光学介质薄膜的激光损伤特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学薄膜元件是激光系统中极其重要的组成部分,对于大功率高能量激光系统来说,激光薄膜的性能一直是限制其向更高能量或更高功率发展的瓶颈之一。同时,薄膜元件也是红外窗口及导弹导引头等的重要组成部分,激光武器对薄膜元件的破坏可能造成光学系统的功能失效。因此,研究薄膜抗激光损伤特性,不断提高其损伤阈值,对改进激光系统,扩展其在科研及生产中的应用,具有重要的实际价值,同时也成为发展激光防卫武器的基础。
     本文从材料优化的角度入手,采用搭建的激光损伤阈值测试平台,对多种光学介质薄膜材料的激光损伤特性进行了研究。对光学薄膜损伤机理的研究表明:薄膜材料、厚度、激光波长和脉冲宽度均会影响薄膜的损伤阈值。基于文献分析和对比,结合材料自身的物理特性发现:材料的禁带宽度与激光损伤阈值密切相关,一般禁带宽度越大,损伤阈值越高;对于大多数材料,熔点、机械强度与损伤阈值具有正相关性。
     本文采用离子束辅助热蒸发技术,在K9玻璃上制备了单层HfO2、ZrO2和SiO2薄膜。基于1-on-1损伤测试方法、散射光强和相衬显微法损伤评判标准,利用1.064μm调QNd:YAG脉冲激光器,脉宽为10ns,对薄膜的激光损伤阈值和损伤形貌进行了测试,结果表明:沉积这三种薄膜时束流大小是影响损伤阈值的主要因素,HfO2的损伤阈值随着束流的增大先增大后减小;制备的HfO2损伤阈值最大为4.25J/cm2,退火后的损伤阈值明显提高;损伤形貌分析显示出,在同一激光能量下,HfO2比ZrO2的抗激光损伤能力强。论文还研究了MgF2、BaF2和YF3的激光损伤特性,结果表明:在同一激光能量下,三种氟化物中YF3抗激光损伤能力最强,BaF2薄膜次之,MgF2薄膜的抗激光损伤能力最弱。通过损伤阈值与薄膜镀制工艺关系的研究,得到了HfO2、SiO2、MgF2、BaF2和YF3的最优工艺参数。
The optical thin film components are important parts of the laser systems. For large-power and high-energy laser systems, the laser damage resistance ability of films is also one of the bottlenecks of the development of these systems. Moreover, the thin film components are important parts of the infrared windows and the guide-heads of tactical missile. Once the thin film components are damaged by a high energy laser weapon, the whole optical system may be destroyed. Thus, it is important to improve the laser-induced damage threshold of the thin films for the development of high power laser systems and enlarging of the application of scientific research and production. Meanwhile it is of the theoretical principle to develop the high-energy laser weapon.
     In order to optimizing materials, laser damage characteristic of the various dielectric materials are investigated by using a set of laser-induced damage threshold (LIDT) testing system., The factors which are film materials, film thickness, and laser wavelength and pulse width influence the LIDT of thin films by studying damage mechanism. Base on literatures analyzing, material characteristics contrasting, it is showed that: a. the material with a higher band gap commonly has a higher LIDT; b. for most materials, the LIDT of films may be positive correlative with melting point and mechanical strength.
     Several single-layer dielectric thin films such as HfO2, ZrO2 and SiO2 are prepared by ion-beam-assisted deposition (IBAD) on K9 substrate. The damage threshold and damage morphology of these thin films are tested with 1-on-1 testing method, He-Ne laser scattering, phase contrast microscope damage checking method and 1.064μm Q switch Nd:YAG laser system with 10ns pulse width. The results are as following:the deposition rate is the major factor to damage threshold for HfO2, ZrO2 and SiO2. The damage threshold of HfO2 thin-film increases with the deposition rate first, and then decrease; the largest damage threshold prepared with HfO2 is 4.25J/cm2. After annealing, the damage threshold of these films significantly increases; damage morphology analysis shows that the laser damage resistance ability of HfO2 thin film is higher than that of ZrO2 under the same laser energy. In this paper, other materials such as MgF2, BaF2 and YF3 are also studied. The results indicate that for the same laser energy, the film materials are YF3, BaF2 and MgF2 according to their resistance capability to laser. Finally, the optimum process parameters of HfO2, SiO2, MgF2, BaF2 and YF3 are obtained through the relationship between damage threshold and experiment parameters.
引文
[1]倪晓武,陆建,贺安之.高功率激光对光学介质薄膜破坏机理的研究进展[J].激光技术,1994,18(6):348-351.
    [2]夏晋军,李仲伢,程雷.532nm激光对光学薄膜的损伤[J].激光技术,1996,20(6):377-379.
