用户名: 密码: 验证码:
低氧弥散燃烧物理化学特征及薄壁蓄热摄动解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
(低氧)高温空气燃烧具有火焰峰值温度降低、温度场均匀、氧化烧损减弱和NO_x排放大幅度降低等技术优势,为低品位或低密度能源燃料(如低热值煤气、低热值煤、生物质和城市生活垃圾)利用提供了一种新途径。深入研究这种燃烧过程物理化学特征和薄壁蓄热特性,可提高控制NO_x和CO_x排放和节能水平,促进社会和经济的可持续发展。
     论文主要内容和结论包括:
     (1)搭建了“低氧弥散燃烧”新体系。低氧弥散燃烧是一种以燃气自燃为稳定燃烧条件,反应点弥散且燃烧过程延时可控的燃烧。这种燃烧的热力学特征是均匀燃烧放热和单位燃烧空间燃烧放热减小,动力学特征是反应区弥散。可用弥散度和炉温不均匀度衡量弥散性能。空气高速喷入炉内,炉内气流快速切换,燃气和空气从空间或时间上错开喷入,炉外预先部分或全部稀释等措施可强化弥散性能。
     (2)提出了一种低氧弥散燃烧数值模拟新方法。引用等效比定压热容可减小因装置散热和多原子气体高温离解引起的仿真误差。选用涡耗散燃烧模型进行燃烧模拟时引用等效比定压热容,能获得和实验基本一致的温度分布,能获得“火焰体积大且边界不清晰,温度分布均匀,燃烧放热均匀,单位反应区体积燃烧放热少”等弥散特征。恰当的等效比热容可通过实际燃烧热平衡测试试算获得。
     (3)数字仿真和热态实验相结合验证了低氧弥散燃烧动力学条件。低氧燃烧火焰能由传统火焰转变到弥散火焰。两种火焰的分界线受到涡耗散燃烧模型速度阈值影响。涡耗散燃烧模型不能精确预测此分界线。空气含氧浓度越低,燃气流量越大或空气过剩系数越高,弥散燃烧最高炉温就越低。
     (4)提出了一种求解薄壁蓄热过程的摄动解析—数值计算新方法。基于薄壁假设和单参数摄动法,求出了沿气流流动方向弱固体导热条件下蓄热体温度分布一阶摄动解,解析—数值解和实验及纯数值计算吻合良好。研制了一种新型薄壁蓄热过程数字仿真系统。该仿真系统以空气和烟气进口温度和若干操作条件为信息源,迅速计算出气固温度分布变化以适应蓄热体热过程设计和操控需要。可优化设计出满足“低温端不结露、低氧稳燃、运行经济、无大温度应力和以炉内滞留烟气稀释为主建立燃烧低氧条件”要求的切换周期。
     (5)用摄动法解析研究了薄壁蓄热体温度效率和切换周期变化规律。存在最大温度效率和相应的最佳切换周期。沿气流流动方向固体导热和单位质量固体蓄热能力不影响温度效率峰值和最佳切换周期。空气含氧浓度或通道内周长降低导致温度效率峰值降低。最大温度效率与通道长度成正比,最佳切换周期与间壁厚度成正比。温度效率解析和弥散燃烧工业实验一致,最佳切换周期和高温气化中间实验基本吻合。对于双预热型薄壁蓄热系统,短的切换周期会明显降低运行经济性,并导致热效率峰值推迟出现。烟气流过过渡管道时间越长,切换周期越短,忽略燃气排放损失的热效率误差越大。
High temperature air combustion (with low oxygen-content) has many advantages such as lower flame peak temperature, uniform temperature distribution, weaker oxidation loss and lower NO_x emission, and provides a new way to process the low-grade or low-density fuel such as low-heat-value gas, low-heat-value coal, biomass and municipal live waste. Deeper researches on its physical and chemical characteristics and thin-walled regeneration characteristics can improve the control level on NO_x and CO_x emission and energy saving in the combustion process and promote the sustained development of society and economy.
     Main contents and specialties of this work are summarized as following:
     (1) A new combustion system named "dispersion combustion with low oxygen-content" had been constructed. Dispersion combustion with low oxygen-content is a kind of combustion that the reaction spot is dispersed and the combustion process is delayed and controlled with the self-ignition of fuel mixture as the stable combustion condition. Its thermodynamic characteristics are the uniform heat release and the lower heat release per volume of reaction region. Its kinetic characteristic is the flame dispersion. Its dispersion performance can be evaluated by the dispersivity and the furnace-temperature unevenness and intensified by the methods that the air injects into the furnace at a high speed, the gas organization in the furnace is alternatively changed at a high frequency, the fuel gas and the air inject into the furnace from different positions or at different time and the dilution of flue gas partially or fully on the outside of furnace.
     (2) A new numerical simulation method for dispersion combustion with low oxygen-content had been proposed. The introduction of an equivalent specific heat capacity at constant pressure can decrease the simulation error because of the heat loss from combustion chamber and the decomposition heat of polyatomic gas. The combustion simulation based on eddy dissipation model and equivalent specific heat capacity can achieve temperature profiles that basically agree with the experimental ones and dispersion behaviors such as flat flame, unclear flame boundary, uniform temperature distribution, uniform heat release and lower heat release per volume of reaction region. The suitable equivalent specific heat capacity can obtain through the trial calculation on the actual combustion heat-balance test.
