Applied Mathematics and Computation,2007,193(1):197-202.
    [24]Nabil A A, Masafumi M. A novel maximum power point tracking for photovoltaic applications under partially shaded insolation conditions [J]. Electric Power Systems Research,2008, 78(5):777-784.
    [25]Hiyama T, Kouzuma S, Imakubo T, et al. Evaluation of neural network based real time maximum power tracking controller for PV system [J]. IEEE Transaction on Energy Conversion,1995,10(3):543-548.
    [26]Altas I H, Sharaf A M. A novel maximum power fuzzy logic controller for photovoltaic solar energy systems [J]. Renewable Energy,2008,33(3):388-399.
    [27]Karlis A D, Kottas T L, Boutalis Y S. A novel maximum power point tracking method for PV systems using fuzzy cognitive networks (FCN) [J]. Electric Power Systems Research,2007, 77(3-4):315-327.
    [28]崔岩,蔡炳煌,李大勇,等.太阳能光伏系统MPPT控制算法的对比研究[J].太阳能学报,2006,27(6):535-539.
    [29]李晶,窦伟,徐正国,等.光伏发电系统中最大功率跟踪算法的研究[J].太阳能学报,2007,28(3):268-273.
    [30]Salas V, Alonso A M, Chenlo F, et al. Analysis of the maximum power point tracking in the photovoltaic grid inverters of 5KW [J]. Renewable Energy,2009,34(11):2366-2372.
    [31]Hiren P, Vivek A. Maximum power point tracking scheme for PV systems operating under partially shaded conditions [J]. IEEE Transactions on Industrial Electronics,2008,55(4): 1689-1698.
    [32]Kenji K, Ichiro T, Yoshio S. A study of a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions [J]. Solar Energy Materials & Solar Cells,2006,90(18-19):2975-2988.
    [33]Calais M, Myrzik J, Spooner T, et al. Inverters for single-phase grid connected photovoltaic systems——An overview [C]. The 33rd IEEE Power Electronics Specialists Conference,2002, 4:1995-2000.
    [34]Aymen C, Rashad M K, Ken N. A novel multi-model neuro-fuzzy-based MPPT for three phase grid-connected photovoltaic system [J]. Solar Energy,2010,84(12):2219-2229.
    [35]Kjaer S B, Pedersen J K, Blaabjerg F. A review of single-phase grid-connected inverters for photovoltaic modules [J]. IEEE Transactions on Industrial Electronics,2005,41(5): 1292-1306.
    [36]Mohan N, Undeland T M, Robbins W P. Power Electronics:Converters, Applications, and Design [M]. Beijing:Higher Education Press,2004.
    [37]Lee S H, Song S G, Park S J, et al. Grid-connected photovoltaic system using current-source inverter [J]. Solar Energy,2008,82(5):411-419.
    [38]郑诗程.光伏发电系统及其控制的研究[D].合肥:合肥工业大学,2004.
    [39]姜俊峰,刘会金,陈允平,等.有源滤波器的电压空间矢量双滞环电流控制新方法[J].中国电机工程学报,2004,24(10):82-86.
    [40]顾和荣,杨子龙,邬伟扬.并网逆变器输出电流滞环跟踪控制技术研究[J].中国电机工程学报,2006,26(9):108-112.
    [41]洪峰,单任仲,王慧贞,严仰光.一种变环宽准恒频电流滞环控制方法[J].电工技术学报,2009,24(1):115-119.
    [42]Malesani L, Mattavelli P, Tomasin P. Improved constant-frequency hysteresis current control of VSI inverters with simple feedforward bandwidth prediction [J]. IEEE Transactions on Industry Applications,1997,33(5):1194-1202.
    [43]Zare F, Ledwich G. A hysteresis current control for single-phase multilevel voltage source inverters:PLD implementation [J]. IEEE Transactions on Power Electronics,2002,17(5): 731-738.
    [44]Rohin M H, Adel M S. A rule-based fuzzy logic controller for a PWM inverter in a stand alone wind energy conversion scheme [J]. IEEE Transactions on Industry Applications,1996, 32(1):57-65.
    [45]Cetin M, Omer D, Hasan H S. Adaptive fuzzy logic controller for DC-DC converters [J]. Expert Systems with Application,2009,36(2):1540-1548.
    [46]Balestrino A, Landi A, Sani L. Cuk converter global control via fuzzy logic and scaling factors [J]. IEEE Transactions on Industry Applications,2002,38(2):406-413.
