前后双离合器式并联混合动力城市公交车控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在不降低车辆性能的前提下,提出一种既能降低系统复杂程度,又能降低成本的混合动力驱动系统方案是开发适用于国内市场的混合动力城市公交车的首要关键问题。国外研发的混合动力城市公交车的各项性能指标优良,但其成本相对于我国国情显得过于昂贵,对于开发适用于国内市场的混合动力城市公交车并无太多可以参考和借鉴的地方。由此,本文提出一种新型的前后双离合器式并联混合动力驱动系统方案,此方案动力系统采用双轴并联的耦合方式,同时在耦合箱与发动机和变速箱之间分别安装了一个单向离合器和一个主离合器。该方案既保持了国内已开发的双轴耦合混合动力驱动系统成本相对较低,复杂程度适中且节油效果不错的优点,又解决了电机和耦合箱转动惯量增加造成AMT换挡延迟以及工作不可靠等问题,使其成为目前最具产业化前景的大功率城市公交车用混合动力类型。
     混合动力驱动系统方案的不同决定了其相应的控制策略也有所不同。本文以上海市科委与上汽集团工程研究院联合资助项目“内燃机混合动力公共汽车关键技术研究”为背景,对前后双离合器式并联混合动力城市公交车的控制策略进行了比较深入的探索,包括如下的研究重点:
     (1)首先对国内外混合动力城市公交车所采用的驱动方案进行调研,通过比较各种驱动方案适用范围、价格成本、结构复杂程度以及性能指标的优缺点,吸收有益的经验为本文研究的前后双离合器式并联混合动力驱动系统方案的提出提供了依据。
     (2)采用理论模型与试验数据相结合的方法,在Matlab/Simulink环境下建立了前后双离合式混合动力城市公交车的前向仿真模型,为整车控制策略的研究和开发提供了必要的仿真平台。
     (3)实现整车能量管理与动力系统控制的算法称为控制策略,控制策略是迄今为止混合动力汽车领域研究最多、文献最丰富的内容之一,然而大多数文献研究的控制算法仅仅停留在能量管理策略上,提出的各种算法也只是静态地针对少数几种稳态工况进行优化,并联式混合动力汽车包含多种工作模式,一般可分为稳态工作模式与瞬态工作模式。混合动力总成部件诸如内燃机、电机、离合器以及变速箱的工作状态在行驶过程中会随时发生改变,导致并联式混合动力汽车运行特性比较复杂,控制难度也较大。因此,混合动力系统工作模式管理策略也是控制策略的另一个方面。本文为整车控制设计一个分层的控制策略,其能量管理层确定发动机、电机、制动系统的最优转矩分配,系统工作模式管理层将最优的转矩分配结合当前车辆的实际工作模式确定目标工作模式,最终确定发动机、电机、离合器和变速箱的目标工作状态以改善车辆的动力性、经济性和的燃油经济性。
     (4)转矩分配控制策略中的能量管理策略属于基线控制策略,发动机经常工作在低效区、优化能力有限、难以保证电池SOC平衡等是其主要缺陷。为了使得混合动力系统尽可能达到综合效率最优,引入一瞬时优化算法对转矩分配策略进行修正,目的是为了一方面维持电池SOC的平衡,一方面尽量高效地使用车载能源。由于优化的对象是发动机的工作点,因此当混合动力系统进入发动机参与驱动的工作模式时,优化算法将对发动机的工作点进行优化控制。
     (5)采用分层控制的思想设计混合动力控制系统,开发出与SAE J1939标准兼容的整车CAN通讯协议,提出以MC68376为核心的硬件设计方案,摒弃以往硬件系统设计采用的模块化介绍方法,着重从抗干扰的角度介绍混合动力总成控制器的软硬件设计方法,为控制策略的实现提供了可靠的平台。
     (6)根据国标设计台架和道路试验来测试零部件以及混合动力整车的实际性能。台架试验包括关键零部件特性试验、混合动力总成外特性试验、混合动力基本控制功能试验等。道路试验包括动力性试验和燃油经济性试验。动力性试验结果表明,尽管混合动力城市公交样车动力性数据与原型车相比稍差一些,但是基本上还是满足原型车设计之初的动力性要求。燃油经济性试验结果表明,采用本文提出的转矩控制策略,混合动力系统实现预期的工作模式和模式间的平滑切换,驾驶性能良好;同时,电池SOC始终在合理的工作区间变化,与传统原型城市公交车相比,SOC校正后的燃油经济性可以提高近16.1%。
     试验结果初步验证了本文提出的前后双离合器式并联混合动力城市公交车系统结构合理、控制策略有效可靠,达到了预期的设计目标。
The primary element for developing hybrid electric urban buses applicable to domestic market is to provide a kind of hybrid powertrain system with which both the price and the complex degree of the powertrain system can be reduced without any vehicle performance degradation. The price of the hybrid electric urban buses developed abroad is still much expensive compared with domestic consumption level, even though its majority performance index are quite good. Little reference can be found for development of domestic hybrid electric urban buses from the schemes of the hybrid powertrain system abroad. Therefore, in this paper a novel biaxial coupling parallel hybrid electric powertrain system configuration is proposed as the study subject with which a one-way clutch is installed between the engine and torque coupler, a main clutch is installed between the transmission and the torque coupler. The proposed powertrain scheme can not only keep the merit of relative lower cost, moderate complex degree and quite good fuel economy but also can overcome the problems caused by the increased inertia of the motor and the torque coupler such as unreliable operating of the AMT and delay from gearshifting process as well; all the factors stated above makes the researched hybrid powertrain system to be with the most industrialization prospect for high power urban buses.
     Different hybrid powetrain system configuration makes the corresponding control strategy to be different. With the supporting research project of Parallel Hybrid Electric Urban Buses sponsored by Science and Technology Commission of Shanghai Municipality and Shanghai Automotive Engineering Academic,this dissertation makes a deepened study on the development of the control strategy and its implementation, the research emphasis are listed as follows:
