搅拌方式对水泥混凝土含气量与性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程中要求混凝土具有良好的耐久性能。在混凝土中引入合理的含气量能使混凝土使用性、耐久性(抗冻性)、抗渗性都有较大幅度的提高。上世纪30年代发展起来的引气混凝土技术,是混凝土技术进步的最大进展之一,目前引气混凝土被应用在几乎所有的建筑结构上。工程中通常使用掺加引气剂技术来增加混凝土的含气量。影响混凝土引气效果的因素较多。针对组成混凝土材料的级配、混凝土坍落度、水灰比等变化与其含气量的关系,国内外进行了一些相关的研究。搅拌作为混凝土生产最基本的制备方法,而搅拌方式、搅拌参数变化对混凝土含气量的影响规律的研究却很少见到。如果可以采用合适的搅拌方法能提高混凝土的含气量,将更为经济方便。
     为了研究搅拌方式、搅拌过程对混凝土含气量与耐久性的影响规律,论文从搅拌概念和振动搅拌理论出发,以双卧轴、单卧轴和立轴式振动搅拌样机为平台,研究普通强制搅拌方式和几种振动搅拌方式对混凝土含气量等性能的影响。对搅拌过程中影响混凝土含气量的因素及规律进行研究,主要通过对各搅拌参数(如振动幅值和振动圆频率、搅拌速度、叶片安装排列方式等)变化对混凝土含气量的影响规律进行试验研究。通过测试分析搅拌过程中不同条件和参数下混凝土的含气量和强度,研究分析振动搅拌方式合适的振源位置及其振动搅拌参数对混凝土含气量的影响,分析比较混凝土振动搅拌方式对其含气量的影响机理,与目前工程中广泛应用的引气剂技术进行了对比试验研究。并利用扫描电镜技术和汞压法孔结构测试技术对不同搅拌条件下混凝土的微观结构进行了测试分析,研究不同的搅拌条件对混凝土微观形貌变化的影响,对混凝土的宏观性能变化进行微观机理的分析。
     结果表明,提高混凝土的含气量的方法,除了目前国内外普遍采用的引气剂技术外,在搅拌参数匹配的条件下,在对物料进行搅拌的同时对物料施加振动作用的振动搅拌方式,可以显著提高混凝土的含气量。选择合适的振动搅拌方式可以使新拌混凝土含气量普遍达到3.5%左右,达到了工程中混凝土抗冻性要求的含气量,同时还具有较高的抗压强度;振动搅拌和加入引气剂技术同时使用可以取得更好的引气效果,而且在改善混凝土孔结构方面,这两种技术方法优势互补。微观原理的试验分析证明,采用振动搅拌方式可以明显改善混凝土中过渡层和水泥水化浆体的显微结构,可以细化混凝土的孔结构,因此能够提高混凝土的强度和耐久性。
     论文的研究是在国家自然科学基金项目“混凝土振动拌和机理的研究(50678026)”资助下完成的。
In the project application, the concrete must have good durability.The frozen and meltingcycle will lead the intensity of the concrete’s structure to decrease, which will significantlydecrease the durability of the structure of the concrete. The key component of good durabilityis good frost resistance. By bringing in proper air content, the usability, durability (frostresistance) and impermeability can be greatly improved. The air entrainment technologydeveloped in30thof the last century is one of the greatest progress in the development of theconcrete technology. Air-entraining concrete has been used in almost all the structures of thearchitectures. People widely add air-entraining agent in order to improve the air content of theconcrete in project. There’re many factors affecting the air content of the concrete. Thestudies aimed at material graduation, slump and water cement radio etc have been carried outat home and abroad. However, few studies have aimed at the effects of the mixing process onconcrete air content. As the most basic preparation method, if we take the method of mixingto improve the air content of the concrete, it will be more inexpensive and convenient.
