Cu基铋钼改性铈锆复合氧化物催化剂的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自工业革命以来,化石能源在给人类带来前所未有的工业发展和物质财富的同时,也给人类造成了难以承受的气候变化和环境压力。从目前来看,机动车尾气排放问题日益突出,机动车排放的大气污染物对城市空气污染的分担率越来越高,已成为继城市煤烟污染之后的又一主要污染源。机动车尾气净化催化剂是控制机动车气排放减少污染的最有效手段,欧美国家机动车尾气净化催化剂大多采用Pt、Pd和Rh等贵金属做为催化剂的活性组分,已经实际应用于机动车尾气的治理,但其存在贵金属资源短缺和价格昂贵等问题,难以全面推广。因此,开发一种廉价、高效的非贵金属催化剂来替代贵金属催化剂有着非常重要的意义。
     在此研究背景的条件下,本文选用价格相对低廉且容易获取的Cu作为催化剂的活性组分,采用等体积浸渍法制备了以Ce-Zr-O、Ce-Zr-Bi-O及Mo/CeO_2-ZrO_2复合氧化物为载体的负载型非贵金属催化剂,然后在模拟机动车尾气主要组成的气氛下,通过活性测试分析催化剂性能,并结合XRD和SEM等表征手段考察各个条件对催化剂结构的影响。此外,对催化剂的结构与性能也进行了一定的关联。主要研究内容和实验结果如下:
     1.以NH_3·H_2O-(NH_4)2CO_3混合溶液作为沉淀剂,采用共沉淀法制备了Ce-Zr-Bi-O(CZB)系列复合氧化物,并以该复合氧化物为载体,研制负载非贵金属Cu的Cu/CZB催化剂。通过调节Ce/Zr比例,改变Bi的含量以及载体的制备方法,得出当CZB载体采用共沉淀法制备、Ce:Zr:Bi的摩尔比为0.65:0.35:0.06、Cu负载量为5%时,所制得的Cu/Ce0.65Zr0.35Bi0.06O_2具有较好的催化活性,能使NO和CO的起燃温度较低,分别为238和低于100 ,并且在175时CO达到完全转化,325时NO达到完全转化。Bi的加入能够形成具有单一稳定立方相结构的Ce-Zr-Bi固溶体,晶粒达到纳米级,同时不出现CuO在催化剂表面聚集的现象,从而提高了催化剂的性能。
     2.研究了Cu/Mo/CeO_2-ZrO_2复合金属氧化物催化剂性能。当Ce:Zr的摩尔比为0.65:0.35, Mo负载量为6%,Cu负载量为5%时,制得的Cu/Mo/CeO_2-ZrO_2催化剂具有较佳的催化性能和较宽的工作窗口,当空燃比为1.4时,能使CO、C_3H_6和NO的起燃温度T50分别为103、247和242 ,完全转化温度T90分别为189、429和315。XRD和SEM的测试结果表明:助剂Mo的添加可使Cu/Mo/CeO_2-ZrO_2催化剂的颗粒更加细化,且能够形成单一稳定的立方相固溶体结构,催化剂经高温老化后,颗粒分散均匀性仍较好。
Since the industrial revolution, fossil energy bring unprecedented in the industrial development and material wealth, but also give human caused unbearable climate change and environmental pressures. In view of the existing conditions, motor vehicle exhaust emission problems have become increasingly prominent, in the urban air pollution, the pollution from exhaust emission is more and more serious, which has become the major source of pollution after soot pollution. Motor vehicle exhaust gas cleaning catalyst is the most effective means to control emissions and reduce pollution. The European and American catalysts are mostly used Pt, Pd, Rh and other precious metals as the active component, which has a actual application already. However, there are many existing problems to comprehensive promotion, such as shortage of resources and expensive precious metals. Therefore, it is important to develop a cheap and efficient non-noble metal catalysts to instead of noble metal catalyst.