     (1) At first, this dissertation makes an investigation on the development status of the hybrid electric vehicle at home and abroad, especially the powertrain system adopted by hybrid electric urban buses. After that, all the powertrain systems invested are compared from the scope of application, price and cost, structure complicated degree and performance index advantages and disadvantages. And then the useful experiences absorbed are provided as the basis for design of the specific hybrid powertrain system equipped with two clutches.
     (2) Under the environment of Matlab/Simulink, a computer simulation model for the researched hybrid electric urban buses is constructed by using the model building method combining theoretical analysis and bench test data. It provides the necessary simulation platform for the development of the control strategy.
     (3) Control strategy is the algorithm to realize vehicle energy management and powertrain control. Up to now, control strategy has been most researched and enriched with abundant literature among the research field of the hybrid electric vehicle. However, much of them addressed to the control algorithm emphasized on the energy management strategy, and the proposed control algorithms just only optimized the torque distribution for several steady operating mode. Parallel hybrid electric vehicle has many operating modes; it generally can be classified as steady operating mode and instantaneous operating mode. The status of the engine, the motor, clutches and the transmission system would change whenever necessary during the process of vehicle driving, and it makes the operating characteristic of hybrid powertrain is relative complex and the corresponding control technique is relative tough. Therefore, operating mode management strategy for the hybrid powertrain system is another aspect of the control strategy. In this paper, a hierarchical control strategy is designed for vehicle control, its energy management strategy determine the optimal torque distribution for the engine, the motor and the brake system; while the operating mode governor layer would determine the target operating mode of the hybrid system according to the optimal torque distribution and the current operating mode of the vehicle as well, and the target state of the engine, the motor, the clutches and the transmission would finally determined which can improve the performance of the vehicle in the end.
     (4) The energy management strategy of the proposed torque distribution control strategy is belong to base line control method; its main deficiency is that the engine is always working in low efficiency area, the optimization is limited and it is hard to maintain the balance of the battery soc. In order to overcome these drawbacks and make the hybrid system reach maximum overall efficiency as much as possible, an instantaneously optimization algorithm is introduced to rectify the torque distribution control strategy, the aim of it is to keep the balance of battery SOC and utilize more effectively the vehicular energy than it did before. Since the object of optimization is the engine operating points, once the system enters into the operating modes where the engine is tart part in driving, the instantaneous optimization algorithm is applying to calculate the optimal hybrid system operating points.