    [3]卜轶坤,赵丽,郑权,等.高损伤阈值激光反射镜的设计方法[J].红外与激光工程,2006,35(2):183-186.
    [4]朱震.光学薄膜——激光技术的一个重要基础[J].激光与红外,1994,24(4):68-71.
    [5]朱震.光学薄膜在激光与红外技术中的应用[J].激光与红外,2006,36:792-796.
    [6]潘英俊.封君.强激光对光学薄膜的损伤机理[J].半导体光电,1997,18(1):61-64.
    [7]郭少峰,陆启生,程湘爱,等.光学材料的激光损伤形态研究[J].强激光与离子束,2002,14(2):238-242.
    [8]蒋艳锋.长脉冲强激光对光学材料热损伤的研究[D].成都:四川大学,2006.
    [9]倪亚茹,陆春华,许仲梓.光学材料的激光损伤及其增强研究[J].激光杂志.2005,26(5):18-20.
    [10]胡鹏,陈发良.激光辐照下杂志诱导光学玻璃损伤的两种机理[J].强激光与粒子束,2005,17(7):961-965.
    [11]胡江川,王万录,冯庆,等.高反射膜抗激光损伤的研究进展[J].材料导报,2003,17(9):238-241.
    [12]周建民.激光防护器件和抗激光损伤薄膜[J].应用光学,1995,16(1):17-21.
    [13]Anton R, Hagedorn H, Schnellbugel A. Ion-assisted deposition of high-quality Thorium free anti-reflection coatings.1994,2114:288-296
    [14]Lynn Sheehan, Mark Kozlowski. Frank Rainer, Mike Staggs. Large-area conditioning of optics for high-power laser systems[J]. SPIE Vol.2114:559-568
    [15]Zheng Xiu Fan, Qiang Zhao, Hong Qiu et al. Laser-induced damage in optical coatings and lawer condition technology[J]. SPIE Vol,3244:469-474
    [16]Weijin Kong, Yuanan Zhao, Tao Wang et al. Laser induced damage of multi-layer dielectric used in pulse compressor gratings. CHINESE OPTICS LETTERS,Vol.3,No.3:181—183
    [17]李大伟,赵元安,贺洪波.等.光学元件激光损伤阈值的指数拟合法以及测试误差分析[J].中国激光,2008,35(2):273-275.
    [18]张东平,张大伟,范树海,等.应用离子后处理技术提高薄膜激光损伤阈值[J].强激光与粒子束,2005,17(2):213-215.
    [19]胡建平,陈松林,赵春茁.等.光学薄膜的激光损伤阈值测量[A].提高全民科学素质、建设创新型国家——2006中国科协年会论文集(下册)[C],2006.
    [20]K L Lewis, A M Pitt, M Corbett, R Blacker, J Simpson. Progress in optical coatings for the mid-infrared[J]. SPIE,1997,2966:166-177.
    [21]朱耀南.光学薄膜激光损伤阈值测试方法的介绍和讨论[J].激光技术,2006,30(5):532-535.
    [22]唐晋发,顾培夫,刘旭,等.现代光学薄膜技术[M].杭州:浙江大学出版社,2006.
    [23]孔伟金,刘世杰,沈自才,等.多层介质膜光栅和介质膜反射镜抗激光损伤阈值研究[J].中国激光,2006,33(4):552-556.
    [24]孙承伟等.激光辐照效应[M].北京:国防工业出版社,2002.
    [25]赵强,范正修.光学薄膜界面吸收对温度场的影响[J].光学学报,1996,16(6):777-782.
    [26]赵强,范正修,王之江.激光对光学薄膜加热过程的数值[J].1999,19(8):1019-1023.
    [27]谈恒英,刘鹏程,施柏煊.激光光热偏转成像法无损检测光学薄膜的激光损伤[J].光子学报2,005,,34(1):158-160.
    [28]胡建平,马红菊,李树刚,等.激光损伤He-Ne散射探测法研究[J].光学与光电技术,2008,6(3):22-25.
    [29]崔云,赵元安,晋云霞,等.激光预处理对增透膜阈值的影响[J].真空科学与技术学报,2006,26(4):321-325.
    [30]段利华.光学薄膜激光损伤及散射检测研究[D].重庆:重庆大学,2005.
    [31]张洪涛.1064nm激光高反膜的制备[D].长春:长春理工大学,2006.
    [32]高智星.氟化氪激光光致荧光在光学元件激光损伤探测中的应用[D].中国原子能科学研究院.2007.
    [33]黄心耕,刘江,王素英.从欧洲真空镀膜会议分析光学薄膜及其技术的研究和发展[J].光学仪器,1999,21(4-5):238-242.