     (3) Kinetic conditions of dispersion combustion with low oxygen-content had been proved by the digital simulations as well as the hot tests. The combustion flame with low oxygen concentration can be converted from tradition to dispersion. The boundary between two flames is affected by the velocity threshold of eddy dissipation model. Eddy dissipation model can not exactly predict the boundary. The higher the fuel flow rate is, the larger the excess air coefficient is or the lower the oxygen concentration is, the lower the maximal furnace-temperature for dispersion combustion is.
     (4) A new perturbation analytic and numerical method for the thin-walled regenerative process had been presented. Based on a thin-walled assumption and a single parameter perturbation method, the first order asymptotic solution to the regenerator temperature distribution under weak solid heat conduction along the gas flow direction have been obtained. Analytic and numerical solutions agree well with tests and finite-difference numerical solutions. A new kind of digital simulation software of thin-walled regenerative process has been developed. The inlet temperature of air and flue gas and some operation conditions are taken as the information sources, the software can calculate regenerator temperature rapidly and meet the design and operation-control optimization on regenerative process. The optimization of switch time has been designed according to the demands of "steady low-oxygen-content combustion, no moisture condensation on the low-temperature end, economical operation, any large thermal stress and low oxygen concentration mainly from the dilution of remained furnace gas".
     (5) The temperature efficiency and the switch time of thin-walled regenerator had been optimized by the perturbation. There exists the maximal temperature efficiency and the corresponding optimal switch time. The solid heat conduction along the flow direction and the regenerator heat storage capacity for the unit volume has no impact on temperature efficiency peak and optimal switch time. The decrease of oxygen concentration in the air or circumferential length in the passage leads to the decrease of temperature efficiency peak. Maximal temperature efficiency is directly proportional to the passage length and optimal switch time is directly proportional to the matrix thickness. Temperature efficiency tendency from semi-analysis is the same as that in dispersion combustion industrial tests, and optimal switch time is basically in agreement with that in high-temperature gasification intermediate tests. As to thin-walled regenerators preheating the air and the fuel, the shorter switch time can result in the lower heat efficiency obviously and its later peak of heat efficiency. The longer time the flue gas passing through transition pipes has or the shorter switch time is, the higher heat efficiency error because of the fuel gas loss has.
引文
[1]Katsuki M,Hasegawa T.The science and technology of combustion in highly preheated air[A].//27~(th)Symposium(International)on Combustion[C].Colorado(America):Combustion Institute of Colorado University,1998.3135-3147.
    [2]#12
    [3]Ashwani K,Gupta A,Hasegawa T.High temperature air combustion:flame charactersfics,challenges and opportunities[A].//Hsiao T C,Yoshikawa K.Proceedings of Beijing Symposium on High Temperature Air Combustion[C].Beijing(China):Federation of Engineering Societies of Chinese Association for Science and Technology,1999.10-28.
    [4]Hasegawa T,Tanaka R,Niioka T.High temperature air combustion contributing to energy saving and pollutant reduction in industrial furnace[A].//Hsiao T C,Yoshikawa K.Proceedings of Beijing Symposium on High Temperature Air Combustion[C].Beijing (China):Federation of Engineering Societies of Chinese Association for Science and Technology,1999.102-114.
    [5]Hiroshi T,Gupta A,Hasegawa T,et al.High temperature air combustion from energy conservation to pollution reduction[M].New York(America):CRC Press LLC,2003.
    [6]Tanaka R.New progress of energy saving technology toward the 21~(st)century;Frontier of combustion & heat transfer technology[A].//Proceedings of 11~(th)IFRF Members Conference[C].Noodwijkerhout(Netherlands):1995.
    [7]Hasegawa T,Mochida S,Gupta A K.Development of advanced industrial furnace using highly preheated combustion air[J].Journal of Propulsion and Power,2002,18(2):233-239.
    [8]祁海鹰,李宇红,由长福,等.高温空气燃烧技术的国际发展动态[J].工业加热,2003,(1):1-7.
    [9]Gupta A,Bolz S,Hasegawa T.Effect of air preheat temperature and oxygen concentration on flame structure and emission[J].ASMM Journal of Energy Resource Technology,1999,9:209-216.
    [10]Lille S.Experimental study of single fuel jet combustion and high-cycle regenerative systems [D]. Stockholm (Sweden): Department of Metallurgy, Royal Institute of Technology, 1999.
    [11] Girardi G, Giammartini S. Numerical and experimental study of Mild combustion of different fuels and burners [A]. // Yoshikawa K. Proceedings of 5~(th) International Symposium on High Temperature Air Combustion and Gasification (5~(th) HTACG) [C].Yokohama (Japan): Tokyo Institute of Technology, 2002.201-219.
    [12] Yuan J, Naruse I. Effects of air dilution on highly preheated air combustion in a regenerative furnace [J]. Energy and Fuels, 1999,13: 99-104.