     (5) Thought of hierarchical control scheme is implemented for the investigated hybrid powertrain control system; the control system‘s CAN communication protocol incorporating with SAE J1939 standard are developed as well. Hardware design scheme which taken MC68376 as the control kernel is proposed In stead of using the traditional way to introduce the modular method for hardware system design, this paper puts great emphasis on the introduction of the hardware and software anti-interference design method for hybrid powertrain controller, which provided a stable and reliable implementation platform for control strategy.
     (6) According to the national standards, hybrid powertrain bench test and vehicle road field test are designed to test and validate the performance of the components and hybrid vehicle as well. Hybrid powertrain bench test includes key components performance test, outer characteristic test and the fundamental control function of the hybrid powertrain system. Road field test includes kinetic performances test and fuel economy test. Even though Kinetic performance test results of the hybrid bus is a slightly inferior compared with that of the prototype bus, it still satisfies the kinetic design requirement of the prototype bus. Fuel economy test results shows that the control strategy proposed in this paper is able to realize the expected operating modes and the smooth transitions between modes of the hybrid powertrain with acceptable drivability, and the battery SOC is controlled within rational operating range at the same time. The fuel economy improvement of the hybrid urban bus is up to 16.1% with SOC correction over the same conventional ICE buses, which demonstrates the effectiveness of the control strategy and reliability of the control system.
引文
[1] Kenji Morita. Automotive power source in 21st century [J]. JSAE Review, 2003, 24(1): 3-7
    [2]广濑久士,丹下昭二.电动车及混合动力车的现状与展望[J].汽车工程, 2003, 25(2): 204-209
    [3]许倞.“十五”国家863计划电动汽车重大专项正式启动[J],中国科技产业, 2002年3月, 2002(3), 49-50
    [4]汤君,封智勇.汽车产业作为支柱产业与社会经济可持续发展的思考[J].大众科技, 2005, 83(9): 170-171
    [5]汪卫东,王建萍,李纯菊.清洁汽车的发展及对策[R],东风汽车研究院2000年度信息研究课题, 2000年
    [6]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M].北京:北京理工大学出版社, 2002
    [7]陈清泉,孙立清.电动汽车的现状和发展趋势[J].科技导报, 2005, 23(4): 24-28
    [8]诸自强,黄毓琛,邹国棠,等.陈清泉院士论文选集:现代电动车、电机驱动及电力电子技术.北京:机械工业出版社,2005
    [9] Masami Ogura. Development of electric vehicles [J]. JSAE Review, 1997, 18(1): 51-56
    [10]陈清泉,孙逢春.混合电动车辆基础[M].北京:北京理工大学出版社, 2001
    [11] K.T.Chau, Y.S.Wong. Overview of power management in hybrid electric vehicle [J]. Energy Conversion and Management, 2002, 43(15): 1953-1968
    [12] Wolfram Buschhaus, Larry R. Brandedburg, Ross M. Stuntz. Hybrid electric vehicle development at Ford [A]. Proceedings of the 15th International Electric Vehicle Symposium [DB/CD]. Brussels, Belgium: World Electric Vehicle Association, 1998
    [13] Nobuo Iwai. Analysis on fuel economy and advanced systems of hybrid vehicles [J]. JSAE Review, 1999, 20(1): 3-11
    [14] Chitoshi Yokota, Yoshimori Nakamura, Shigeru Yada. Development of the 2001 year model Civic [J]. JSAE Review, 2002, 23(3): 387-399
    [15] Takashi Yanase, Nobuaki Takeda, Yuta Susuki, et al. Evaluation of energy efficiency in series-parallel hybrid vehicle [A]. Proceedings of the 18th International Electric Vehicle Symposium [DB/CD]. Berlin, Germany, World Electric Vehicle Association, 2001