    [34]J H Cmapbell, R A Hwaley-Fedder, C J Stolz, J A Menapace, M R Borden, P K Whitmna, J Yu, M Runkel, M O Riley, M D Feit, R P Hackel.NFI光学材料和制造技术:概述.国外核武器研究,2004,增刊:47-59.
    [35]鲁嘉.电子束蒸发制备抗激光损伤ZrO2/SiO2膜系及表面特征研究[D].合肥:合肥工业大学,2006.
    [36]H Jsehlag, W Seherber. Thin Solid Films,2001,366:28-31.
    [37]M L Protopapa, M Alvisi, M Di Giulio, F De Tomasi, M R Perrone, GTorsello, A Valtenini. Effects of structural properties and electric field distribution on the laser-damage threshold of HfO2 thin films[J]. Proc. of SPIE Vol.2000,4070:380-386.
    [38]M Di Giulio, M Alvisi, M R Perrone, Laser damage testing of SiO2 and HfO2 thin films[J].Proc. of SPIE Vol.1999.3738:337-346.
    [39]S Scaglione, F Sarto, A Rizzo, M Alvisi. Dependence of the HfO2 thin film structure on the momentum transfer in ion beam assisted deposition. Proc.SPIE,1998,Vol.3578:154-161.
    [40]Yuanan Zhao, Zhaosheng Tang, Jianda Shao, Zhengxiu Fang. Single-shot and multishot laser induced damage of HfO2/SiO2 multilayer at YAG third harmonic [J]. Proceedings of SPIE,2003, Vol.5273.
    [41]Yuanan Zhao, TaoWang, Dongping zhang, Shuhai Fan, Jianda Shao, Zhengxiu Fan, Laser conditioning of ZrO2:Y2O3/SiO2 mirror coatings prepared by E-beam evaporation[J]. Applied Surface Science,2005,239:171-175
    [42]张大伟,吕玮阁,邵建达,等.氧离子束辅助沉积氧化铪薄膜的激光损伤阈值研究[J].激光杂志,2007,28(3):31-32.
    [43]代福,熊胜明,张云洞.重复率脉冲激光作用下光学薄膜的激光损伤研究[J].光电子技术,2007,27(2):78-81.
    [44]刘岩.激光高反射膜的研究[D]长春:长春理工大学,2006.
    [45]M Alvisi, M Di Giulio, M R Perrone, M L Protopapa, S Scaglione. Influence of the standing wave electric field pattern on the laser damage resistance of HfO2 thin films. Proc. SPIE,2001,Vol.4347:102-107.
    [46]R W Elopper, D R Uhlmann, Mechanism of inclusion damage in laser glass[J].Jour of Appl Phys,1970,41(10):4023-4037.
    [47]M Sparks, C T Duthler. Theory of infrared absorption and material failure in crystal containing inclusion[J]. Appl.Physl973,44(7):3038-3045.
    [48]Thomas W Walker, Athur H Guenther, Philip E Nelsen. Pulsed laser-induced damage to thin film optical coating-part Ⅰ: Experimental and part Ⅱ:Theory [J]. IEEE Jour of quantum Electronics,1981;QE-17(10):2041-2052.
    [49]Bonneau F. Combis P, Rullier J et al. Study of UV laser interaction with gold nanoparticalsembedded in silica[J].Appl Phys B.2002,75(2):803-815.
    [50]E Hacker,H Lauth.Review of structural influences on the laser damage threshold of oxide coatings[J].SPIE Vol.1996:2714316-330.
    [51]M Mansuripur, G A Neville Connell, J W Goodman. Laser-induced local heating of multilayers[J].Applied Optics,1982,21(6):1106-1114.
    [52]宋继鑫.国外光学薄膜的应用和真空镀膜工艺[J].光学技术,1994(1):32-38.
    [53]郭亚林,梁国正,丘哲明,等.激光辐照下的材料破坏和防护研究进展[J].2003,36(12):8-10.
    [54]李景薇.抗Nd-YAG激光损伤薄膜的研究[D].长春:长春理工大学,2006.
    [55]谢松林,苏俊宏,徐均琪.类金刚石薄膜的激光损伤特性测试与分析[J].真空科学与技术学报,2006,26(6):533-536.
    [56]付雄鹰,孔明东,胡建平,等.波长1064nm脉冲激光高阈值反射膜的研制[J].强激光与粒子束,1999,11(4):413-417.
    [57]韩杰才,高巍,朱嘉琦.金刚石薄膜抗激光破坏研究[J].新型炭材料.2007,22(1):92-95.
    [58]胡海洋,范正修,刘晔,等.杂质对光学薄膜激光损伤阈值的影响[J].中国激光,1999,26(6):489-492.