    [13] Calchetti G, Giacomazzi E, Rufoloni M. A work in progress about a LES simulation of a mild combustion burner [A], // ENEA. HTACG4: 4~(th) International Symposium on High Temperature Air Combustion and Gasification [C]. Rome (Italy): Energy Engineering Division, 2001.
    [14] Coelho P J, Peters N. Numerical simulation of a mild combustion burner [J]. Combustion and Flame, 2001,124: 503-518.
    [15] Mancini M, Weber R. Formation and destruction of Nitrogen oxides in combustion of natural gas with high temperature air [A]. // Yoshikawa K. Proceedings of 5~(th) International Symposium on High Temperature Air Combustion and Gasification (5~(th) HTACG) [C]. Yokohama (Japan): Tokyo Institute of Technology, 2002. 501-518.
    [16] Morita M. Present status of high temperature air combustion and regenerative combustion technology [J]. Energy Conservation, 1996,48(10): 21-28.
    [17] Orsino S, Weber R. Numerical simulation of combustion of natural gas with high temperature air [J]. Bolletini, U. Combustion Science and Technology, 2002,168: 1-34.
    [18] Weber R. Combustion of natural gas, oil and coal with air preheated to temperature in excess of 1000℃ [A]. // ENEA. HTACG4: 4~(th) International Symposium on High Temperature Air Combustion and Gasification [C]. Rome (Italy): Energy Engineering Division, 2001.
    [19] Yang W H, Blasiak W. Combustion performance and numerical simulation of a high-temperature air-LPG flame on a regenerative burner [J]. Scandinavian Journal of Metallurgy, 2004,33(2): 113-120.
    [20] Yuan J, Naruse I. Modeling of combustion characteristics and NO_X emission in highly preheated and diluted air combustion [J]. International Journal of Energy Research, 1998,22(14): 1217-1234.
    [21] Murakami H, Saito T, Hayashi J, et al. Numerical simulation for the high performance industrial reheating furnace design [J]. American Society of Mechanical Engineers, Fuels and Combustion Technologies Division (Publication) FACT, 1999,23(1): 239-244.
    [22] Mitsunobu M. Optimal design for high performance industrial furnace based on data bases of high temperature air combustion [A]. // Nagaya University & Society of Chemical Engineers. 3 International Symposium on advanced Energy Conversion System and Related Technologies (RAN2001) [C]. Nagaya (Japan): Nagaya University & Society of Chemical Engineers, 2001.
    
    [23] Cavaliere A, De Joannon M. Detailed chemical kinetics in the reactor design for diluted high temperature combustion of Air/CH_4 mixtures [A]. // Yoshikawa K. CREST: 3~(rd) International Symposium on High Temperature Air Combustion and Gasification [C].Yokohama (Japan): Tokyo Institute of Technology, 2000.301-316.
    
    [24] Yang W H, Blasiak W. Numerical study of fuel temperature influence on single gas jet combustion in highly preheated and oxygen deficient air [J]. Energy, 2005,30: 385-398.
    
    [25] Wei D, Blasiak W. numerical modeling of highly preheated air combustion in a 580kWtesting furnace at IFRF [A]. // Yoshikawa K. CREST: 3~(rd) International Symposium on High Temperature Air Combustion and Gasification [C]. Yokohama (Japan): Tokyo Institute of Technology, 2000.401 -412.
    
    [26] Ishii T, Zang C, Sugiyama S, et al. The numerical simulation of highly preheated air combustion in an industry furnace [J]. Journal of Energy resource technology, 1998,120(1): 276-284.
    
    [27] Ishii T, Zang C, Sugiyama S, et al. The numerical and experimental study of non-premixed combustion flames in regenerative furnaces [J]. Journal of Energy resource technology, 2000,122(2): 287-293.
    
    [28] Wei D, Blasiak W. Large eddy simulation of a single jet flow in highly preheated and diluted air combustion [J]. Archivum Combustions, 2000,20: 3-4.
    
    [29] Wei D. Design of advanced industrial furnaces using numerical modeling method [D].Stockholm (Sweden): Department of Metallurgy, Royal Institute of Technology, 2000.
    
    [30] Pierre S. Large eddy simulation for incompressible flows [M]. Berlin (German): Springer Press, 1998.
    
    [31] Mancini M, Weber R, Bollettini U. Mathematical models development for design of HTAC systems [A]. // ENEA. HTACG4: 4~(th) International Symposium on High Temperature Air Combustion and Gasification [C]. Rome (Italy): Energy Engineering Division, 2001.
    
    [32] Hsiao T C, Yang W H, Jiang S J, et al. Experimental investigation and numerical simulation of HiTAC flames and flow phenomenon at its switching moment [A]. //Blasiak W, Lille S, Wei D, et al. Proceedings of 2nd International Seminar on High Temperature Combustion in Industrial Furnace [C]. Jernkontoret-KTH, Stockholm (Sweden):Department of Metallurgy,Royal Institute of Technology,2000.
