非正交坐标系SVPWM理论分析与混合型APF应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉宽调制技术(PWM)是电压源型逆变器(VSI)的共用及核心技术,总体上讲,它的理论基础可以分为基于时域的冲量等面积原理和基于矢量空间的矢量等效原理。正弦脉宽调制(SPWM)是基于前者的代表性 PWM 方式,其实现方法简单,但它割裂了各桥臂间的固有联系,孤立地分析单个桥臂的输出状态,造成逆变器输出性能低下;基于后者的代表性 PWM 方式是空间矢量 PWM(SVPWM),它虽然将所有桥臂放在同一个空间统一看待,由此获得良好的输出性能,但其计算复杂,在逆变器电平数较多时难以实现实时控制。SVPWM 的计算复杂性掩盖了它的本质,故而人们难以建立冲量等面积原理与矢量等效原理之间的内在联系。因此在 PWM 实现方式上,缺少统一的指导思想。为此,本文开展了以下研究工作。
    总结典型基于时域冲量等面积原理的 PWM 方式,明确提出相电压 PWM 和线电压PWM 的思想。在此基础上,得到一种优化线电压 PWM 方式。它不仅能够提高逆变器直流电压的利用率,还可以有效地降低开关频率
    针对于两电平 SVPWM 方式,本文首次指出传统求解方法的不彻底性。并且利用三角函数知识,将其进行化简,从而得到一种简化算法。该算法避免了常规算法在求解过程中所涉及非线性运算,并且理论计算误差为 0。通过数学推导,笔者证明优化独立 PWM方式是一种特殊形式的 SVPWM。
    针对于多电平SVPWM,本文首次指出坐标系选取不当是造成计算复杂的根本原因,并建立了一种新型的非正交坐标系——KL 坐标系。在此坐标系下,得到多电平 SVPWM的统一简化算法,使得整个求解过程仅含少量的乘加运算。该算法是多电平 SVPWM 的通解,它可以“无缝”移植到任意电平阶数逆变器领域。这一部分工作奠定了多电平SVPWM 实时控制的基础。随后,笔者将多电平 SVPWM 的统一简化算法由线性调制领域扩展到过调制领域。
    在 KL 坐标系下,分析多电平 SVPWM 的物理意义。对于 PWM 技术中基于矢量空间的矢量等效与基于时域的冲量等面积两种理论,本文首次利用严格的数学推导建立了它们之间的联系,并且指出 SVPWM 是线电压 PWM 的真子集。
     作为供电电源与用电设备间的非线性接口电路,电力电子装置不可避免地向电网注入谐波电流。而电力电子技术的发展,为谐波的治理提供了更为丰富的手段,其中有源电力滤波器是最具有发展前景的方式之一。本文基于并联混合型 APF,开展大容量谐波与无功补偿技术的研究,力图为其实用化奠定基础。
    对于并联混合型 APF,本文分析了它的基本原理,阐述了其逆变器直流电压低的工作特性。对于高压系统应用,论证了基于二极管箝位式三电平逆变器的并联混合型 APF技术优点。在此基础上,本文提出了并联混合型 APF 完整的控制策略:以无差拍控制实现对指令电流的快速、准确跟踪;以 PI 控制防止交流滤波电容的电压发生直流偏移;
    
    华北电力大学博士学位论文
     2
    采取多种措施将逆变器直流侧电容电压的稳定控制在较小幅值。上述控制策略是 APF
    优质、安全运行的重要保障。
    针对于所提出的基于二极管箝位式三电平逆变器的混合型 APF,本文对其直流电压
    的稳定控制环节进行了详细分析。将该问题细化分解为两个步骤:逆变器直流侧总电压
    的稳定控制和基于 SVPWM 的电压均衡控制。前者等同于普通基于两电平逆变器的混合
    型 APF 的直流电压控制,对此笔者首次指出如使直流电压稳定,不仅需要调整电网注
    入的有功电流,而且必须调整所注入的无功电流;对于后者,笔者提出选择合适的冗余
    矢量并调整其相应持续时间的方法,并且给出了对应的控制策略表。
    利用无源补偿装置(滤波器或电容器)的功率优势和 APF 的控制性能优势,本文
    开展了谐波与无功的混合补偿研究,提出二者并联运行时 APF 所应采取的控制策略。
    最后,本文分析了并联混合型 APF 主要器件的参数设置,进而研制控制系统硬件
    平台,编写实时控制软件,构建一台 380V/50kVA 实验样机,进行实验研究。在此基础
    上研制一台 380V/100A 试运行装置,对某电力用户发生的谐波问题进行了有效治理。
    关键词:SVPWM,非正交坐标系,有源电力滤波器
The PWM technology is a global technique applied to the control of voltage source inverters(VSI), and its basic theory can be classified into the pulse area equal principle based on time and equivalent vectors principle based on space. SPWM is a typical PWM mode based on the former theory and can be easily realized, whereas results in lower output capability of inverters because of dissevering intrinsic relations among bridges as well as independently analyzing the output status of each bridge. Comparatively, SVPWM is another typical PWM mode based on the latter one. Although it uniformly deposits total bridges in the same space to gain favorable output capability, it is difficult to be carried out that complicated computation and real-time control when levels of inverters increase.Complicated computation of SVPWM conceals its essence, thus internal relations between pulse area equal principle and equivalent vectors principle are difficult to be established . As a result, a uniform directive idea on realization of PWM mode does not exist. Therefore, the following researches are carried out in the paper.