    [16] Shougo Nishikawa, Masakazu Sasaki, Akihito Okazaki, et al. Development of the capacitor hybrid truck [J].JSAE Review, 2003, 24(3): 240-254
    [17] Hiroatsu Endo, Masatoshi Ito, Tatsuya Ozeki. Development of Toyata’s transaxle for mini-van hybrid vehicles [J]. JSAE Review, 2003, 24(1): 109-116
    [18]方景瑞.国内外混合动力汽车技术[J].拖拉机与农用运输车, 2005(2): 1-3
    [19]王军,申金升.国内外混合动力电动汽车开发动态及发展趋势[J].公路交通科技, 2002, 17(1): 11-14
    [20]陈汉明,梁志锋.混合动力汽车的研究与发展[J].机电工程技术, 2001, 30(5): 17-20
    [21]王保华,罗永革.汽车混合动力总成开发动态与发展[J].湖北汽车工业学院学报, 2004, 18(1): 5-8
    [22]成森.车用混合动力系统技术发展分析[J].车用发动机, 1999. 2(1): 8-11
    [23] Satoshi Aoyagi, Yusuke Hasegawa, Takahiro Yonekura, et al. Energy efficiency improvement of series hybrid vehicle [J]. JSAE Review, 2001, 22(3): 259-264
    [24]黄妙华,金国栋,邓亚东.串联式混合动力电动汽车先导车的研究开发[J].武汉理工大学学报, 2001, 25(3): 273-296
    [25]刘永刚,秦大同,叶明. ISG型中度混合动力汽车动力驱动系统设计及性能仿真[J].中国公路学报, 2008, 21(5): 124-126
    [26] Nissan Motor Co., Ltd. Development of high-performance hybrid electric vehicle“Tino hybrid”[A]. Proceedings of the 16th International Electric Vehicle Symposium [DB/CD]. Beijing, China: World Electric Vehicle Association, 1999
    [27] Koichi Fukuo, Akira Fujimura, Masaaki Saito, et al. Development of the ultra-low-fuel-consumption hybrid car-INSIGHT [J]. JSAE Review, 2001, 22(1): 95-103
    [28]张彤,袁银南,朱磊,等.基于超级电容的并联混合动力轿车的开发[J].内燃机工程, 2008, 29(1): 1-5
    [29] Isaya Matsuo, Shinsuke Nakazawa, Hiromasa Maeda, et al. Development of high-performance hybrid propulsion system incorporating a CVT [DB/OL]. SAE Paper 2000-01-09921543, 2000
    [30] Niasar A H, Moghbelli H, Vahedi A. Design methodology of drive train for a series-parallel hybrid electric vehicle (SP-HEV) and its power flow control strategy [A]. 2005 IEEE International Conference on Electric Machines and Drives [C]. San Antonio, USA: IEEE, 2005, 1549-1554
    [31] Yanase Takashi, Ogata, Makoto, Motooka Akira, et al. Development of series/parallel type hybrid trucks [J]. JSAE Review, 2004, 25(4):415-416
    [32] S. Sasaki, T. Takaoka, H. Matsui, T. Kotani. Toyota newly developed electric–gasoline engine hybrid powertrain system [A]. Proceedings of the 14th International Electric Vehicle Symposium [DB/CD]. Orlando, USA: World Electric Vehicle Association, 1997
    [33] Akihiro Kimura, Tetsuya Abe, Shoichi Sasaki. Drive force control of a parallel-series hybrid system [J]. JSAE Review, 1999, 20(3): 337-341
    [34] Okamoto K. Overview of current and future hybrid technology [A]. Proceedings of the Symposium on Advanced Automotive Powerplants and Energy Resources [C]. Beijing: China SAE, 2002, 89-94
    [35] Santini D J, Vyas A D, Moore J, et al. Comparing cost estimates for US fuel economy improvement by advanced electric drive vehicles [A]. Proceedings of the 19th International Electric Vehicle Symposium [DB/CD], Busan, Korea: World Electric Vehicle Association, 2002
    [36] Northeast Advanced Vehicle Consortium. Hybrid-electric drive heavy-duty vehicle testing project– final emissions report [R]. Defense Advanced Research Projects Agency (DARPA), USA, 2000
    [37] Battelle. New York City Transit Diesel Hybrid-Electric Bus Site Final Data Report [R]. U.S. Department of Energy, 2002
    [38] Eudy L. Advanced vehicle testing activity: overview of advanced technology transportation. Technical Report NREL/TP-540-33433 [R], National Renewable Energy Laboratory, USA, 2003