    [59]汤雪飞,范正修,王之江.双离子束溅射沉积薄膜的光学特性与激光损伤研究[J].光学学报,1995,15(2):217-224.
    [60]尚光强,王聪娟,袁磊,等.两种后处理方法对HfO2薄膜性能的影响[J].光子学报,2007,36(9):1683-1685.
    [61]高卫东,黄建兵,徐学科,等.Ta2O5/SiO2硬模双腔滤光片激光损伤特性研究[J].中国激光,2005,32(3):384-388.
    [62]刘强,林理彬,蒋晓东,等.提高氧化物介质膜层损伤阈值的研究[J].中国激光.2003,30(7):637-641.
    [63]张以忱.电子枪与离子束技术[M].北京:冶金工业出版社,2004.
    [64]梁丽萍,张磊,盛永刚,等.溶胶-凝胶ZrO2-TiO2高折射率光学膜层的抗激光损伤性能研究[J].物理学报,2007,56(6):3596-3601.
    [65]张大伟,贺洪波,邵建达,等.离子束辅助沉积制备高功率激光薄膜的研究[J].激光技术,2008,32(1):57-60.
    [66]迟晓丽,离子辅助镀高功率CO2激光薄膜研究[D].武汉:华中科技大学,2004.
    [67]黄磊.偏压电子束蒸发沉积氧化物光学薄膜研究[D].哈尔滨:哈尔滨工业大学,2006.
    [68]袁宏韬,张贵彦,闞珊珊.沉积方式对HfO2薄膜激光损伤阈值的影响[J].华中科技大学学报,2007,25(1):108-111.
    [69]徐均琪,弥谦,杭凌侠,等.宽束冷阴极离子源能量及能量分布的研究[J].光电工程,2008,35(6):23-27.
    [70]张德景.离子辅助沉积对薄膜特性的影响[D].杭州:浙江大学.2004
    [71]甘荣兵.强激光光学膜层损伤判据及检测方法研究[D].成都:四川大学,2002.
    [72]刘强.高损伤阈值介质膜层的制备及其研究[D].成都:四川大学,2004.
    [73]黄伟.中远红外激光薄膜技术研究[D].成都:四川大学,2005.
    [74]甘荣兵,林理彬,蒋晓东,等.用投射反射扫描法检测光学薄膜的激光损伤[J].强激光与离子束,2002,14(1):45-48.
    [75]张问辉.高功率激光诱导光学元件损伤场效应及阈值测试研究[D].成都:四川大学,2005.
    [76]刘政.离子束技术在超低损耗薄膜中的应用[D].西安:西安工业大学,2007.
    [77]张洪涛.1064nm激光高反膜的制备[D].长春:长春理工大学,2006.
    [78]陈曦.1520nm~1580nm红外减反射膜的制备[D].长春:长春理工大学,2007.
    [79]谢松林.激光薄膜损伤特性研究[D].西安:西安工业大学,2007.
    [80]胡建平,马平,许乔.光学元件的激光损伤阈值测量[J].红外与激光工 程,2006,35(2):187-191.
    [81]胡建平,邱服民,马平.HfO2/SiO2高反膜、增透膜及偏振膜的1064 nm激光损伤特性[J].光学技术,2001,27(6):507-511.
    [82]高卫东,张伟丽,范树海,等.HfO2薄膜的结构对抗激光损伤阈值的影响[J].光子学报,2005,34(2):176-179.
    [83]胡建平,邱服民,付雄鹰,等.SiO2半波覆盖层对HfO2/SiO2高反射膜激光损伤的影响[J].强激光与粒子束,2001,13(2):137-141.
    [84]胡建平,马孜,李伟,等.氧化物薄膜抗1064nm脉冲激光损伤的特性研究[J].光学学报,2000,20(2):262-266.
    [85]陈松林,ZrO2薄膜生长及其工艺对微结构的影响[D].成都:四川大学,2004.
    [86]马平,陈松林,胡建平,等.不同沉积参量下ZrO2薄膜的微结构和激光损伤阈值[J].光学学报,2005,25(7):994-998.
    [86]陈学荣,胡军志,韩文政.氧化钒薄膜脉冲激光损伤研究[J].材料热处理学报,2007,28(4):122-124.
    [87]王聪娟,晋云霞,王剑英,等.离子束辅助技术获得高激光损伤阈值的增透膜[J].中国激光.2006,33(5):683-686.
    [88]刘强,林理彬,甘荣兵,等.光学膜层激光损伤阈值均匀性的实验研究[J].强激光与粒子束,2003,15(11):1061-1064.
    [89]占美琼,黄建兵,尚淑珍,等.真空退火对355nmAl2O3/MgF2高反射薄膜性能的影响[J].强激光与粒子束,2004,16(11):1389-1392.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700