    [47]Singh B N, Singh B, Singh B P. Fuzzy control of integrated current-controlled converter-inve-rter-fed cage induction motor drive [J]. IEEE Transactions on Industry Applications,1999, 35(2):405-412.
    [48]Carlo C, Fabrizio C, Pierluigi S. A multilevel inverter for photovoltaic systems with fuzzy logic control [J]. IEEE Transactions on Industrial Electronics,2010,57(12):4115-4125.
    [49]Osterholz H. Simple fuzzy control of a PWM inverter for a UPS system [C]. The 17th International Telecommunications Energy Conference,1995,565-570.
    [50]张超,何湘宁.非对称模糊PID控制在光伏发电MPPT中的应用[J].电工技术学报,2005,20(10):72-75.
    [51]Theodoros L K, Yiannis S B, Athanassios D K. New maximum power point tracker for PV arrays using fuzzy controller in close cooperation with fuzzy cognitive networks [J]. IEEE Transactions on Energy Conversion,2006,21(3):793-803.
    [52]Wu T F, Chang C H, Chen Y K. A fuzzy-logic-controlled single-stage converter for PV-powered lighting system application [J]. IEEE Transactions on Industrial Electronics,2000, 47(2):287-296.
    [53]Yu K, Yung C, Chih H. Robust fuzzy controlled photovoltaic power inverter with Taguchi method [J]. IEEE Transactions on Aerospace and Electronic Systems,2002,38(3):940-954.
    [54]Wu T F, Yang C H, Chen Y K, et al. Photovoltaic inverter systems with self-tuning fuzzy control based on experimental planning method [C]. The 34th IEEE Iindustry Applications Conference,1999,3:1887-1894.
    [55]Sakhare A, Davari A, Feliachi A. Fuzzy logic control of fuel cell for stand-alone and grid connection [J]. Journal of Power Sources,2004,135(1-2):165-176.
    [56]Ying Y T, Lien H H, Rong S O. Fuzzy control of a closed-loop regulated PWM inverter under large load variations [C]. Proceedings of the IECON '93,1993,1:267-272.
    [57]Jeong S J, Kim B W, Song S H. Improvement of predictive current control performance using on-line parameter estimation in phase controlled rectifier [J]. IEEE Transactions on Power Electronics,2007,22(5):1820-1825.
    [58]Miura M Y, Matsukawa M, Nakano H. A deadbeat control method for a PWM converter applied to a superconducting magnet [J]. Fusion Engineering and Design,2001,58-59: 57-62.
    [59]Kokrer O. Deadbeat control of a three-phase inverter with an output LC filter [J]. IEEE Transactions on Power Electronics,1996,11(1):16-23.
    [60]吴理博.光伏并网逆变系统综合控制策略研究及实现[D].北京:清华大学,2006.
    [61]Bouafia A, Gaubert J, Krim F. Design and implementation of predictive current control of three-phase PWM rectifier using space-vector modulation (SVM) [J]. Energy Conversion and Management,2010,51(12):2473-2481.
    [62]Hua C C, Wu C W, Chuang C W. A digital predictive current control with improved sampled inductor current for cascaded inverters [J]. IEEE Transactions on industrial electronics,2009, 56(5):1718-1726.
    [63]Holtz J, Stadtfeld S. A predictive controller for the stator current vector of AC machines fed from a switched voltage source [C]. Proceeding of International Power Electronics Conference,1983,1665-1675.
    [64]Holmes D G, Martin D A. Implementation of a direct digital predictive current controller for single and three phase voltage source inverter [C]. Industry Applications Conference,1996,2: 906-913.
    [65]Bode G H, Loh P C, Newman M J, et al. An improved robust predictive current regulation algorithm [J]. IEEE Transactions on Industry Applications,2005,41(6):1720-1733.
    [66]Kojabadi H M, Idris B Y, Gadoura A. A novel DSP-based current-controlled PWM strategy for single phase grid connected inverters [J]. IEEE Transactions on Power Electronics,2006, 21(4):985-993.
    [67]孔雪娟,王荆江,彭力.基于内模原理的三相电压源型逆变器的波形控制技术[J].中国电机工程学报,2003,23(7):67-70.
    [68]Kyungbae C, Lljoo S, Gwitae P. Adaptive repetitive control for an eccentricity compensation of optical disk drivers [J]. IEEE Transactions on Consumer Electronics,2006,52(2):445-450.
    [69]Brod D M, Novotny D W. Current control of VSI-PWM inverters [J]. IEEE Transactions on on Industry Applications,1985, IA-21(3):562-570.
    [70]Holmes D G. The significance of zero space vector placement for carrier-based PWM schemes [J]. IEEE Transactions on Industry Applications,1996,32(5):1122-1129.