    At first, typical PWM modes based on pulse area equal principle are summarized, PWM modes based on phase voltage and line voltage are definitely proposed, and then an optimized PWM mode based on line voltage is concluded. Not only can this mode improve dc voltage utilization ratio of inverter side, but also efficiently reduced switch frequency.
    As for two-level SVPWM mode, that conventional solutions are not exhaustive is firstly pointed out in the papers. After trigonometric function used in simplifying solutions, a simple algorithm is deduced. The algorithm avoids non-linearity operations relevant to the conventional algorithm during the solutions, and in theory error of computation is zero. By mathematical deduction, the author proves that the optimal common mode PWM mode is an especial form of SVPWM.
    As for multi-level SVPWM mode, that an unsuitable coordinate to be chosen is the essential reason that results in complicated computation is firstly pointed out in the papers, and in addition a novel nonorthogonal coordinate-- KL coordinate is established. Uniform and simplified algorithm of multi-level SVPWM mode is found out on the coordinate, which enables only a small quantity of multiplication and addition operations to be performed during the whole solutions. This algorithm is a general solution of multi-level SVPWM mode, and can be constantly applied into any level inverter fields. This part of productions are the basis of real-time control realization of multi-level SVPWM mode. the author successively extends the simplified algorithm from linear modulation fields to over-modulation fields.
    In KL coordinate, physics meaning of multi-level SVPWM mode is analyzed. The pulse area equal principle based on time and the equivalent vectors principle based on space to be considered, the relations between them are established by accurate mathematical deduction and a conclusion that SVPWM is a subclass of line voltage PWM is presented.
    As non-linear pontes circuits between the supply and the facilities, power electronic devices inevitably inject harmonics into power network. On contrary, the development of electric technology provides abundant measures that can be applied into suppressing harmonics. Among these measures, active power filter is one of the most valuable researches. The research on harmonics and reactive power compensation technology are carried out in the papers in order to provide theoretic guidance for promoting APF into practice.