    [33]Hsiao T C,Yang W H,Jiang S J,et al.Experimental Investigation and Numerical Simulation of High Temperature Air Combustion Process[A].//Hsiao T C,Yoshikawa K.Proceedings of Beijing Symposium on High Temperature Air Combustion[C].Beijing (China):Federation of Engineering Societies of Chinese Association for Science and Technology,1999.116-137.
    [34]Jiang S J,Yang W H,Peng H Y,et al.Experimental investigation and numerical simulation of combustion using high temperature and low oxygen content air[A].//Liu W.Energy Conversion and Application-Proceedings of the International Conference on Energy Conversion and Application(ICECA'2001)[C].Wuhan(China):Huazhong University of Science and Technology Press,2001.773-776.
    [35]Peng H Y,Zhou J M,Jiang S J.Combustion using high temperature and low oxygen.content air and technique renovation of traditional gas-fired radiant heating tube[A].//ASME,Heat Transfer Division.Proceedings of 2003 ASME Summer Heat Transfer Conference[C].New York(America):American Society of Mechanical Engineers,2003.169-175.
    [36]中国科协工程学会联合会,清华大学国家煤燃烧工程中心.关于我国应大力推广高温空气燃烧技术的建议[J].科技导报,2000,(8):46-47.
    [37]Qi H Y,Xu X C.Prospects of developing and applying the technology of high temperature air combustion in China[A].//Hsiao T C,Yoshikawa K.Proceedings of Beijing Symposium on High Temperature Air Combustion[C].Beijing(China):Federation of Engineering Societies of Chinese Association for Science and Technology,1999.192-205.
    [38]周怀春,盛锋,姚洪,等.高温空气燃烧技术-21世纪关键技术之一[J].工业炉,1998,(1):9-31.
    [39]杨卫宏.数值模拟在工业炉窑研究与开发中的应用[D].长沙:中南工业大学应用物理与热能工程系,2000.
    [40]欧俭平.高温空气燃烧技术在冶金热工设备上的应用及数值仿真和优化研究[D].长沙:中南大学能源与动力工程学院,2004.
    [41]王力军.高温空气燃烧过程流动混合燃烧传热和NO_x生成的数值模拟[D].沈阳:东北大学,2004.
    [42]胡升腾,傅维标,钟北京,等.液体燃料高温低氧燃烧的数值模拟研究[J].燃烧科学与技术,2003,9(3):229-233.
    [43]李宇红,祁海鹰,苑胶,等.预热温度影响甲烷高温空气燃烧特性的数值研究[J].工程热物理学报,2001,22(2):257-260.
    [44]祁海鹰,李宇红,由长福,等.高温低氧燃烧条件下氮氧化物的生成特性[J].燃烧科学与技术,2002,8(1):17-22.
    [45]钟水库,马宪国,赵无非,等.高温低氧燃烧火焰辐射特性的实验研究[J].动力工程,2004,24(3):397-399.
    [46]Porcheron L,Ferrand L,Masson E,et al.High temperature air combustion burner:semi-Industrial scale experiment and CFD simulation[A].//Gaswarme-Institute e.V.Essen.6~(th)International Symposium on High Temperature Air Combustion and Gasification[C].Ruhrgebiet(German):Gas Warme-Institut International,2005.
    [47]Yang W H,Blasiak W.Chemical flame length and volume in liqufied propane gas combustion using high-temperature and low-oxygen-concentration oxidizer[J].Energy &Fuels,2004,18(5):1329-1335.
    [48]Szewczyk D,Mertberg M,Rafidi E N,et al.Measurements of temperature and heat flux in HiTAC flame for unsteady state condition[A].//Yoshikawa K.Proceedings of 5~(th)International Symposium on High Temperature Air Combustion and Gasification(5~(th)HTACG)[C].Yokohama(Japan):Tokyo Institute of Technology,2002.
    [49]Rafidi N,Blasiak W.Measurements of flue gases compositions and flame volume in high temperature air combustion(HiTAC)furnace[A].//Finnish-Swedish Flame Days 2002[C].Vaasa(Finland):2002.
    [50]Quinqueneau A,Touzet A,Oger M.Experimental studies on regenerative industrial burners operating in the flameless oxidation mode[A].//Internationai Flame Research Foundation.13~(th)International Flame Research Foundation Members Conference[C].Ijmuiden(Netherlands):International Flame Research Foundation,2001.
    [51]Quinqueneau A,Miquel P F,Wills B.Experimental studies in an industrial staged burner with preheated air[A].//International Flame Research Foundation.12~(th)International Flame Research Foundation Members Conference[C].Nooordwijkerhout(Netherlands):Leeuwenhorst Congress Centre,1998.92.
    [52]Lille S,Dobski T,Blasiak W.Visualisation of fuel jet in conditions of highly preheated air combustion[J].AIAA J.of Propulsion and Power,2000,16(04):595-600.
    [53]Konishi N,Kitagawa K,Arai N,et al.Two-dimensional spectroscopic analysis of spontaneous emission from a flame using highly preheated air combustion[J].Journal of Propulsion and Power,2002,18(1):199-204.
    [54]Kitagawa N,Arai N,Gupta A K.Two-dimensional spectroscopic analysis of spontaneous emission from a flame using highly preheated air combustion[J].Journal of Propulsion and Power,2002,18(1):199-204.