    [71]潘三博,潘俊民.一种新型的零电压谐振极型逆变器[J].中国电机工程学报,2006,26(24):55-59.
    [72]许春雨,陈国呈,孙承波,等.ZVT软开关三相PWM逆变器控制策略研究[J].电工技术学报,2004,19(11):35-41.
    [73]陈溪.新型光伏发电用Buck-Boost逆变器的研究[D].哈尔滨:哈尔滨工业大学,2006.
    [74]Sundareswaran K, Kumar A P. Voltage harmonic elimination in PWM A.C. chopper using genetic algorithm [C]. IEE Proceedings of Electric Power Applications,2004,151(1):26-31.
    [75]张慧,刘开培,Braun M,等.基于 PWM低开关频率选择性谐波控制方程组的实时算法[J].中国电机工程学报,2006,26(22):80-84.
    [76]Fei W M, Wu B, Wu Q. A novel SHE-PWM method for five level voltage inverters with quarter-wave symmetry [C]. Canadian Conference on Electrical and Computer Engineering, 2009,1034-1038.
    [77]Ersoy B, Birol A, Sabri C, et al. A grid-connected photovoltaic power conversion system with single-phase multilevel inverter [J]. Solar Energy,2010,84(12):2056-2067.
    [78]Swift F, Kamberis A. A new Walsh domain technique of harmonic elimination and voltage control in pulse-width modulated inverters [J]. IEEE Transactions on Power Electronics,1993, 8(2):170-185.
    [79]Liang T J, O'Connell R M, Hoft R G. Inverter harmonic reduction using Walsh function harmonic elimination method [J]. IEEE Transactions on Power Electronics,1997,12(6): 971-982.
    [80]郑春芳,张波.基于Walsh变换的逆变器SHEPWM技术[J].电工技术学报,2005,20(5):65-71.
    [81]张晓峰,吕征宁.混合动力车用全数字电流控制型双向DC/DC变换器[J].电工技术学报,2009,24(8):84-89.
    [82]Lopes J AP , Polenz S A, Moreira C L. Identification of control and management strategies for LV unbalanced micrigrids with plugged-in electric vehicles [J]. Electric Power Systems Research,2010,80(8):898-906.
    [83]Robert C, Green Ⅱ, Lingfeng W. The impact of plug-in hybrid electric vehicles on distribution networks:A review and outlook [J]. Renewable and Sustainable Energy Reviews,2011,15(1): 544-553.
    [84]Amir P, Morteza M. Design of genetic-fuzzy control strategy for parallel hybrid electric vehicles [J]. Control Engineering Practice,2008,16(7):861-873.
    [85]Li K, Zhang C H, Cui N X. An improved energy optimization control strategy for electric vehicle drive system [C]. Chinese Control and Decision Conference,2008,2244-2249.
    [86]Christophe G, George G. A conceptual framework for the vehicle-to-grid(V2G) implem- entation [J]. Energy Policy,2009,37(11):4379-4390.
    [87]Jiang Z H, Dougal R A. Design and testing of a fuel-cell powered battery charging station [J]. Journal of Power Sources,2003,115(2):279-287.
    [88]Wang Z P, Liu P. Analysis on storage power of electric vehicle charging station [C]. Power and Energy Engineering Conference,2010 (Asia-Pacific):1-4.
    [89]Wang Y Y, Li J X, Jiang J C, Niu L Y. Management information system of charging station for electric vehicle (EV) [C]. Proceedings of the 8 International Conference on Electrical Machines and Systems,2005,1:857-860.
    [90]Dung T Q, Anisuzzaman M, Kumar S. Demonstration of multi-purpose battery charging station for rural electrification [J]. Renewable energy,2003,28(15):2367-2378.
    [91]Jiang Z H, Dougal R A. Strategy for active power sharing in a fuel-cell-powered charging station for advanced technology batteries [C]. The 34th IEEE Power Electronics Specialist Conference,2003,1:81-87.
    [92]Ingersoll J G, Perkins C A. The 2. 1kW photovoltaic electric vehicle charging station in the city of Santa Monica, California [C]. Photovoltaic Specialists Conference,1996:1509-1512.
    [93]Femia N, Petrone G, Spagnuolo G, et al. Optimizing duty-cycle perturbation of P&O MPPT technique [C]. The 35th IEEE Power Electronics Specialists Conference,2004,3:1939-1944.
    [94]Samangkool K, Premrudeepreechacharn S. Maximum power point tracking using neural networks for grid-connected photovoltaic system [C].2005 International Conference on Future Power Systems,2005,1-4.