     As for shunt hybrid APF, that operation characteristics of lower dc voltage in its inverter side are explained in details in the papers, and current tracking control course based on deadbeat control theory is implemented . In order to prevent dc offset appeared on capacitor voltage of series passive power filters, the author presents dc component modulation of output currents based on PI control. For application into high voltage network, technology advantage of shunt
引文
[1]Soumitro banerjee,george verghese.Nonlinear phenomena in power electronics. New York: The institute of electrical and electronics engineers,2001
    [2]Grunbaum R, Harvasson B, Wilk-Wilczynski A.FACTS and HVDC Light for power system interconnections. IEEE Power Delivery Conference. Spain, Sep 1999
    [3] B.K.博斯.电力电子学与变频传动技术和应用,姜建国.北京:中国矿业大学出版社,1999
    [4]肖湘宁.电能质量分析与控制.北京:中国电力出版社,2004
    [5]李宏.电力电子设备用器件与集成电路应用指南.北京:机械工业出版社,2001
    [6]Ned Mohan,Tore M. Undeland,William P.Robbins.Power Electronics:Converters,Application and Design. Hoboken:JV&S inc,1989
    [7]张一工,肖湘宁.现代电力电子技术原理与应用.北京:科学出版社,1999
    [8]赵良炳.现代电力电子技术基础.北京:清华大学出版社,1995
    [10]黄俊,王兆安.电力电力电子变流技术.北京:机械工业出版社,1993
    [11]李锡雄,陈婉儿.脉宽调制技术.武汉:华中理工大学出版社,1996
    [12]吴守,臧英杰.电气传动的脉宽调制控制技术.北京,机械工业出版社,2003
    [13]张崇巍,张兴.PWM 整流器及其控制.北京:机械工业出版社,2003
    [14]Schonung A , Stemmler H. Static Frequency Changer with Subharmonics Control in Conjunction with Reversible Variable Speed AC Drives. BBC Rev,1964(8,9),332~338
    [15]李国勇.一种基于电网电流控制的新型三相有源电力滤波器的研究.哈尔滨工业大学博士学位论文.哈尔滨:哈尔滨工业大学,2002
    [16] 刘昊,韩民晓,尤勇,等.线电压补偿型 DVR 补偿能力的分析.电力系统自动化.2003,23,54~57
    [17] C.K.Lee, S.Y.R.Hui,H.Shu-Hung Chung,ect. A Randomized Voltage Vector Switching Scheme for Three-Level Power Inverters.IEEE TRANSACTIONS ON POWER ELECTRONICS,2002, 17(1), 1441~1446
    [18]Trzynadlowsky A.M,Pederson J.K,Legowski S.Rondom Pulsewidth Modulation Techniques for Converter-fed Drive Systems-a Review.IEEE Trans. POWER ELECTRONICS,1994 ,30(5),758~763
    [19] Murai Y.New PWM Method for Fully Digitized Inverters.IEEE Trans.on IA,1987,23(5),936~944
    [20]Nabae,I.Takahashi,H.Akagi.A New Neutral-Point-Clamped PWM Inverter.IEEE Trans. on Industrial Application,1981,33(5),518~523
    [21]Jih-Sheng Lai et al.Multilevel Conversion :A New Bread of Power Converters.IEEE Trans. on Industrial Application,1996,32(3),509~517
    
    [22]F.Tourkhani et al.A Simulation-Optimization System for the Optimal Design of a Mutilevel Inverter.IEEE Trans. on Power Electronics,1999,14(6),1037~1045
    [23]Bum-Seok et al.A New N Level High Voltage Inversion System.IEEE Trans. on Industry Electronics,1997,44(1),2541~2548
    [24]郦鸣.基于 DSP 的空间矢量控制四桥臂逆变器研究.南京航空航天大学硕士论文.南京:南京航空航天大学,2002
    [25]阮新波,严仰光.四桥臂三相逆变器的控制策略.电工技术学报,2000,15(1),61~64
    [26]杨宏,阮新波,严仰光.四桥臂三相逆变器的 PWM 控制.南京航空航天大学学报,2002,34(6),575~579