    [55]Kishimoto K,Watanabe Y,Kasahara M,et al.Observational study of chemiluminescence from flames with preheated and low oxygen air[A].//The 1~(st)Asia-Pacific Conference on Combustion,ASPACC97[C].Osaka(Japan):1997.468-471.
    [56]Ishiguro T,Tsuge S,Furuhata T,et al.Homogenization and stabilization during combustion of hydrocarbons with preheated air[A].//The Combustion Institute.Proceedings of 27~(th)Symposium(International)on Combustion[C].Pittsburgh(America):Combustion Institute of Colorado University,1998.3205-3213.
    [57]Blasiak W,Yang W H,Rafidi N.Physical properties of a LPG flame with high temperature air on a regenerative burner[J].Combustion and Flame,2004,136:567-569.
    [58]Kitagawa K,Shinoda S,Arai N,et al.Spectroscopic Observation of Homogenization and Stabilization during Combustion of Hydrocarbons with Pre-Heated Air[A].//Proceedings of 1~(st)Asia-Pacific Conference on Combustion[C].Osaka(Japan):1997.
    [59]李伟,祁海鹰,由长福,等.蜂巢蓄热体传热性能的数值研究[J].工程热物理学报,2001,22(5):657-660.
    [60]李茂德,程惠尔.高温空气燃烧系统中陶瓷蓄热体传热特性分析研究[J].热科学与技术,2004,3(3):255-260.
    [61]李朝祥,陆钟武,蔡九菊,等.蓄热式热交换器热工行为的研究[J].钢铁,2000,35(1):55-59.
    [62]Willmott A J,Duggan R C.Refined closed methods for the contra-flow thermal regenerator problem[J].International Journal of Heat and Mass transfer,1980,23(5):655-662.
    [63]Willmott A J,Bures A.Transient response of performance of periodic-flow regenerators [J].Interational Journal of Heat Mass Transfer,1997,20:753-761.
    [64]Willmott A J.Digital computer simulation of thermal regenerator[J].International Journal of Heat Mass Transfer,1964,7(11):1291-1302.
    [65]Willmot A J,Hinchaliffe C.The effect of gas heat storage regenerator calculation[J].International Journal of Heat Mass Transfer,1976,19:821-826.
    [66]Shen C M,Worek W M.The effect of wall conduction on the performance of regenerative heat exchanger[J].Energy,1992,17:1199-1213.
    [67]Shah R K.A correlation for longitudinal heat conduction effects periodic flow heat exchanger[J].ASME Journal of Eng.Power,1995,97:453-454.
    [68]Schmidt F W,Szego J.Transient response of a hollow cylinder-cross section solid sensible heat storage unit-single fluid[J].Journal of Heat Transfer,Trans.ASME,1978,100:737.
    [69]Ren Z,Wang S.A theoretical and experimental investigation of heat exchangers[A].//Heat Transfer Science and Technology[C].New York(America):Hemisphere Press, 1987.
    [70]Rafidi N,Blasiak W.Thermal performance analysis on a two composite material honeycomb heat regenerators used for HiTAC burners[J].Applied Thermal Engineering,2005,25:2966-2982.
    [71]Rafidi N.Thermodynamic aspects and heat transfer characteristics of HiTAC furnaces with regenerators[D].Stockholm(Sweden):Department of Metallurgy,Royal Institute of Technology,2005.
    [72]Clements B,Whaley H.A Finite difference method for modelling heat exchanger networks in cascading energy conversion systems[A].//Proceedings of International Joint Power Generation Conference[C].Kansas city Missouri(America):1993.
    [73]Zheng C H,Clements B.The thermal performance characteristics of regenerators in HiTACG furnaces[A].//Gaswarme-Institute e.V.Essen.6~(th)International Symposium On High Temperature Air Combustion and Gasification[C].Ruhrgebiet(German):Gas Warme-Institut International,2005.A9.1-A9.12.
    [74]Klein H,Eigenberger G.Approximate solutions for metallic regenerative heat exchangers [J].International Journal of Heat and Mass Transfer,2001,44:3553-3563.
    [75]Hill A,Willmott A J.Accurate and rapid thermal regenerator calculations[J].International Journal of Heat Mass Transfer.,1989,32:465-476.
    [76]Dragutinovic G D,Baclic B S.Operation of counter-flow regenerators[A].//International Series on Developments in Heat Transfer,V.4[C].Boston(America):Computational Mechanics Publications,1998.
    [77]刘岱辉.蜂窝体蓄热室流动阻力特性和换热特性的研究[D].沈阳:东北大学,2002.
    [78]朱洪滨,谢建文,黄天增,等.高温空气燃烧技术在铜精炼反射炉上的应用[J].工业炉,2001,(2):32-34.
    [79]贺永东.蓄热燃烧器在现代熔铝炉上的应用[J].轻合金加工技术,1999,27(9):9-12.
    [80]Yoshikawa K.Present status and future plan of CREST MEET project[A].//Zhang R J.CREST:2~(nd)International High Temperature Air Combustion Symposium[C].Kaohsiung,Taiwan:Energy & Resource Laboratories,1999.20-22.