     In this dissertation, the effects of normal forced mixing method and several vibrationmixing methods on the durability and air content of concrete were researched based on themixing conception and vibration mixing theory, with the vibration stirring prototypes of singlehorizontal shaft, double horizontal shaft and vertical spindle shaft as experimentalplatforms.The dissertation studies the factors affecting air content of the concrete in themixing process and its regulation. We mainly studies the effect of the mixing parameters(amplitude, vibration frequency, mixing speed, setting angle of mixing blades, etc.) on aircontent of the concrete. By testing and analyzing concrete’s air content and concrete strengthwhich is obtained in different mixing conditions and mixing parameters, the proper excitationsource position in the vibrating mixing method and the effect of the vibrating mixingparameters on the concrete’s air content were studied, and the effect mechanism was analyzedand compared. What’s more, we compare the vibrating mixing method with the widely usedtechnology of air-entraining agent. By using the electronic microscope photograph andmercury poromesitry, we analyze the microscopic structure of the concrete in various mixingconditions and their relations. Besides, the microscopic principle of the macro properties has been analyzed.
     The result indicates that beside the widely used technology of air-entraining agent, theproper mixing method with proper mixing parameters which means the mixing blade alsoserves as excitation source can significantly improve the concrete’s air content. By choosingthe proper vibrating mixing method, the concrete’s air content can averagely reach about3.5%,which meet the requirement of the frost resistance in the project. Such concrete has relativelyhigh pressure resistance at the same time. When we combine the technology of air-entrainingagent and vibrating mixing method, we can gain higher air content. Besides, these twomethods complement each other’s advantages on improving the structure of the pore. By theanalysis of the microscopic principle, it indicates that the vibrating mixing can promote theimprovement of the microstructure of the concrete’s transition layer and cement’s hydrationslurry, and it can improve the pore distribution of concrete, that results in improving thestrength and durability of the concrete.
     The research dissertation was financed by the National Natural Science Fund Project(50678026).
引文
[1] Grant.M. The World of Rome[M]. First Edition, published by Weidenfeld&Nicolson,London,1960
    [2] Mindess. S, Young. J.F. Concrete [M]. In: Prentice-Hall, Inc. Englewood Cliffs, NewJersey,1981
    [3]钟珞等.混凝土安全性专家系统集成的研究(上).[九五攻关项目]武汉工业大学,2000
    [4] Larrard. F. A Survey of Recent Research performed in the French “LCPC” Net work onHigh Performance Concrete. Proceedings High Strength concrete,Lillehammer,Norway,1993:20-24
    [5]金南国,金贤玉,郭剑飞.混凝土孔结构与强度关系模型研究.浙江大学学报(工学版),2005,(11):1680-1685
    [6]王静微.混凝土细微观结构与强度的关系[D].杭州:浙江大学,2007
    [7]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999
    [8]李淑进,赵铁军.混凝土的渗透性与耐久性[J].《海岸工程》,2001,20(2):68-72
    [9]彭杰.混凝土耐久性和工作性设计有关方面的研究[D].中国建筑材料科学研究院,2002
    [10]沈早.混凝土拌合物含气量的测试方法[J].云南水力发电,2006,22(5):69-71
    [11]李立权.混凝土配合比设计手册(第三版)[M].广州:华南理工大学出版社,2001
    [12] Tanesi, Jussara; Meininger, Richard. Freeze-Thaw Resistance of Concrete with MarginalAir Content [J]. Transportation Research Record,2007,(2020):61-66
    [13] Powers, T.C,Basic Considerations Pertaining to Freezing and Thawing Tests. ResearchDepartment Bulletin RX058,Portland Cement Association,1955
    [14] Monteiro, Paulo J M; Coussy, Olivier; Silva, Denise A. Effect of Cryo-Suction and AirVoid Transition Layer on Hydraulic Pressure of Freezing Concrete[J]. ACI MaterialsJournal,2006,103(2):136-140
    [15]汪澜.水泥混凝土组成·性能·应用[M].北京:中国建材工业出版社,2005
    [16]张德思,成秀珍.硬化混凝土气孔参数的研究[J].西北工业大学学报,2002,2(1):10-13