     Under this background conditions, in this paper, we used Cu as a catalyst active component, which is relatively cheap and easy to acquire. The catalysts was prepared with the Ce-Zr-O, Ce-Zr-Bi-O and Mo/CeO_2-ZrO_2 composite oxides as the carrier by incipient-wetness impregnation method, their performance were investigated in a condition of a simulated motor vehicle exhaust, the catalysts structure were characterized with XRD and SEM means to study. In addition, the structure and properties of catalyst were linked in some extent. The main research contents and experimental results are as follows:
     、
     1. We used NH_3·H_2O-(NH_4)2CO_3 as the precipitator, the series of Ce-Zr-Bi-O(CZB) composite oxides were prepared by the co-precipitation method, and Cu/CZB catalysts was prepared with them as the carrier. The effects of different Ce, Zr and Bi molar ratio and preparation methods on the CZB composite oxides were investigated. The results showed: when CZB carrier was used co-precipitation method, the Cu/Ce0.65Zr0.35Bi0.06O_2 catalyst with Ce:Zr:Bi molar ratio of 0.65:0.35:0.06, and the content of Cu of 5% showed the better catalytic performance. The light-off temperatures for NO and CO were 238 and lower than 100 respectively, CO could be completely converted above 175 , and NO could be completely converted above 325 . Bi was added to form a single and stable cubic structure of the Ce-Zr-Bi solid solution, crystal size achieved a nanometer scale level, while highly dispersed CuO particles was formed on the surface of catalyst, so the performance of the catalyst has improved.
     2. Catalytic properties of Cu/Mo/CeO_2-ZrO_2 composite oxide catalyst was studied. The Cu/Mo/CeO_2-ZrO_2 catalyst with Ce:Zr molar ratio of 0.65:0.35,the content of Mo of 6% and the content of Cu of 5% showed high catalytic performance. When the air/fuel ratio was 1.4, the light-off temperatures for CO, C_3H_6 and NO were 103 , 247 and 242 respectively, CO, C_3H_6 and NO could be completely converted above 189 , 429 and 315 . The results of XRD and SEM characterization showed, Mo was added to make the catalyst particles be smaller and form a single and stable cubic structure of the solid solution. After aging at high temperature, the catalyst particles also have good dispersion and regular shape.
引文
[1]海外快递.中国石油和化工.2008/Z1.
    [2]绿色出行北京2008报告[EB/OL].(2009-04).
    [3]曹磊.汽车尾气净化催化剂的研究进展[J].污染防治技术, 2008, 21(03): 70-72.
    [4] Bikas G,Zervas E,Regulated and non-regulated pollutants emitted during the regeneration of a diesel particulate filter,Energy&Fuels,2007,21(3):1543-1547.
    [5] Jia L W,Shen M Q,Wang J et al.,Influence of ethanol-gasoline blended fuel on emission characteristics from a four-stroke motorcycle engine,Journal of Hazardous Material,2005,123(1-3):29-34.
    [6]贺小昆,高兰.稀土在机动车催化剂中的应用及发展[J].世界有色金属,2009,(5):76-77.
    [7]赵明,王海蓉,陈山虎,等. CeO2-ZrO2-Al2O3的制备及其负载钯三效催化剂的催化性能[J].催化学报, 2010, 31(04):429-434.
    [8] R. K. Usmen,G. W. Graham,W. L. H. Watkins,R. W. McCabe. Incorporation of La3+ into a Pt/CeO2/Al2O3 catalyst[J]. Catal Lett, 1995, 30(1-4): 53-63.
    [9]郭家秀,袁书华,龚茂初,等.低贵金属Pt-Rh型三效催化剂空燃比性能的研究[J].化学学报, 2007, 65(10): 937-942.
    [10]刘立成,訾学红,戴洪兴,等. Rh-Au/γ-Al2O3三效纳米催化剂的制备与表征[J].催化学报, 2010, 31(07):781-787.
    [11]张京.浅谈汽车尾气污染及其治理的发展方向[J].黑龙江交通科技,2009,( 04):117-118.
    [12]程晓庆.NiO/CeO2催化剂上NO-CO反应机理研究[D].大连理工大学硕士学位论文,2009:2.
    [13]何毅荣.汽油机的排放污染与控制措施[J].无锡职业技术学院学报, 2003, 2(01):17-19.
    [14]陈昊.轻型汽油车辆排放污染对城市环境影响的研究[D].长安大学硕士学位论文,2005:5.
    [15]李兴虎.汽车排气污染与控制[M].北京:机械工业出版社,1999.