    [39] Eudy L. Field operations program: overview of advanced technology transportation. Technical Report NREL/MP-540-31781 [R], National Renewable Energy Laboratory, USA, 2002
    [40] 863”十五”完成情况总结报告[R], 2007
    [41]王保华,张建武,罗永革. EQ6110HEV并联混合动力系统参数匹配及性能研究[J].汽车工程, 2006, 28(1): 7-11
    [42]赵子亮,刘明辉.并联混合动力汽车控制策略与仿真分析研究[J].机械工程学报, 2005, 41(12): 13-18
    [43] Zhong, H., Wang, F., Ao, G., el al. An optimal torque distribution strategy for an integrated starter-generator parallel hybrid electric vehicle based on fuzzy logic control [J]. Proceedings of the institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2008, 222(1): 77-92
    [44] Barsali S, Ceraolo M, Possenti A. Techniques to control the electricity generation in a series hybrid electric vehicle [J]. IEEE Transactions on Energy Conversion, 2002, 17(2): 260-266
    [45]浦金欢,殷承良,张建武等.混合动力轿车的控制策略与建模[J].上海交通大学学报, 2004, 24(6): 28-31
    [46] Johnson V H, Wipke K B, Rausen D J. HEV control strategy for real-time optimization of fuel economy and emissions [DB/OL]. SAE Paper 2000-01-1543, 2000
    [47] Kimura A, Abe T, Sasaki S. Drive force control of a parallel-series hybrid system [J]. JSAE Review, 1999, 20(3): 337-341
    [48] Rahman Z, Butler K L, Ehsani M. A comparison study between two parallel hybrid control concepts [DB/OL]. SAE Paper 2000-01-0994, 2000
    [49] Ehsani M, Gao Yimin, Butler K L. Application of electrically peaking hybrid (ELPH) propulsion system to a full-size passenger car with simulated design verification [J]. IEEE Transactions on Vehicular Technology, 1999, 48(6): 1779-1787
    [50] Jalil N, Kheir N A, Salman M. A rule-based energy management strategy for a series hybrid vehicle [A]. Proceedings of the American Control Conference [C], Albuquerque, New Mexico, USA: IEEE, 1997. 689-693
    [51] Paganelli G, Ercole G, Brahma A, et al. General supervisory control policy for the energy optimization of charge-sustaining hybrid electric vehicles [J]. JSAE Review, 2001, 22(4): 511-518
    [52] Paganelli G, Tateno M. Control development for a hybrid-electric sport-utility vehicle: strategy, implementation and field test results [A]. Proceeding of the American Control Conference [C], Arlington, VA, USA: IEEE, 2001.5064-5069
    [53] Paganelli G, Guerra T M, Delprat S, et al. Simulation and assessment of power control strategies for a parallel hybrid car [J]. Proceedings of the institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2000, 214(7): 705-717
    [54] Wagener A., Korner C., Seger P. et al. Cost function based adaptive energy management in hybrid drivetrains [A]. Proceedings of the 18th International Electric Vehicle Symposium [DB/CD], Berlin, Germany: World Electric Vehicle Association, 2001
    [55] Seiler J, Schroder D. Hybrid vehicle operating strategies [A]. Proceedings of the 15th International Electric Vehicle Symposium [DB/CD]. Brussels, Belgium: World Electric Vehicle Association ,1998
    [56] Paganelli G, Santin J-J, Guerra T M, et al. Conception and control of parallel hybrid car powertrain [A]. Proceedings of the 15th International Electric Vehicle Symposium [DB/CD], Brussels, Belgium: World Electric Vehicle Association, 1998
    [57]赵克刚,黄向东,罗玉涛.混联式混合动力电动汽车动力总成的优化匹配与监控[J],汽车工程, 2005, 27(2): 146-150
    [58]胡红斐,黄向东,罗玉涛,等。一种混联式瞬时优化监控策略的研究[J],中国机械工程, 2006, 17(6): 649-653