    [17] Whiting. D, Stark. D. Control of Air Content in Concrete. Report258, NationalCooperative Highway Research Program, Washington DC,1983:32-34
    [18]白宪臣.建筑材料实验[M].郑州:河南大学出版社,1994
    [19]邓初首,夏勇.混凝土坍落度影响因素的试验研究[J].混凝土,2006(1):65-66
    [20]王海侠.普通强度混凝土高性能化的研究[D].南京:河海大学,2005
    [21]蒋亚清.混凝土外加剂应用基础[M].北京:化学工业出版社,2005
    [22]邓爱民.商品混凝土机械[M].北京;人民交通出版社,2001
    [23]钱觉时,唐祖全,卢中远等.混凝土设计及控制[M].重庆:重庆大学出版社,2005
    [24]姜本田,马毓芬.强制式混凝土搅拌机转速分析[J].建筑机械,1994.(10):11-12
    [25] Tarun Naik, Shiw Singh. Effects of Air Content and Fly Ash on Properties ofConcrete[J],CBU-1994-02(REP-226)
    [26] Pheeraphan T,Leung,C K Y. Freeze-thaw durability of microwave cured air-entrainedconcrete[J]. Cement and Concrete Research,1997,27(3):427-435
    [27] Charles F.Scholer, Jay Grossman. Controlling Air Content in Concrete That is BeingPumped, A Synthesis Study[J], Civil Engineering,1998,11,12-16
    [28] Portland Cement Association. Control of Air Content in Concrete[J], ConcreteTechnology Today,1998,19(1):2-8
    [29] Senbu O., Hama Y. Air entraining, air void system and frost durability of fly ashconcrete[J]. Journal of Structural and Construction Engineering,2002(558):1-6
    [30] Ksaibati, K; Zeng, M; Sellers, F R; Dolan, C W. Air change in hydraulic concrete due topumping[J]. Transportation Research Record,2003,18(34):85-92
    [31] Kueger P. Further studies on the effect of entrained air on strength and durability ofconcrete with various sizes of aggregates[J]. Concrete International,2003,25(11):26-45
    [32] Okkenhaug K, Gjorv O E. Frost resistance of hardened concrete. Determining the effectsfine aggregates have on the air-void system[J]. Concrete International,2003,25(9):49-54
    [33] American Concrete Pavement Association. Air Content in ConcretePavements[J].Concrete Pavement Research&Technology,2003,4:1-4
    [34] Gokce A, Nagataki S, Saeki T, et al. Freezing and thawing resistance of air-entrainedconcrete incorporating recycled coarse aggregate: The role of air content in demolishedconcrete[J]. Cement and Concrete Research,2004,34(5):799-806
    [35] Bassuoni M T, Nehdi M L. The case for air-entrainment in high-performance concrete[J].Proceedings of the Institution of Civil Engineers, Structures and Buildings,2005,158(SB5):311-319
    [36] D. Zalocha, J. Kasperkiewicz.Estimation of The structure of Air Entrained ConcreteUsing a Flatbed Scanner[J]. Cement and Concrete Research,2005(35):2041-2046
    [37] Du Lianxiang, Folliard Kevin J. Mechanisms of air entrainment in concrete[J]. Cementand Concrete Research,2005,35(8):1463-1471
    [38] Wee Tiong-Huan, Babu Daneti Saradhi, Tamilselvan T, Lim Hwee-Sin. Air-void systemof foamed concrete and its effect on mechanical properties[J]ACI Materials Journal,2006,103(1):45-52
    [39] Zhijun Zhang, Farhad Ansari,Fracture Mechanics of Air-entrained Concrete Subjected toCompression[J].Engineering Fracture Mechanics,2006,73(13):1913-1924
    [40] Tommy Y. Lo, H.Z. Cui, Abid Nadeem, Z.G. Li. The effects of air content onpermeability of lightweight concrete[J].Cement and Concrete Research,2006,36(10):1874-1878
    [41] E.K. Kunhanandan Nambiar, K. Ramamurthy. Air-void characterisation of foamconcrete[J]. Cement and Concrete Research.2007,37(2):221-230
    [42] Gai-Fei Peng, Qiang Ma, Hong-Mei Hu, etc. The effects of air entrainment andpozzolans on frost resistance of50–60MPa grade concrete[J]. Construction andBuilding Materials.2007,21(5):1034-1039
    [43] Chia K-S,Zhang M-H. Workability of air-entrained lightweight concrete from rheologyperspective[J].Magazine of Concrete Research,2007,59(5):367-375
    [44] Yun K K., Kim D H., Kim K J.Effect of micro air void system on the permeability oflatex-modified concretes with ordinary Portland and very early strength cements[J].Canadian Journal of Civil Engineering,2007,34(7):895-901
    [45] Hama Yukio,Hirano Akihiko,Tabata Masayuki,Atarashi Daiki. Affecting factors on airvoid system and frost resistance of concrete[J].Journal of Structural and ConstructionEngineering,2008,73(634):2061-2067.