    [27]庄朝晖,唐伏良,熊有伦. 多相感应电机空间电压矢量控制研究.电气传动,2001,4,9~12
    [28]Hamid A Toliyat.Analysis and Simulation of Five-phase Variable-speed Induction Motor Drives Under Asymmetrical Connections. IEEE Trans. on Power Electronics,1998,13(4),1330~1337
    [29]Zhao Y,Lipo T A.Space Vector PWM Control of Dual Three Phase Induction Machine Using Vector Space Decomposition.IEEE Trans.on Industry Application,1995,31(5),1100~1109
    [30]C.M.Yong,C.C.Liu.New inverter-driven design and control method for two-phase induction motor drives.IEE Electr.Power Appl.1996,143(6),1502~1509
    [31]C.Mhango.Analysis and simulation of a high-speed two-phase AC driver for aerospace application. IEE Electr.Power Appl.1997,144(2),809~812
    [32]Hashad , Iwaszkiewicz.A novel orthogonal-vectors-based topology of multilevel inverters.IEEE Trans. on Industrial Electronics,2002,49(4),868~874
    [33]Lee C.K.,Hui,Shu-Hung Chung.A randomized voltage vector switching scheme for three-level power inverters.IEEE Trans. on Power Electronics,2002,17(1),94~100
    [33]Rodriguez,Moran,Correa.A Vector control technique for medium-voltage multilevel inverters.IEEE Trans. on Industrial Electronics,2002,49(4),882~888
    [34]L.Li,D.Czarkowski,Y.Liu,P.Pillay.Multilevel Space Vector PWM Technique Based on Phase-Shift Harmonic Suppression.Proceeding of Applied Power Electronics Conference.New Orleans,2000,535~541
    
    [35]吴洪洋.多电平变换器及其相关技术研究.浙江大学博士论文.杭州:浙江大学,2001
    [36]吴学智,黄立培.基于ANN的三电平逆变器开关矢量选择器.清华大学学报(自然科学版).2003,43(3),381-388
    [37]Sidney R.Bowes,Yen-Shin Lai,The Relationship Between Space-Vector Modulation and Regular-Sampled PWM.IEEE Trans. on Industry Electronics,1997,44(5),670~679
    [38]李永东.交流电机数字控制系统.北京:机械工业出版社,2002 年
    [39]Fei Wang.Sine-Triangle versus Space-Vector Modulation for Three-Level PWM Voltage-Source Inverters,IEEE Trans. on Industry Applicantions.2002,38(2),335~341
    [40]徐永海.基于 dq 变换的电能质量扰动分析与调节技术研究.哈尔滨工业大学博士论文.哈尔滨:哈尔滨工业大学,2002
    [41]肖湘宁,徐永海.电能质量问题剖析.电网技术,2001,25(3),66~69
    [42]吴竟昌.供电系统谐波.北京:中国电力出版社,1998
    [43]王兆安,杨君,刘进军.谐波抑制和无功功率补偿.北京:机械工业出版社,1998
    [44]IEEE Working Group on Power System Harmonics.Power System Harmonics:An Overview.IEEE Trans. on P.A.S..1983,102(8),2455~2459
    [45]M.M.Cmeron.Trends in Power Factor Correction with Harmonic Filtering.IEEE Trans. on Industrial Application .1993,29(1),60~65
    [46]Kun-Ping Lin, Ming-Hoon Lin,Tung-Ping Lin.An Advanced Computer Code for Single-Tuned Harmonic Filter Design.IEEE Trans.on Industry Applicantion.1998,34(4),640~648
    [47]H.Sasaki,T.Machida.A New Method to Eliminate AC Harmonic Current by Magnetic Compensation Condsideration on Basic Design.IEEE Trans.on P.A.S..1971,90(5),2009~2019
    [48]L.Gyugyi et al.Active AC Power Filter.IEEE Trans.on P.A.S..1976,95(6),529~535