    [16] Trovarelli A,Leitenburg C D,Boaro M,et al.The utilization of ceria in industrial catalysis.[J].Catal.Today,1999,50:353-359.
    [17]李金平,王启民,李红,等.低挥发份煤粉燃烧NOx生成机理及控制[J].动力工程, 2005, 25(增刊):12-17.
    [18]周超强.负载型铜锰二元氧化物催化剂选择性催化还原NOx性能研究[D].哈尔滨工程大学硕士学位论文,2009:2.
    [19] John C Kramlich, Willian P Linak. Nitrous oxide behavior in the atmosphere and in combustion and industrial systems. Prog. Energy Combust. Sci. 1994, 20: 149-202.
    [20] Wang Wanxing, Mark K Thomas. The release of nitrogen species from carbons during gasification: modals for coal char gasification. Fuel, 1992, 71: 871-877.
    [21] James A Miller, Craig T Bowman. Mechanism and modeling of nitrogen chemistry in combustion. Prog. Energy Combust. Sci . 1989, 15: 287-338.
    [22] Phong-Anant D, Wibberley L J, Wall T F. Nitrogen oxide formation from Australian coals. Combustion and Flame, 1985, 62: 21-30.
    [23]邓芙蓉,郭新彪.我国机动车尾气污染及其健康影响研究进展[J].环境与健康杂志,2008,2,(25):174-176.
    [24]王仪山,杨贻清.汽车尾气对人体锥康的影响[J].职业与健康,2001,17(6):22-24.
    [25]朱军.大气环境化学与人类健康.济宁医学院学报.2006(3):62-65.
    [26]聂国欣,胡满银等.城市机动车排放污染分析及控制对策[J].能源研究与利用,2004,5:44-46.
    [27]刘翼俊.内燃机的排放与控制[M].北京,机械工业出版社,2003,1:16-30.
    [28]崔际刚,许铁磊,田健丽.空气中机动车尾气及其二次污染物浓度的初探[J].环境与健康杂志,2007,5,(24):333-334.
    [29]武喜怀.汽车尾气对人体健康的危害[J].内蒙古石油化工,2007,5:69-70.
    [30]杨玉洁,宋伟强.城市交通干线两侧机动车尾气污染状况分析[J].辽宁城乡环境科技,2006,2:26-28.
    [31] Pikhart H,Bobak M,Kriz B,et al.Outdoor air pollution of nitrogen diokide and sulfur dioxide and prevalence of wheezing in school chindren.Epide miology.2000,11(2):153.
    [32]刘峥,王建听编.汽车发动机原理教程.清华大学出版社,2001.
    [33] Tadashi Suzuki,Akira Morikawa,Akihiko Suda,et al,Alumina-ceria-zirconia composite oxide for three-way catalyst,R&D Review of Toyata CRDL,37(4):28-33.
    [34] Ricken M,Noelting J,Riess I,et al.Specific heat and phase diagram of non-stoichiometric ceria.Journal of Solid State Chemistry,1984,54:89-99.
    [35]王艳芳.纳米二氧化铈的资源及应用.广州化工,2005,33(5):24-26.
    [36] Alessandro Trovarelli,Eliana Rocchini,et al , Some recent developments in thecharacterization of ceria-based catalysts,Journal of Alloys and Compounds,2001,12(4):584-591.
    [37] Colon G,Pijolat M,Valdivieso F,et a1.Surface and structural characterization of Ce1-xZrxO2 mixed oxides as potential three way catalyst promoters.Journal of Chemisry Society,Faraday Trans.,1998,94(24):3717-3726.
    [38]胡玉才,冯长根,王丽琼.新一代三效催化剂的关键材料CexZr1-xO2固溶体研究进展.环境科学与技术,2002,25(4): 42-46.
    [39] Trovarelli A,Catalysis by Ceria and Related Materials,London:Imperial College Press,2002,73.
    [40] Masahiro Sugiura,TOYOTA Central R&D Labs.Inc. , Oxygen storage materials for automotive catalysts:ceria-zirconia solid solutions,Catalysis Surveys from Asia,2003,7(1):77-86.
    [41]彭新林,龙志奇,崔梅生等,共沉淀法合成铈锆复合氧化物及表征[J].中国稀土学报,2002,20(Z3):104-107.