    [46] W. Micah Hale, Seamus F. Freyne, Bruce W. Russell. Examining the frost resistance ofhigh performance concrete[J].Construction and Building Materials,2009,23(2):878-888.
    [47] A. Just, B. Middendorf. Microstructure of high-strength foam concrete[J]. MaterialsCharacterization,2009,60(7):741-748.
    [48]王聚山.高寒条件下混凝土表面早期裂纹成因及防治措施[J].铁道标准设计,2004(6):34-37
    [49]左景奇,姜其斌,傅代正.板式轨道弹性垫层CA砂浆的研究[J].铁道建筑,2005(9):96-98
    [50]郑秀华,张宝生.引气轻集料混凝土工作性和力学性能的研究研究[J].材料科学与技术,2006(2):11-12
    [51]杨英姿等.混凝土气孔结构测定方法研究进展[J].低温建筑技术,2006(4):1-3
    [52]丁蓓,刘加平,刘建忠.引气剂稳泡机理及其改善混凝土冻融耐久性能的研究[J].混凝土,2006(11):34-35.
    [53]郭明洋,杨荣俊,张金喜.水灰比对混凝土气泡特征参数影响的试验研究[J].混凝土,2007,(12):13-16.
    [54]杨钱荣,朱蓓蓉,杨全兵等.高频振捣对引气混凝土气泡特征参数的影响[J].建筑材料学报,2007,10(3):331-336.
    [55]李晓鄂,李珍,朱永国等.骨料对混凝土拌合物含气量影响的试验研究[J].长江科学院院报,2007,24(4):60-63.
    [56]陈惠苏,孙伟.引气混凝土气泡尺寸分布的三维重构.材料研究学报,2007,21(6):613-621
    [57]杨钱荣,张树青,杨全兵等.引气剂对混凝土气泡特征参数的影响[J].同济大学学报(自然科学版),2008,36(3):374-378.
    [58]杨淑雁,张强,万惠文等.引气高性能混凝土显微结构研究[J].武汉理工大学学报,2008,30(9):16-18,23.
    [59]万惠文,杨淑雁,吕艳锋.引气混凝土抗氯离子渗透性与孔结构特性[J].建筑材料学报,2008,11(4):409-413
    [60]王林,宋少民.引气含量对大掺量粉煤灰混凝土耐久性的影响[J].武汉理工大学学报,2009,31(7):60-63
    [61]张云清,余红发,王甲春.气泡结构特征对混凝土抗盐冻性能的影响[J].华南理工大学学报(自然科学版),2010,38(11):7-10
    [62]徐华轩.测试龄期对混凝土气孔结构影响的研究[J].铁道工程学报,2010,(5):67-71,76
    [63]李红云,申向东,康文彪等.含气量对浮石轻骨料混凝土抗压性能的影响[J].混凝土,2010,(2):18-20.