    [49]周新,卓放,裴云庆,等.120kVA 并联型有源电力滤波器的研制.电气自动化.2002,24(8),5~8
    [50] 王宏,刘昊,肖湘宁,等.380V/100A 三相三线制混合型有源电力滤波器应用实例.电力自动化设备.2004,24(9),30~34
    [51]叶忠明,董伯藩,钱照明.几种混合型有源电力滤波器分析.电工电能新技术.1998,17(2),23~28
    [52]F.Z.Peng , J.S.Lai.Applicantion Considerations and compensation Characteristics of Shunt Active and Series Active Filters in Power Systems.Proceedings of the IEEE ICHQP ,Las Vegas,1996,12~20
    
    [53]刘进军,刘波,王兆安.基于瞬时无功功率理论的串联混合型单相有源电力滤波器.中国电机工程学报.1997,17(1),37~41
    [54]候振义,黄和成,王义明.串联型综合电力滤波系统探究.电力电子技术.1998,(4),1~3
    [55]姚为正,王群,刘进军,等.串联型电力有源滤波器的设计.电力电子技术.1999,(3),1~4
    [56]G.Blajszczak.Direct Method for Voltage Distoration Compensation.IEEE Trans.on Power Electronics.1993,8(3),164~169
    [57]Luis A.Moran,Ivar Pasrorini,Juan Dixon.A Fault Protection Scheme for Series Active Power Filters.IEEE Trans. on Power Eelctronics.1999,14(5),928~938
    [58]唐卓尧,任震.并联混合型滤波器及其滤波特性分析.中国电机工程学报.2000,20(5),25~29
    [59]颜晓庆,杨君,王兆安.并联混合型电力有源滤波器的研究.电力电子技术,1998,32(4),4~6
    [60]颜晓庆,杨君,王兆安.并联型电力有源滤波器的数学模型和稳定性分析.电工技术学报.1998,13(1),41~45
    [61]S.Bhattacharya , D.M.Divan , B.Banerjee.Active Filter System Implementation.IEEE Industry Applications Magizine.1998,(9),47~63
    [62]P.G.Barbosa, J.A.Santisteban, E.H.Watanabe.Shunt-Series Active Power Filter for Rectifiers AC and DC Side.IEE Proc.EPA.1998,145(6),577~584
    [63]Shyh-Jier Huang,Jinn-Chang Wu.A Control Algorithm for Three-Phase Three-Wired Active Power Filters Under Nonideal Mains Voltages.IEEE Trans.on Power Electronics.1999,14(4),753~760
    [64]Luowei Zhou,Zicheng Li.A Novel Active Power Filter Based on the Least Compensation Current Control Method.IEEE Trans.on Power Electronics.2000,15(4),655~659
    [65]M.EI-Habrouk,M.K.Darwish,P.Mehta.Analysis and Design of a Novel Active Power Filter Configuration.IEE Proc.EPA.2000,147(4),320~327
    [66]V.B.Bhavaraju,P.N.Enjeti.Analysis and Design of an Active Power Filter for Balancing Unbalanced Loads.IEEE Trans.on Power Electronics.1993,8(4),640~647
    [67]M.Aredes , E.H.Watanabe.New Control Algorithms for Series,Shunt Three-Phase Four-Wire Active Power Filter.IEEE Trans.on P.D..1995,10,1649~ 1656
    
    [68]王良,郝荣泰.三相不平衡有源无功和高次谐波补偿器控制系统的研究.电工技术学报.1996,11(4),32~35
    [69]P.Verdelho,G.D.Marques.An Active Power Filter and Unbalancede Current Compensator.IEEE Trans.on Industry Electronics,1997,44(3),321~328
    [70]H.Akagi.New Trends in Active Power Filters for Power Conditioning.IEEE Trans.on Industry Applications.1996,32(6),1312~1321
    [71]肖国春,刘进军,王兆安.电能质量及其控制技术的研究进展.电力电子技术.2000,34(6),58~60
    [72]李鹏.统一电能质量控制器 UPQC 及其 H∞ 控制方法的研究.华北电力大学博士论文.保定:华北电力大学,2003
    [73]H.Akagi,H.Fujita.A New Trends Power Line Conditioner for Harmonic Compensation in Power System.IEEE Trans.on P.D..1995,10(3),1570~1575