    [95]Mishina T, Kawamura H, Ymanaka S, et al. A study of the automatic analysis for the Ⅰ-Ⅴ curves of a photovoltaic subarray [C]. The 29th IEEE Photovoltaic Specialists Conference, 2002:1630-1633.
    [96]余世杰,何慧若.太阳能的光伏利用[M].合肥:合肥工业大学出版社,1991.
    [97]苏建徽,余世杰,赵为,等.硅太阳电池工程用数学模型[J].太阳能学报,2001,22(4):409-41 2.
    [98]MSX-60 and MSX-64 Photovoltaic Modules [R]. Solarex,1997.
    [99]Nopporn P, Suttichai P, Yosanai S. Maximum power point tracking using adaptive fuzzy logic control for grid-connected photovoltaic system [J]. Renewable Energy,2005,30(11): 1771-1788.
    [100]佟绍成,王涛,王艳平,等.模糊控制系统的设计及稳定性分析[M].北京:科学出版社,2004.
    [101]Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control [J]. IEEE Transactions Systems, Man, and Cybernetics,1985,15(1):116-132.
    [102]Holtz J. Pulsewidth modulation-A survey [J]. IEEE Transactions on Industry Electronics,1992, 39(5):410-420.
    [103]Malesani L, Mattavelli P, Buso S. Robust dead-beat current control for PWM rectifiers and active filters [J]. IEEE Transactions on Industry Applications,1999,35(3):613-620.
    [104]Kukrer O. Discrete-time current control of voltage-fed three-phase PWM inverters [J]. IEEE Transactions on Power Electronics,1996,11(2):260-269.
    [105]Mohamed Y A R I, Saadany E E F. Robust high bandwidth discrete-time predictive current control with predictive internal model—A unified approach for voltage-source PWM converters [J]. IEEE Transactions on Power Electronics,2008,23(1):126-136.
    [106]Song Y D, Dhinakaran B, Bao X Y. Variable speed control of wind turbines using nonlinear and adaptive algorithms [J]. Journal of Wind Engineering and Industrial Aerodynamics,2000, 85(3):293-308.
    [107]Chen X D, Chen S B. The feasible control Lyapunov function of nonlinear affine-control systems [C]. The 3rd International Symposium on Intelligent Information Technology and Security Informatics,2010:442-445.
    [108]Liang L, Zong L L. A switching anti-windup design using multiple Lyapunov functions [J]. IEEE Transactions on Automatic Control,2010,55(1):142-148.
    [109]Song Q, Song Y D, Tang T. Computationally inexpensive tracking control of high speed trains with traction/braking saturation [J]. IEEE Transactions on Intelligent Transportation System (accepted).
    [110]Levitin G, Amari S V. Approximation algorithm for evaluating time-to-failure distribution of k-out-of-n system with shared standby elements [J]. Reliability Engineering and System Safety,2010,95(4):396-401.
    [111]Kuo W, Prasad V R, Tillman F A, et al. Optimal reliability design:fundamentals and applicationns [M]. Cambridge University Press,2001.
    [112]Elsayed A. Reliability engineering [M]. Addison Wesley Longman,1996.
    [113]Amari S V, Dill G. A new method for reliability analysis of standby systems [J]. Reliability and Maintainability Symposium,2009,417-422.
    [114]Coit D W. Cold-standby redundancy optimization for non-repairable systems [J]. HE Transac-tions,2001,33(6):471-478.
    [115]Sinaki G. Ultra-reliable fault tolerant inertial reference unit for spacecraft [C]. Proceedings of the annual rocky mountain guidance and control conference,1994,239-248.
    [116]Pandey D, Jacob M, Yadav J. Reliability analysis of a powerloom plant with cold-standby for its strategic unit [J]. Microelectronic and Reliability,1996,36(1):115-124.
    [117]Kumar S, Kumar D, Mehta N P. Behavioral analysis of shell gasification and carbon recovery process in a urea fertilizer plant [J]. Microelectronic and Reliability,1996,36(5):671-674.
    [118]Azaron A, Perkgoz C, Katagiri H. Multi-objective reliability optimization for dissimilar-unit cold-standby systems using a genetic algorithm [J]. Computers and Operations Research, 2009,36(5):1562-1571.
    [119]Amari S V, Dill G. Redundancy optimization problem with warm-standby redundancy [C]. IEEE Annual Proceeding on Reliability and Maintainability Symposium (RAMS),2010:1-6.
    [120]张增照,潘勇.电子产品可靠性预计[M].北京:科学出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700