    [64]沈虹.混凝土振动搅拌技术的理论分析及相关装置的研究[D].西安:西安建筑科技大学,2007
    [65]杨应其.关于混凝土搅拌站电子配料秤的检定[J].计量与测试技术,2002,(2):42
    [66][苏] A·E·杰索夫,信夫译.振实混凝土[M].北京:中国工业出版社.1965
    [67]郭向勇,方坤河,冷发光等.对高性能混凝土搅拌理论的探讨[J].2005,31(1):38-41.
    [68]冯忠绪等.水泥混凝土生产的强化技术[J]西安公路交通大学学报,1995(3)
    [69]龚铁平编译.国外混凝土机械[M].北京:中国建筑工业出版社,1983
    [70]陆俊.机械强化技术与混凝土生产[J].散装水泥,2004(2):35-36
    [71]冯忠绪.工程机械理论[M].北京:人民交通出版社,2004
    [72]许安等.混凝土搅拌机性能评定指标的探讨[J].西安:西安公路交通大学学报.1999,19(2):70-72
    [73]中华人民共和国国家标准.混凝土搅拌机(GB/T9142-2000)[S].北京:中国标准出版社,2000
    [74]中华人民共和国国家标准.混凝土搅拌机性能试验方法(GB4477-84)[S].中国标准出版社,1984
    [75]郭成举.混凝土质量的实地检验[J].混凝土及加筋混凝土,1984(01):15-22
    [76]湖南大学等.建筑材料[M].北京:中国建筑工业出版社.1988
    [77]陈瑜.公路隧道高性能多孔水泥混凝土路面研究[D].长沙:中南大学,2007
    [78]王卫中.双卧轴搅拌机工作装置的试验研究[D].西安:长安大学,2004
    [79]李立民.搅拌机参数优化及其试验研究[D].西安:长安大学,2006
    [80]赵悟.搅拌装置参数优化的研究[D].西安:长安大学,2005
    [81]徐延峰.搅拌过程对混凝土含气量影响的探讨[D].西安:长安大学,2007
    [82] Saeed Khalaf Rejeb. Improving compressive strength of concrete by a two-step mixingmethod[J]. Cement and Concrete Research,1996,26(4):585-592
    [83]向再励.搅拌机设计和使用中主要参数的选取[D].西安:长安大学,2008
    [84]王发洲.高性能轻集料混凝土研究与应用[D].武汉:武汉理工大学,2003
    [85]潘钢华,夏艺,孙伟等.干粉抹灰砂浆最佳含气量的研究[J].混凝土与水泥制品,2006(5):52-56
    [86]田慧生,郭继辞.高原季节性冻土地区铁路混凝土含气量施工控制措施[J].混凝土,2005(2):89-91
    [87]吕丽华等.试验条件对引气混凝土性能的影响研究[J].混凝土,2006(7):14-16
    [88]李彰.双卧轴搅拌机结构参数匹配的试验研究[D].西安:长安大学,2006
    [89] Beitzel H, Charonnat Y. Assessment and classification of performance mixers-Finalreport[J]. Materials and Structures,2003,36(258):250-264
    [90]魏恩良,马景峰.影响混凝土含气量的因素[J].山东建材,2004(6):61-62
    [91]孙兆雄,葛毅雄,张述善.引气型水泥的试验研究[J].水泥1999(8):6-10
    [92]王卫中,冯忠绪.新拌混凝土含气量影响因素[J].长安大学学报(自然科学版).2009,29(03):107-110
    [93] David C Stark. Effect of Vibration on the Air-Void System and Freeze-Thaw Durabilityof Concrete (RD092.O1T), Portland Cement Association,1986
    [94]刘伟,邢锋,谢友均.水灰比、矿物掺合料对混凝土孔隙率的影响[J].低温建筑技术,2006(01):9-11