    [74]Farrukh Kamran, Thomas G.Habetler.Combined Deadbeat Control of a Series-Parallel Converter Combination Used as a Universal Power Filter.IEEE Trans.Power Electronics.1998,13(1),160~168
    [75]Leon.M Tolbert , Fang zhengpeng , Thomas G. Habertler.A Multilevel Converter-Based Universal Power Conditioner.IEEE Trans. on Industry Applications.2000,36(2),596~603
    [76]A.V.Zyl,John,J.H.R.Enslin.A New Unified Approach to Power Quality Management.IEEE Trans.on Power Electronics.1996,11(4),691~697
    [77]A.V.Zyl,John,J.H.R.Enslin.Converter-Based Solution to Power Quality Problems on Radial Distribution Lines.IEEE Trans.on Industry Applications.1996,32(4),1323~1330
    [78]N.Balbo,R.Penzo,D.Sella.Simplified Hybrid Active Filters for Harmonic Compersation in Low Voltage Industrial Application.Proceedings of the IEEE ICHPS.Bologna,1994,263~269
    [79]H.Fujita,T.Yamasaki,H.Akagi.A Hybrid Active Filters for Damping of Harmonic Resonance in Industrial Power System.IEEE Trans.on Power Electronics.2000,15(2),215~222
    [80]A.M.Gole,M.Mesingset.An AC Ac tive Filter for Use at Capacitor Commutated HVDC Converters.IEEE Trans.on Power Deliver.2001,16(2),335~341
    [81]任震,余得伟,唐卓尧.基于模糊优化设计得混合滤波器——治理电气化铁道谐波的一种新方法.中国电机工程学报.2001,21(2),66~68
    [82]马大铭,谢磊,朱东起.综合电力滤波系统中无源滤波器的优化设计.电工 电能新技术.1997,(3),1~4
    
    [83]M.Rastogi , N.Mohan , A.A.Edris.Hybrid-Active Filtering of Harmonic Currents in Power Systems.IEEE Trans.on Power Deliver.1995,10(4),1994~2000
    [84]S.Bhattacharya,P.T.Cheng,D.M.Divan.Hybrid Solutions for Improving Passive Filter in High Power Applications. IEEE Trans.on Industry Applications.1997,33(6),732~748
    [85]P.T.Cheng , S.Bhattacharya , D.M.Divan.Experimental Verification of Dominant Harmonic Active Filter(DHAF) for High Power Applications. IEEE Trans.on Industry Applications.2000,36(1),567~577
    [86]徐永海,肖湘宁,杨以涵,等.低成本混合滤波方案及特性分析.中国电机工程学报.1999,19(12),5~8
    [87]肖湘宁,徐永海,刘昊,等.混合型有源电力补偿技术与实验研究.电力系统自动化.2002,26(5),39~44
    [88]Juan Carlos Montano Asquerino,Manuel Castilla Ibanez,Antonio Lopez Ojeda.Measurement of Apparent Power Components in the Frequency Domain.IEEE Trans.on I.M..,1990,39(4),583~587
    [89]S.Srianthumrong,S.Sangwongwanich.An Active Power Filter with Harmonic Detection Method Based on Recursive DFT.Proceedings of the IEEE ICHQP.Athens,1998,127~132
    [90]M.E.Habrouk, M.K.Darwish.Design and Implementation of a Modified Fourier Analysis Harmonic Current Computation Technique for Power Active Filters Using DSPS.IEE.Proc.-Electr.Power Appl.2001,148(1),21~28
    [91]B.Singh,K.Al-Haddad,A.Chandra.A New Control Approach to Three-Phase Active Filter for Harmonics and Reactive Power Compensation.IEEE Trans. on Power Systems.1998,13(1),133~138
    [92]Piotr Filipski.The Measurement of Distortion Current and Distortion Power.IEEE Trans.on I.M..1984,33(1),36~40