    [42] Alifanti M.,Baps B.et.al,Characterization of CeO2-ZrO2 Mixed Oxides:Comparison of the Citrate and Sol-Gel Preparation Methods,Chem.Mater,2003,15(2):395-403.
    [43]郑育英,黄慧民,邓淑华等,水热法制备高纯超细CeO2-ZrO2复合氧化物,无机化学学报,2005,21(8):1227-1230.
    [44] Trovarelli,Alessandro,et.al,Nanophase Fluorite-Structured CeO2–ZrO2Catalysts Prepared by High-Energy Mechanical Milling,Journal of Catalysis,1997,169(2):490-502.
    [45] Terribile Daniela,Trovarelli Alessandro,Llorca Jordi,The preparation of high surface area CeO2-ZrO2 mixed oxides by a surfactant-assisted approach , Catalysis Today,1998,43(1-2):79-88.
    [46] An YA,Li L,Wang J et.al,Preparation and characterization of CeO2-ZrO2 solid solution ultrafine particles using reversed microemulsion,Journal of rare earths,2005,23(4):416-419
    [47] Aruna S T,Patil K C.Combustion synthesis and properties of nanostructured ceria-zirconia solid solutions.Nano-structured Materials,1998,10:955-964.
    [48] Hori C E,Permana H,Simon K Y,et al.Thermal stability of oxygen storage properties in a mixed CeO2-ZrO2 system.Applied Catalysis B:Environmental,1998,16:105-117.
    [49]冯长根,胡玉才,王丽琼.铈锆氧化物固溶体对全钯三效催化剂性能的影响.应用化学,2003;20(2):59-92.
    [50]赵建军,刘源,汽车尾气净化催化剂用CexZr1-xO2固溶体的研究进展,中国稀土学报,2002,20(6):52-54.
    [51]张顺海,蒋平平,等.氧化共沉淀法制备纳米级铈锆固溶体.中国稀土学报,2003(21):64-66.
    [52] Potdar H S,Deshpande S B,Deshpande A S,et al.Preparation of ceria–zirconia (Ce0.75Zr0.25O2)powders by microwave–hydrothermal(MH)route.Materials Chemistry and Physics,2002,74(3):306-312.
    [53]阎子峰,纳米催化技术,北京:化学工业出版社,2000,296-299.
    [54]肖莉,林培琰,杨志柏,汪文栋;Ce-Zr固溶体的纯度及其在三效催化剂中的作用[J];分子催化;2000,14(2):81-86
    [55] Thammachart M,Meeyoo V,Risksomboon T,et al.[J].CatalysisToday,2001,68 (1-3) : 53-61.
    [56]袁文辉,周辰辰,李莉.改进溶胶-凝胶法合成CeO2-ZrO2固溶体及催化性能研究[J]无机材料学报,2010,25(8):820-824.
    [57] Nunan J G. Methods of Making Highly Dispersed Substantially Uniform Cerium and Zirconium Mixed-metal-oxide Composite Supports for Exhaust Conversion Catalysts [P]. US 6040265,2000-03-2.
    [58]王帅帅,冯长根.铈锆固溶体制备方法的研究进展.化工进展,2004,5:476-479.
    [59] Heckrm,Farrauto R J·Automobile exhaust catalysts[J]·Applied Catalysis A: General,2001,221(1):443-457.
    [60] Balducci G,Islam M S,Kaspar J et al.,Bulk reduction and oxygen migration in the ceria-based oxides,Chemistry of Material,2000,12(3):677-681.
    [61]冯长根,樊国栋.铽改性铈锆固溶体.应用化学,2005;22(7):703-708.
    [62]杨志柏,林培琰,肖莉等,以Nd改性CeO2-ZrO2固溶体助剂的研究,催化学报,2001,22(4):365-369.
    [63]李凯,周卫华,王学中.CeO2基氧化物储氧材料研究制备储氧性能研究[J].中国稀土学报,2004,22(1):81-84.
    [64]长志信,陈虎兵.La0.1Ce0.6Zr0.3O2储氧纳米固溶体微粒的制备[J].宁夏工程技术,2005,4(2):144-147.