    [59] Galdi V, Ippolito L, Piccolo A, et al. Multiobjective optimization for fuel economy and emissions of HEV using the goal-attainment method [A]. Proceedings of the 18th International Electric Vehicle Symposium [DB/CD]. Berlin, Germany: World Electric Vehicle Association, 2001
    [60] Rimaux S, Delhom M, Combes E. Hybrid vehicle powertrain: modeling and control [A]. Proceedings of the 16th International Electric Vehicle Symposium [DB/CD]. Beijing, China: World Electric Vehicle Association , 1999
    [61] Delprat S, Guerra T M, Rimaux J. Optimal control of a parallel powertrafrom global optimization to real time control strategy [A]. Proceedings of the 18th International Electric Vehicle Symposium [DB/CD], Berlin, Germany: World Electric Vehicle Association, 2001
    [62] Pu Jinhuan, Yin Chengliang and Zhang Jianwu, Optimal control of fuel economy in parallel hybrid electric vehicles [J]. Proceedings of the institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2007, 221(10): 1097-1106
    [63] Baumann B M, Washington G, Glenn B C, et al. Mechatronic design and control of hybrid electric vehicles [J]. IEEE/ASME Transactions on Mechatronics, 2000, 5(1): 58-72
    [64] Schouten N J, Salman M A, Kheir N A. Fuzzy logic control for parallel hybrid vehicles [J]. IEEE Transactions on Control Systems Technology, 2002, 10(3): 460-468
    [65] Schouten N J, Salman M A, Kheir N A. Energy management strategies for parallel hybrid vehicles using fuzzy logic [J]. Control Engineering Practice, 2003, 11(2): 171-177
    [66] Pu Jinhuan and Yin Chengliang Fuzzy torque control strategy for parallel hybrid electric vehicles [J]. International Journal of Automotive Technology, 2005, 6(5): 529-536
    [67] Amir Poursamad, Morteza Montazeri. Design of genetic-fuzzy control strategy for parallel hybrid electric vehicles [J]. Control engineering practice, 2008, 16(7): 861-873
    [68] Zhong Hu, Ao Guoqiang, Wang Feng et al, Torque distribution strategy for integrated starter/generator hybrid bus implemented by fuzzy algorithm [J], Journal of Shanghai Jiaotong University, 2008, 13(3): 323-329
    [69] Powell B K, Bailey K E, Cikanek S R. Dynamic modeling and control of hybrid electric vehicle powertrain systems [J]. IEEE Control Systems Magazine, 1998, 18(5): 17-33
    [70] Markel T, Brooker A, Hendricks T, et al. ADVISOR: a systems analysis tool for advanced vehicle modeling [J]. Journal of Power Sources, 2002, 110(2): 255-266
    [71]王庆年,刘志茹,王伟华,等.混合动力汽车正向建模与仿真[J].汽车工程, 2005, 27(4): 392-395
    [72] Wipke K B, Cuddy M R, Burch S D. ADVISOR 2.1: a user-friendly advanced powertrain simulation using a combined backward/forward approach [J]. IEEE Transactions on Vehicular Technology, 1999, 48(6): 1751-1761
    [73] Hauer K-H. Analysis tool for fuel cell vehicle hardwareand software (controls) with an application to fuel economy comparisons of alternative system designs [Dissertation]. University of California Davis, USA, 2001
    [74] MathWorks.Simulink/Stateflow technical examples by using Simulink and Stateflow in automotive applications. Technical Report [EB/OL], http: //www.mathworks.com, 1998,
    [75] Crossley P R, Cook J A. A nonlinear engine model for drivetrain system development [A]. Proceedings of the 91th IEE International Control Conference [C], Edinburgh, UK: IEEE, 1991. 921-925
    [76] Butler K L, Ehsani M, Kamath Preyas. A Matlab-based modeling and simulation package for electric and hybrid electric vehicle design [J]. IEEE Transactions on Vehicular Technology, 1999, 48 (6): 1770-1778