    [93]H.Akagi,Y.Kanazawa,A.Nabe.Instantaneous Reactive Power Compensators Comprising Switching Devices without Energy Storage Components.IEEE Trans.on Industry Applications.1984,20(3),625~630
    [94]杨君,王兆安.三相电路谐波电流两种检测方法的对比研究.电工技术学报.1995,10(2),43~48
    [95]A.Horn, L.A.Pittorino, J.H.R.Enslin.Evaluation of Active Power Filter Control Algorithms under Non-Sinusoidal and Unbalanced Conditons.Proceedings of the IEEE ICHQP.Las Vegas:1996,217~224
    
    [96]赵成勇,李庚银,陈志业,等.单相混合滤波系统的实验研究.电网技术,2001,24(1),43~46
    [97]刘进军,王兆安.基于旋转空间矢量分析瞬时无功功率理论及其应用.电工技术学报.1999,14(1),49~54
    [98]李庚银,陈志业,丁巧林,等.dq0 坐标系下广义瞬时无功功率定义及其补偿.中国电机工程学报.1996,16(3),176~179
    [99]杨君,王兆安,邱关源.不对称三相电路谐波及基波负序电流实时检测方法研究.西安交通大学学报.1996,30(3),94~100
    [100]杨万开,肖湘宁,杨以涵,等.基于瞬时无功功率理论高次谐波及基波无功电流的精确检测.电工电能新技术.1998,17(2),61~64
    [101]马莉,周景海,吕征宇,等.一种基于 dq 变换的改进型谐波检测方案的研究.中国电机工程学报.2000,20(10),55~58
    [102]A,Nabae,T.Tananka.A New Approach to Individual-Phase Reactive Power Compensator for Non-Sinusoidal and Unbalanced Three-Phase Systems-Proposal for a Quasi-Instantaneous Reactive Power Compensator.Proceedings of the IEEE ICHQP.Athens:1998,523~526
    [103]丁洪发,段献忠,何仰赞.同步检测法的改进及其在三相不对称无功补偿中的应用.中国电机工程学报.2000,20(6),17~20
    [104]罗世国,候振程.一种谐波及无功电流的自适应检测方法.电工技术学波.1993,8(3),42~46
    [105]S.Valiviita,S.J.Ovaska.Delayless Method to Generate Current Reference for Active Filters. IEEE Trans.on Industry Electronics.1998,45(4),559~567
    [106]王群,吴宁,谢品芳.检测畸变电流的神经元自适应电路.西安吉通大学学报.1998,32(10),1~4
    [107]周雒维,江泽佳,吴宁.基于补偿电流最小原理的谐波与无功电流检测方法.电工技术学报.1998,13(3),33~36
    [108]M.Depenbrock,V.Staudt.The FBD-Method as Tool for Compensating Toltal Non-Active Currents.Proceedings of the IEEE ICHQP.Athens:1998,320~324
    [109]J.Dixon,S.Tepper,L.Moran.Practical Evaluation of Different Modulation Techniques for Current-Controlled Voltage Source Inverters.IEE Proc-Electr.Power Appl.1996,143(4),301~306
    [110]S.Bsuo,L.Malesani,P.Mattvelli.Comparison of Current Control Techniques for Active Filter Applications. IEEE Trans.on Industry Electronics.1998,45(4),722~729
    [111]L.Malesani,P.Mattavelli,S.Buso.On the Applications of Active Filters to Generic Loads.Proceedings of the IEEE ICHQP.Athens:1998,310~319
    
    [112]W.Mcmurray.Modulation of the Chopping Frequency in DC Choppers and Inverters Having Current Hysteresis Controllers.IEEE Trans.on Industry Applications.1984,20(3),763~768
    [113]C.T.Pan , T.Y.Chang.An Improved Hysteresis Current Controller for Reducing Switching Frequency. IEEE Trans.on Industry Electronics.1994,41(9),97~104
    [114]I.Nagy.Novey Adaptive Tolerance Band Based PWMfor Field Oriented Control of Induction Machines.IEEE Trans.on Industry Electronics.1994,4(19),406~417
    [115]E.Perssen,N.Mohan,B.Ben Banerjee.Adaptive Tolerance-band Control of Standby Power Supply Provides Load-Current Harmonic Neutralization.Proceedings of IEEE PESC.Toledo:1992,320~326