    [81]Carlos L.High temperature air/steam gasification of biomass in an updraft fixed bed batch type gasifer[D].Stockholm(Sweden):School of Industrial Engineering and Management,Royal Institute of Technology,2005.
    [82]Sugiyama S,Suzuki N,Kato Y,et al.Gasification performance of coals using high temperature air[J].Energy,2005,30(2-4):399-413.
    [83]Kobayashi H,Kawai K,Yoshikawa K,et al.Gasification power generation system and boiler performance using high temperature air[A].//Hsiao T C,Yoshikawa K. Proceedings of Beijing Symposium on High Temperature Air Combustion[C].Beijing (China):Federation of Engineering Societies of Chinese Association for Science and Technology,1999.89-100.
    [84]艾元方,蒋绍坚,邓胜祥.生物质燃料及其高温空气气化[J].能源工程,2000,(4):15-17.
    [85]艾元方,蒋绍坚,彭好义,等.高温空气资源在燃烧和气化中的应用[J].新能源,2000,(12):138-141.
    [86]曹小玲.生物质高温空气气化工艺过程分析与高温空气发生器的研制[D].长沙:中南大学能源与动力工程学院,2002.
    [87]王晓波.卵石床气化炉实验研究及高温气化工艺探讨[D].长沙:中南大学能源与动力工程学院,2004.
    [88]林竹.一种气化数学模型及木屑的高温气化实验[D].长沙:中南大学能源与动力工程学院,2005.
    [89]艾元方,蒋绍坚,彭好义.高温空气气化炉原理与开发研究[J].锅炉制造,2000,(3):23-25.
    [90]柳楷玲.基于HTAC技术的蓄热式高温空气发生器实验研究[D].中南大学能源与动力工程学院,2003.
    [91]郑彦民.高温空气发生器的实验研制与高温空气气化器设计[D].中南大学能源与动力工程学院,2004.
    [92]Ai Y F,Jiang S J,Lin Z,et al.Research on operational characteristics of high-temperature air generator[A].//Chen K F.Proceedings of the 3~(rd)International Conference on Combustion,Incineration/Pyrolysis and Emission Control[C].Hangzhou(China):Zhejiang University,2004.577-580.
    [93]Amagai K,Arai M.Propane flame appeared in a hot air heated over self-ignition temperature[A].//The Society of Chemical Engineers.RAN95,International Symposium on Advanced Energy Conversion Systems and Related Technologies[C].Nagoya(Japan):Society of Chemical Engineers,1995.703-710.
    [94]Bolz S,Gupta A K.Effect of air preheat temperature and oxygen concentration on flame structure and emission[A].//Proceedings of ASME International Joint Power Generation Conference,ASME FACT Vol.22,IJPGC 1998[C].New York(America):1998.193-205.
    [95]Gupta A K,Li Z.Effect of fuel property on the structure of highly preheated air flames [A].//International Joint Power Generation Conference,IJPGC 1997,ASME EC-vol 5[C].1997.
    [96]Hasegawa T,Tanaka R,Niioka T.Combustion with high temperature low oxygen air in regenerative burners [A]. //Japanese Section of Combustion Institute. The 1~(st) Asia-Pacific Conference on Combustion [C]. Osaka (Japan): 1997.290-293.
    [97] Mochida S, Hasegawa T, Tanaka R. Characteristics of high temperature air combustion [A]. // RAN'95, International Symposium on Advanced Energy Conversion Systems and Related Technologies [C]. Nagoya (Japan): 1995.
    [98] Pipers O. On combustion using separated air and natural gas injection systems in various furnace atmospheres and internal furnace geometry [A]. // Poznan University of Technology. 17th International Symposium on Combustion Processes [C]. Poznan (Polish): Poznan University of Technology, 2001. 66-74.
    [99] Hasselbrink E F. Transverse jets and jet flames: structure, scaling, and effects of heat release [R]. California (America): Thermosciences Division Department of Mechanical Engineering, Stanford University, NO: TSD-121. 1999.
    [100] Blasiak W, Szewczyk D, Dobski T. Influence of N_2 addition on combustion of single jet of methane in highly preheated air [A]. // Proceedings of the International Joint Power Generation Conference [C]. New Orleans (America): 2001.
    [101] Dally B B, Riesmeier E, Peters N. Effect of fuel mixture on moderate and intense low oxygen dilution combustion [J]. Combustion and Flame, 2004,137(4): 418-431.
    [102] Ito Y, Gupta A K, Yoshikawa K, et al. Combustion characteristics of low calorific value gas with high temperature and low-oxygen concentration air [A]. // Yoshikawa K.Proceedings of 5~(th) International Symposium on High Temperature Air Combustion and Gasification (5~(th) HTACG) [C]. Yokohama (Japan): Tokyo Institute of Technology, 2002.
    [103] Kitagawa K, Konishi N, Arai N, et al. Two-dimensional distribution of flame fluctuation during highly preheated air combustion [A]. // Proceedings of ASME International Joint Power Generation Conference, ASME FACT Vol. 22, IJPGC 1998 [C]. New York (America): 1998. 239-242.