    [77] Rizzoni G, Guzzella L, Baumann B M. Unified modeling of hybrid electric vehicle drivetrains [J]. IEEE/ASME Transactions on Mechatronics, 1999, 4 (3): 246-257
    [78] Rizzoni G, Guezennec Y, Brahma A, et al. VP-SIM: a unified approach to energy and power flow modeling simulation and analysis of hybrid vehicles [DB/OL]. SAE Paper 2000-01-1565, 2001
    [79] Wilkins S, Lamperth M U. An object-oriented modeling tool of hybrid powertrains for vehicle performance simulation [A]. Proceedings of the 19th International Electric Vehicle Symposium [DB/CD]. Busan, Korea : World Electric Vehicle Association, 2002
    [80] Lin C-C, Filipi Z, Wang Y, et al. Integrated, feed-forward hybrid electric vehicle simulation in Simulink and its use for power management studies [DB/OL]. SAE Paper 2001-01-1334, 2001
    [81] Lin C-C, Filipi Z, Gravante S, et al. Validation and use of Simulink integrated, high fidelity, engine-in-vehicle simulation of the international class VI truck [DB/OL]. SAE Paper 2000-01-0288, 2000
    [82] Tillaart E, Eelkema J, Vink W. ADVANCE, a modular simulation environment for vehicle and powertrain design and analysis [A]. Proceedings of the 19th International Electric Vehicle Symposium [DB/CD], Busan, Korea: World Electric Vehicle Association, 2002
    [83] Bolognesi P, Conte F V, Bianco G L, et al. Hy-Sim: a modular simulator for hybrid electric vehicles [A]. Proceedings of the 18th International Electric Vehicle Symposium [DB/CD]. Berlin, Germany: World Electric Vehicle Association, 2001
    [84] Jeanneret B, Trigui R, Badin F, et al. New hybrid concept simulation tools, evaluation on the Toyota Prius car [A]. Proceedings of the 16th International Electric Vehicle Symposium [DB/CD]. Beijing, China: World Electric Vehicle Association, 1999
    [85] Trigui R, Badin F, Jeanneret B, et al. Hybrid light duty vehicles evaluation program [A].Proceedings of the 19th International Electric Vehicle Symposium [DB/CD]. Busan, Korea: World Electric Vehicle Association, 2002
    [86]浦金欢,严隽琪,殷承良,等.并联式混合动力汽车控制策略的仿真研究[J].系统仿真学报, 2005, 17(7): 1543-1547
    [87]陈全世,林成涛.电动汽车用电池性能模型研究[J].汽车科技, 2005, (3): 1-5
    [88] VALERIE H J. Battery performance models in ADVISOR [J]. Journal of Power Sources, 2002, 110(2): 321-329
    [89] GREGORY L P. LiPB dynamic cell models for kalman_filter SOC estimation [A]. Proceedings of the 19th International Electric Vehicle Symposium [DB/CD]. Busan, Korea: World Electric Vehicle Association, 2002
    [90] O'GORMAN C C, INGERSOLL D, JUNGST R G, et al. Artificial neural network simulation of battery performance [A]. Proceedings of the 31st Annual Hawaii International Conference on System Sciences [C], Hawaii: ICSS, 1998. 461-472
    [91] Johnson V H. Battery performance models in ADVISOR [J]. Journal of Power Sources, 2002, 110(2): 321-329
    [92]李秀杰.并联式混合动力电动汽车控制策略及仿真研究[学位论文].北京:北京交通大学, 2004
    [93]黄维纲.电控离合器控制系统的研究[学位论文].上海:上海交通大学, 1999
    [94]陈俐.汽车AMT自动离合器接合过程的动力学与控制研究[学位论文].上海:上海交通大学, 2000
    [96] (德) M·米奇克,陈荫三译.汽车动力学A卷(第二版)[M].北京:人民交通出版社, 1992
    [97].余志生.汽车理论[M].北京:机械工业出版社, 1996年5月第2版
    [98]梁龙,张欣,李国岫.混合动力电动汽车驱动系统的开发与应用[J].汽车工程, 2001, 23(2): 113-116
    [99] Wang A, Chen Y, Zhang R. A novel design of energy management system for hybrid electric vehicles using evolutionary computation [A]. Proceedings of the 18th International Electric Vehicle Symposium [DB/CD]. Berlin, Germany: World Electric Vehicle Association, 2001