    [95] Whiting. D,David A,and Nagi,Mohamad A.Manual on Control of Air Content inConcrete,EB116,National Ready Mixed Concrete Association and Portland CementAssociation,1998,42
    [96]李杰.振动搅拌技术在混凝土生产中的应用研究[D].西安:西安建筑科技大学2004
    [97]黄大能.新拌混凝土的结构与流变特性技术[M].北京:中国建筑工业出版社,1993
    [98]张海军.搅拌过程的机械强化方法及其试验研究[D].西安:长安大学2006
    [99]赵利军,杜占领,冯忠绪.新型振动搅拌装置的试验研究[J].中国公路学报,2005,18(2):120-122
    [100]赵利军,冯忠绪.双卧轴搅拌机叶片排列的试验[J].长安大学学报(自然科学版),2004,24(2):94-96
    [101]赵利军.搅拌低效区及其消除方法的研究[D].西安:长安大学,2005
    [102]闻邦椿,刘风翘.振动机械的理论及应用[M].北京:机械工业出版社,1982
    [103]郭维外译.带激振器的强制式搅拌机[J].国外工程机械,1989,15(3):9-10
    [104]陈望其.卧轴强制式混凝土搅拌机链传动的设计[J].建设机械技术与管理,1993,3:15-16
    [105]孙恒.机械原理(第五版)[M].北京:高等教育出版社,1996
    [106]冯忠绪,赵利军,姚运仕等.搅拌叶片安装角的确定方法[J].工程机械,2005(6):71-74
    [107]刘艳霞,鲁一晖,陈改新.高频内部振捣对混凝土抗冻性的影响[J].水力发电,2008,34(3):34-39
    [108]董娟,段志善,陈凯等.混凝土振动搅拌机械中振动与搅拌结合方式的分析[J].建筑机械,2009,02:64-69
    [109]同济大学等.混凝土制品工艺学[M].北京:中国建筑工业出版社,1981
    [110]熊剑平.聚合物改性水泥混凝土路用性能研究[D].西安:长安大学,2005
    [111]黄昊.聚丙烯纤维改性混凝土路用性能研究[D].西安:长安大学,2005
    [112]张建华,张金喜,刘英.不同含气量的混凝土孔隙结构研究[J].中国公路学会2005年学术年会论文集,2005:48-51
    [113]梁天仁,吴菊珍,藏庆珊.硬化混凝土气孔参数测定方法的探讨[J].混凝土与水泥制品,1984(04):2-6
    [114]中华人民共和国国家标准.压汞法和气体吸附法测定固体材料孔径分布和孔隙度(GB/T21650.1-2008)[S].北京:中国标准出版社,2008
    [115][美]库玛·梅塔,覃维祖译.混凝土微观结构性能和材料[M].北京:中国电力出版社,2008
    [116]杨洪武.聚合物改性水泥混凝土声-应力相关性试验研究[D].重庆:重庆交通大学,2008
    [117]王佶.隧道路面新材料及复合式路面设计与应用研究[D].武汉:武汉理工大学,2007
    [118] Mehta,Pk. and D. Manmohan. Proceedings of the Seventh International Congress onthe Chemistry of Cements[M]. Editions Septima, Vol.III, Pairs,1980
    [119] Ollivier J P, Maso J C, Bourdette B. Interfacial Transition Zone in Concrete[J].Advanced Cement Based Materials,1995,2(1):30-38
    [120]何俊辉.道路水泥混凝土微观结构与性能研究[D].西安:长安大学,2005
    [121]张金喜,郭明洋,杨荣俊,张莉.引气剂对硬化混凝土结构和性能的影响[J].武汉理工大学学报,2008,30(5):38-41
    [122]陈尚江.桥梁用高耐久性混凝土性能研究[D].哈尔滨:哈尔滨工业大学,2006
    [123]林辰.早龄期混凝土断裂性能和微观结构的试验研究[D].杭州:浙江大学,2005
    [124]唐明,王甲春,李连君.压汞测孔评价混凝土材料孔隙分形特征的研究[J].沈阳建筑工程学院学报,2001(4):272-275

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700