    [65]刘萍,房华,赵明.掺杂Mn对Ce-Zr复合氧化物性能的影响[J].无机材料学报,2006,21(6):1417-1421.
    [66] Xiaodi Wu,Xiaodong Wu,Qing Liang.Structure and oxygenstorage capacity of Pr/Nd doped CeO2-ZrO2mixed oxides[J]. Solid State Sciences,2007,2(1):643-645.
    [67]黄盼,刘先树.三效催化剂的研究进展[J].资源开发与市场. 2009.(03).
    [68]闫冬霞,田群,陈宏德.全钯汽车尾气催化剂.中国环保产业, 2002(10): 28-30.
    [69] Austu G P. Mechanism of the lean NOx reaction over Cu/ZSM25. Applied Catalysis B : Environmental, 1993, 2: 81-100.
    [70]伍斌,童志权. NO分解催化剂的研究进展.工业催化, 2005, 13(7): 52-55.
    [71] Held W, Konig A, Rihter T, et al. SEA paper. 1990, 900496.
    [72] Iwamoto M., Yahiro H., Mizuno N, et al. J. Phys. Chem. 1992,96:9360.
    [73]孙岳明,杨萍,曹爱年,等. NO、CO和O2在铜离子分子筛上吸附的理论研究.物理化学学报. 2001, 17(8): 761-764.
    [74]张琳,张秀玲,代斌,宫为民,张大海.催化法脱除大气污染物NOx的研究进展.低温与特气, 2000, 18(4): 7-10.
    [75] Roth J F, Doerr R C. Industrial and Engineering, Chemistry, 1961, 53: 293-296.
    [76]滕加伟,宋庆英,于岚等.催化法脱除NOx的研究进展[J].环境污染治理技术与设备, 2000, 1(l):38-45.
    [77]沈美庆,宋崇林,秦永宁. DeNOx催化剂研究进展.燃料科学与技术. 1997, 3(4): 333-339.
    [78] A.P.B.Sinha, N.R.Sanjana.et al. Location of calcium in Ca substituted YBa2Cu4O8, and impurity phases in off-stoichiometry compositions [J]. Phy.Chem., 1958, 62: 191-197.
    [79] James. J. Burton, Robert L.Garten, Advance Materials in Catalysis[M]. London Academic Perss, 1977.
    [80] Libby W F. Promising catalyst for auto exhaust[J]. Science, 1971, 171(970): 499-500.
    [81] Gonález A, Tamayo E M, Porter A B, et al. Synthesis of high surface area perovskite catalysts by non-conventional routes [J]. Catal Today, 1997, 33(1-3): 361-369.
    [82]刘炜,张俊丰,童志权.选择性催化还原法(SCR)脱硝研究进展.安全与环保, 2005, 31(l): 25-28.
    [83] Yaillashita H. Reaetion of nitric oxide with metal-loaded carbon in the presence of oxygen. Applied Catalysis B: Environmental, 1991, 78(l): 1-6.
    [84] Takahashi Naoki, Shinjoh Hirofumi, Iijima Tomoko, et al. Catalysis Today, 1996, 27(1-2): 63-69.
    [85]冯长根,王帅帅,陈建军.贫燃条件下汽车尾气中氮氧化物的催化净化.现代化工, 2004, 24 (3): 57-61.
    [86] Salasc S, Skoglundh M, Fridell E. Applied Catalysis B : Environmental, 2002, 36(2): 145-160.
    [87] Huang H Y, Long R Q ,Yang R T. Applied Catalysis B : Environmental, 2001, 33(2): 127-136.
    [88]刘海峰,金超.汽车节能环保新技术.汽车电器. 2009 (2): 1-6.
    [1]蔡黎,赵明,皮展,等. Ce-Zr-La-Al2O3的制备及负载的单Pd三效催化剂[J].催化学报,2008, 29(2):108-112.
    [2]叶青,金钧,陈永宝,等.汽车尾气三效催化剂的现状、发展及动向[J] .北京工业大学学报,2000,26(01):112.
    [1]曹禄彬,赵锋,胡国新. Mn-Fe/γ-Al2O3的制备与NO催化氧化性能[J].实验室研究与探索, 2010, 29(08): 4-7.