    [116]张代润,刘红萍.单相有源电力滤波器的滞环控制策略分析.电机与控制学报.1998,2(3),153~157
    [117] L.Malesani,P.Mattavelli,S.Buso.High-Performance Hysteresis Modulation Technique for Active Filters. IEEE Trans.on Power Electronics.1997,12(5),876~884
    [118]B.H.Kwon,T.W.Kim,J.H.Youm.A Novel SVM-Based Hystersis Current Controller. IEEE Trans.on Power Electronics.1998,13(2),297~307
    [119]曾江,焦连伟,倪以信,等.有源滤波器定频率滞环电流控制新方法.电网技术.2000,24(6),1~8
    [120]David A.Torrey,Adel M.A.M.AL-Zamel.Single-Phase Active Power Filters for Multiple Nonlinear Loads. IEEE Trans.on Power Electronics.1995,10(3),263~271
    [121]B.Burton,F.Karman,R.G.Harley.Identification and Control of Induction Motor Stator Currents Using Fast On-line Random Training of a Neural Network. IEEE Trans.on Industry Applications.1997,33(3),697~704
    [122]Juan W.Dixon,Jose M.Contardo,Luis A.Moran.A Fuzzy-Controlled Active Front-End Rectifier with Current Harmonic Filtering Characteristics and Minimum Sensing Variables. IEEE Trans.on Power Electronics.1999,14(4),724~729
    [123]杜雄.单周控制直流侧有源电力滤波器的研究.重庆大学硕士学位论文.重庆:重庆大学,2002
    [124]Z.Lai,K.M.Smedley.A General Constant Frequency Pulse-Width Modulator and Its Applications。IEEE Trans.on Circuits and Systems.1998,45(4),386~396
    
    [125]Hadded K,Joos G,Chen S.Control Algorithms for Series Static Voltage Regulators in Faulted Distribution Systems.Proceeding of PESC 1999.Athens:1999,418~423
    [126] 韩民晓,尤勇,刘昊.线电压补偿型动态电压调节器(DVR)的原理与实现.中国电机工程学报.2003,23(12),49~53
    [127]Liu Hao,Xiao Xiangning,Xu Yonghai.Study on the Simplified Algorithm of Space Vector PWM.Proceeding of PEDS 2003. Singapore: 2003 , 877~881
    [128]刘昊,肖湘宁,刘宝志,等.一种非正交坐标系下 N 电平逆变器 SVPWM 的研究.华北电力大学学报.2004,31(4),24~28
    [129] Shrivastava,Lee Hui Chung. Comparison of RPWM and PWM space vector switching schemes for 3-level power inverters.Proceeding of PESC 2001. Anaheim:2001,138~145
    [130]Dong-Choon Lee,G-Myoung Lee.Linear Control of Inverter Output Voltage in Overmodulation. IEEE Trans.on Industry Electronics.1997,44(4),590~592
    [131]Vikram Kaura,Vlandimir Blasko.A New Method to Extend Linearity of a Sinusoidal PWM in the Overmodulation Region. IEEE Trans.on Industry Applications.1996,32(5),1115~1121
    [132]胡寿松.自动控制原理.国防工业出版社.北京:1994
    [133]Fujita H,Akagi H.A Practical Approach to Harmonic Compensation in Power Systems –Series Connection of Passive and Active Filters.Proceeding of IEEE IAS 1990.Las Vagas:1990,1107~1112
    [134]高大威.电力系统谐波、无功何负序电流综合补偿的研究.华北电力大学博士学位论文.北京:华北电力大学,2001
    [135]杨君,王兆安,邱关源.并联滤波器直流侧电压的控制.电力电子技术.1996,4,487~51
    [136]陶生桂,沈祥林,邵丙衡.IGBT 三点式逆变器控制方式与实践.铁道学报.1997,657~71
    [137]崔俊国,陶生桂.IGBT 三点式逆变器电压空间矢量控制方法. 同济大学学报.2001,1647~168
    [138]王宏,刘昊,肖湘宁,等.380V/100A 三相三线制混合型有源电力滤波器应用实例.电力自动化设备.2004,24(9),30~34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700