    [104] Lille S, Blasiak W, Mortberg M, et al. Heat flux evaluation in a test furnace equipped with high temperature air combustion (HTAC) technique [A], // 2002 International Joint Power Generation Conference [C]. Phoenix (America): 2002.
    [105] Lilley D G. Lateral injection into swirling crossflow [A]. // Nagaya University & the Society of Chemical Engineers (Japan). 3~(rd) International Symposium on advanced Energy Conversion System and Related Technologies (RAN2001) [C]. Nagoya (Japan): Nagaya University & Society of Chemical Engineers, 2001.
    [106] Simon M A, Baird B D, Gollahalli S R. Characteristics Of a laminar diffusion flame in a cross-flow of combustion products [A]. // Proceedings of PWR2005 [C]. Chicago (America): 2005.
    [107]Weber R,Verlaan V L,Orsino S,et al.Flow and mixing in gas-fired furnaces operated with highly preheated combustion air[A].//Zhang R J.Proceedings of 2~(nd)International High Temperature Air Combustion Symposium[C].Kaohsiung Taiwan:Energy &Resource Laboratories,1999.
    [108]Antonio C,Mara de J.Mild combustion[J].Progress in Energy and Combustion Science,2004,30:329-366.
    [109]Cavaliere A,De Joannon M,Ragucci R.Mild combustion of high temperature reactants [A].//Zhang R J.CREST:2~(nd)International High Temperature Air Combustion Symposium[C].Koahsiung Taiwan:Energy & Resource Laboratories,1999.401-422.
    [110]Kumar S,Paul P J,Mukunda H S.Investigations of the scaling criteria for a mild combustion burner[J].Proceedings of the Combustion Institute,2005,30(2):2613-2621.
    [111]Weber R,Smart J P,Kamp W V.On the(MILD)combustion of gaseous,liquid,and solid fuels in high temperature preheated air[J].Proceedings of the Combustion Institute,2005,30(2):2623-2629.
    [112]艾元方,蒋绍坚,周孑民.高风温无焰燃烧装置的开发与应用[J].煤气与热力,2001,21(2):130-132.
    [113]彭好义.高温空气燃烧的火焰特性实验及技术剖析[D].长沙:中南工业大学应用物理与热能工程系,2001.
    [114]崔屹.图象处理与分析-数学形态学方法及应用[M].北京:科学出版社,2000.
    [115]Glassman I.Combustion[M].Florida(America):Academic Press,1996.
    [116]Kumar S,Paul P J,Mukunda H S.Studies on a new high intensity-low emission burner [J].Proceedings of the Combustion Institute,2002,29:1131-1137.
    [117]Oberlack M,Arlitt R,Peters N.On stocastic Damko hler number variations in a homogeneous flow reactor[J].Combust Theory Model,2000,4:495-509.
    [118]周力行.湍流气粒两相流动和燃烧的理论与数值模拟[M].北京:科学出版社,1994.
    [119][罗马尼亚]安德烈斯坦标林努.工业火焰的燃烧过程[M].清华大学热能工程教研室译.北京:机械工业出版社.1983.
    [120]赵坚行.燃烧的数值模拟[M].北京:科学出版社,2002.
    [121]岑可法,姚强,骆仲泱,等.高等燃烧学[M].杭州:浙江大学出版社,2002.
    [122]梅炽.有色冶金炉窑仿真与优化[M].北京:冶金工业出版社,2001.
    [123]Szewczyk D,Blasiak W,Jewartowski M,et al.Increase of the effective energy from the Radiant Tube equipped with High-cycle Regenerative System(HRS)in comparison with conventional recuperative system[A].//Blasiak W,Yang W H.High Temperature Air Combustion-the Quest of Zero Emissions in Industrial Furnace[C].Stockholm (Sweden):School of Industrial Engineering and Management,Royal Institute of Technology,2003.95-101.
    [124]Ventola A,La Vista C.Environment as investment by the use of HRS system[A].//ENEA.HTACG4:4~(th)International Symposium on High Temperature Air Combustion and Gasification[C].Rome(Italy):Energy Engineering Division,2001.
    [125]Sudo J,Hasegawa T.Advanced HRS technology and its industrial applications[A].//ENEA.HTACG4:4~(th)International Symposium on High Temperature Air Combustion and Gasification[C].Rome(Italy):Energy Engineering Division,2001.
    [126]Torri C,Ghirardelli L,Goglio A.A new rollers furnace for treating stainless steel and nickel alloys seamless pipes[A].// ENEA.HTACG4:4~(th)International Symposium on High Temperature Air Combustion and Gasification[C].Rome(Italy):Energy Engineering Division,2001.
    [127]#12
    [128]WunningJA,WunningJG.Ten years of flameless oxidation:technical applications and potentials[A].// ENEA.HTACG4:4~(th)International Symposium on High Temperature Air Combustion and Gasification[C].Rome(Italy):Energy Engineering Division,2001.
    [129]Bruce C,Robertson T,Newby J N.A review of the development and commercial application of the LNI technique[A].//ENEA.HTACG:4~(th)International Symposium on High Temperature Air Combustion and Gasification[C].Rome(Italy):Energy Engineering Division,2001.