    [2]李澜澜,王洪林. Au/CexZr1-xO2催化剂在高浓度CO室温催化氧化中的活性[J].云南大学学报(自然科学版), 2008, 30(3): 291-295.
    [3]赵秀华. CuO/CexTi1-xO2催化剂的结构及对NO+CO反应性能的研究.浙江大学硕士论文, 2008.
    [4]董林.负载型催化剂的表面相互作用及其在大气分子污染物NO和CO消除中的应用基础研究[J].催化学报, 2009, 30(11): 1150-1169.
    [5]钟依均,林瑞,罗孟飞. CuO/Ce-Zr-La-O催化剂的表征及CO氧化活性[J].中国稀土学报, 2003, 21(02) : 226-229.
    [6]张礼,翁端,王斌,等.多元铈锆基复合氧化物储氧材料的研究进展[J].材料导报, 2010, 24(04) :20-24.
    [7]李彦英,郭耘,卢冠忠,等.铋掺杂对Ce-Zr固溶体储氧性能稳定性的影响[J].中国稀土学报, 2010, 28(4):408-413.
    [8] Trovarelli A, Zamar F, Llorca J, et al. Nanophase fluorite-structured CeO2-ZrO2catalysts prepared by high-energy mechanical milling [J]. J Catal,1997, 169(2):490-502.
    [9]蒋晓原,陈煜,周仁贤,等.CuO/Ce0.5Zr0.5O2的结构特征及催化性能表征[J].燃料化学学报, 2001, 29(增刊):122-125.
    [10]刘萍,赵明,房华,等.焙烧温度对复合储氧材料性能的影响[J].化学研究与应用, 2007, 19(05):513-516.
    [1]马磊,卢春山,张群峰,等. Ce/Zr比对PdO/CexZr1-xO2催化剂三效催化性能的影响[J].稀有金属材料与工程,2010,39(增刊2):353-356.
    [2]徐晓华,徐成福.稀土RE-Pt催化剂的研究进展[J].化工时刊,2009,23(4):54-57.
    [3]郭瑞华,刘铃声,郭军平,等.制备条件对超细CexZr1-xO2固溶体分散性的影响[J].稀土,2010,31(6):81-84.
    [4]罗改霞,路战胜,孙厚谦,等.不同浓度Pt掺杂CeO2储氧材料的第一性原理研究[J].盐城工学院学报,2010,23(4):18-23.
    [5]赵建军,刘源.汽车尾气净化催化剂用CZ固溶体的研究进展[J].中国稀土学报,2002,23(6):52-57.
    [6]明彩兵,叶代启,周遗品,等.Pt负载的铈锆固溶体的催化性能与表征[J].环境科学与技术,2010,33(6):54-57.
    [7]李梅,柳召刚,胡艳宏,等.掺杂元素对铈锆固溶体性能的影响[J].中国稀土学报,2008,26(5) :530-535.
    [8] Fan Jun, Wu Xiaodong,et al. Thermal ageing of Pt on low-surface-area CeO2-ZrO2-La2O3mixed oxides: Effect on the OSC performance [J]. Appl Catal B: Env,2008,81:38.
    [9]谬文浩,赵明,余全伟,等.不同沉淀剂对Ce0.65Zr0.35O2复合氧化物性能的影响[J]化学研究与应用,2007,(06):657-659.
    [10]林树东.金属氧化物复合载体催化剂的制备及其对NO选择还原催化性能的研究.汕头大学硕士学位论文. 2008: 36.
    [11]蒋晓原,陈煜,周仁贤,等.CuO/Ce0.5Zr0.5O2的结构特征及催化性能表征[J].燃料化学学报, 2001, 29(增刊):122-125.
    [12] Trovarelli A, Zamar F, Llorca J, et al. Nanophase fluorite-structured CeO2-ZrO2catalysts prepared by high-energy mechanical milling [J]. J Catal,1997, 169(2):490-502.
    [13]冯长根,张江山,王亚军.高分子凝胶法合成纳米铈锆氧化物固溶体及其热稳定性研究[J].北京理工大学学报, 2005, 25(1):82-86.
    [14]赵波,王秋艳,葛昌华,等. Ce0.67Zr0.33O2材料的制备和表征及其负载单Pd三效催化剂的性能[J].催化学报, 2009, 30(05):407-413.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700