    [100] Zhang Rongjun, Chen Yaobin. Control of hybrid dynamical systems for electric vehicles [A]. Proceedings of the American Control Conference [C]. Arlington, VA, USA: IEEE, 2001. 2884-2889
    [101] Kelly K J, Rajagopalan A. Benchmarking of OEM hybrid electric vehicles at NREL. Technical Report NREL/TP-540-31086, [R] National Renewable Energy Laboratory, USA, 2001
    [102] Nagasaka A, Nada M, Hamada H, et al. Development of the hybrid/battery ECU for the Toyota hybrid system [DB/OL]. SAE Paper 981122, 1998
    [103] Inada E, Matsuo I, Tahara M, et al. Development of a high-performance hybrid electric vehicle“Tino Hybrid”[A]. Proceedings of the 17th International Electric Vehicle Symposium [DB/CD], Montreal, Canada: World Electric Vehicle Association, 2000
    [104] Corson D W. High power battery systems for hybrid vehicles [J]. Journal of Power Sources,2002 105(2): 110-113
    [105] Corson D W. High power battery systems for hybrid vehicles [J]. Journal of Power Sources, 2002, 105(2): 110-113
    [106] Anthony M. Philips, Miroslava Jankovic, and Kathleen E. Bailey,“System Controller Design for a Hybrid Electric Vehicle”[A]. Proceedings of the 2000 IEEE International. Conference on Control Applications [C]. Alaska, USA: IEEE, 2000: 297-302
    [107]童毅,欧阳明高,张俊智.并联式混合动力汽车控制算法的实时仿真研究[J].机械工程学报, 2003, 39(10): 156-161
    [108]古艳春,殷承良,张建武,等.并联混合动力汽车控制系统设计及控制策略研究[J].高通讯技术, 2007, 17(2): 164-170
    [109] BOSCH CAN Specification. Version 2.0 [S], 1991
    [110] ISO 11898, Road Vehicles-Interchange of Digital Information-Controller Area Network for High-Speed Communication [S]. 1994
    [111]邬宽明. CAN总线原理和应用系统设计[M].北京:北京航空航天大学出版社, 1996
    [112] SAE J1939, Recommended Practice for a Serial Control and Communications Vehicle Network [S], 2000.4
    [113] SAEJ1939-21, Data Link Layer [S], 1994.7
    [114] SAEJ1939-71, Vehicle Application Layer [S], 1996.5
    [115] SAE J1939-73, Vehicle Application Layer-Diagnostics, 1996
    [116] SAE J1939-81, Recommended Practice For Serial Control and Communications Vehicle Network-Part 81-Network Management [S], 1997.7
    [117] SAE J1939-73 Vehicle Application Layer [S], 1994
    [118] ISB4/ISBe Electronic Interface Application Technical Package, Issued by Cummins 2002
    [119] MC68336/376 User’s Manual, Freescale Inc. 1996
    [120]张宁,赵泽良,唐为民,等. MC68332单片机结构与应用[M].北京:北京航空航天大学出版社, 1996
    [121]罗禹贡,杨殿阁,金达锋,等.轻度混合动力电动汽车多能源动力总成控制器的开发[J].机械工程学报, 2006, 42(7): 98-102
    [122]郑凯,赵宏伟,张孝临,等.基于MotorolaMPC565的混合动力汽车总成控制器接口设计[J].吉林大学学报, 2008, 38(增刊): 163-167
    [123]王伟华,曾小华,刘志茹,等.混合动力汽车多能源动力总成控制器[J].农业机械学报, 2006, 37(11): 5-8
    [124]谭文春,张金龙,唐航波,等.基于MC68376的高压共轨柴油机电控单元的设计[J].内燃机工程, 2006, 26, (1): 11-15
    [125]甘海云,张俊智,卢青春,等.轿车混合动力总成控制系统的开发与试验研究[J].机械工程学报, 2004, 40(7): 91-95
    [126]张欣,李国岫,宋建锋,等.并联式混合动力汽车多能源动力总成控制单元的研究与开发[J].高技术通讯, 2003, (2): 92-96
    [127] Luo Yongge, Wang Baohua, She Jianqiang, et al. Application of HC9S12 Microprocessor in Integrated Starter/Generator of Hybrid Electric Vehicle [A]. Proceedings of IEEE ICVES05[C], Xian, China: IEEE, 2005. 232-236
    [128]何立民.单片机应用系统设计[M].北京:北京航空航天大学出版社, 1996
    [129] Jonathan W. Valvano著,李曦等译.嵌入式微机算计系统实时接口技术[M].北京:机械工业出版社, 2003
    [130] Diab C/C++ Compiler for 68k/CPU32 User Manual. WindRiverSystems, Inc. 2002
    [131] Brian W. Kernighan and Dennis M. Ritchie. The C programming language [M]. NewYork: Prentice-Hall, 1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700