    [130]Hilmer O.Fuel gas jet combustion in highly diluted and preheated oxidizers[D].Stockholm(Sweden):Department of Metallurgy,Royal Institute of Technology,1999.
    [131]Lille S,Blasiak W,Jewartowski M.Experimental study of the fuel jet combustion in high temperature and low oxygen content exhaust gases[J].Energy,2005,30:373-384.
    [132]Patankar S V.Numerical heat transfer and fluid flow[M].New York(America):Hemisphere Publication Corporation,1980.
    [133]Modest M F.Radiative heat transfer[M].New York(America):McGraw-Hill Press,1993.
    [134]Magnussen B F,Hjertager B J.On mathematical models of turbulent combustion with special emphasis on the soot formation and combustion[A].// Proceedings of the 16~(th)Symposium(International)on Combustion[C].1977.719.
    [135]Charles E B.Heat transfer in industrial combustion[M].New York(America):CRC Press LLC,2000.
    [136]Fiveland W A.Discrete-ordinates solutions of the radiative transport equation for rectangular enclosures[J].Journal of Heat transfer,1984,106:699-706.
    [137]Mohamad A A.Local analytical discrete ordinate method for the solution of the radiative transfer equation[J].International Journal of Heat and Mass Transfer,1996,39(9):1859-1864.
    [138]Truelove J S.Three-dimensional radiation in absorbing-emitting-scattering media using the discrete-ordinates approximation[J].Journal of Quant Spectros Rad Transfer,1988,39:37-31.
    [139]Famaluddin A S,Smith P J.Prediction radiative transfer in rectangular enclostures using the discrete ordinates method[J].combustion Science and Technology,1988,59:321-340.
    [140]Gupta A K.Flame characteristics and challenges with high temperature air combustion [A].// Blasiak W,Lille S,Wei D,et al.Proceedings of the 2~(nd)International Seminar on High Temperature Combustion in Industrial Furnace[C].Jernkontoret-KTH,Stockholm (Sweden):Department of Metallurgy,Royal Institute of Technology,2000.
    [141]Lille S,Dobski T,Blasiak W.Visualisation of fuel jet in conditions of highly preheated air combustion[J].AIAA Journal of Propulsion and Power,2000,16(4):595-600.
    [142]Verlaan A,Orsino S,Lallemant N,et al.Fluid flow and mixing in a furnace equipped with the low-NO_x regenerative burner of Nippon Furnace[R].Ijmuiden(Netherlands):International Flame Research Foundation,NO:F46/y/1.1998.
    [143]Yasuda T,Ueno C.Dissemination project of industrial furnace revamped with HTAC[A].//Blasiak W,Lille S,Wei D,et al.Proceedings of the 2~(nd)International Seminar on High Temperature Combustion in Industrial Furnace[C].Jernkontoret-KTH,Stockholm (Sweden):Department of Metallurgy,Royal Institute of Technology,2000.
    [144]陶文铨.计算传热学的近代进展[M].北京:科学出版社,2005.
    [145]Nayfeh A H.Perturbation Methods[M].New York(America):John Wiley & Sons,Inc.,2000.
    [146]奈弗AH.摄动方法[M].王辅俊,徐钧涛,谢寿鑫译.上海:上海科学技术出版社,1984.
    [147][美]范戴克M.摄动法及其流体力学中的应用[M].李家春译.北京:科学出版社,1987.
    [148]Dyke M V.Perturbation methods in fluid mchanics[M].California(America):The Parabolic Press,1975.
    [149][美]艾詹斯A,纳TY.摄动法在传热学中的应用[M].余钧,孔祥谦译.北京:科学出版社.1992.
    [150]Aziz A,Na Y T.Perturbation methods in heat transfer[M].New York(America):Hemisphere Publication Corporation,1984.
    [151]梅炽.有色冶金炉设计手册[M].北京:冶金工业出版社,2000.
    [152]康盛亮,桂子鹏.数学物理方程近代方法[M].上海:同济大学出版社,1996.
    [153]吴崇试.数学物理方法[M].北京:北京大学出版社,1999.
    [154]王高雄,周之铭,朱思铭,等.常微分方程[M].北京:高等教育出版社,1984.
    [155]王蓉.高温空气燃烧系统中陶瓷蓄热体的热动态性能研究[D].上海:同济大学机械工程学院,2003.
    [156]陈则韶.量热技术和热物性测定[M].合肥:中国科学技术大学出版社,1990.
    [157]#12
    [158]Mohri T,Yoshioka T,Hozumi Y,et al.Development on advanced high-temperature air combustion technology for steam reforming[A].//AFRC,JFRC,IEA.Proceedins of 2001 Joint International Combustion Symposium[C].Hawaii(USA):AFRC,JFRC &IEA,2001.
    [159]李伟,祁海鹰,李宇红,等.蜂巢蓄热体的稳态传热特性和最佳换向时间[A].∥中国机械工程学会中国电工技术学会.2000年全国工业炉暨电热学术会议论文集[C].北京:中国机械工程学会,2000.366-372.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700