生物质高温空气气化工艺过程分析与高温空气发生器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质高温空气气化技术是燃料利用和能源供应领域内的一项高新技术,对缓解能源危机和改善环境质量具有重要意义,在日本、美国、西欧等一些发达国家已受到学术界和工业界的高度重视。由于我国在这方面的研究工作刚刚起步,一方面对高温空气气化过程本身缺乏足够的研究,另一方面还没有一个较完善的可用于高温空气气化研究的实验系统。为提高我国高温空气气化技术的研究水平,早日形成我国自主的知识产权,以迎接加入WTO后的挑战,有必要着手开展有关研究工作。
     作为“十五”863计划项目“生物质气化发电优化系统及其示范工程”的子课题—“生物质高温气化技术研究”的前期工作,本文主要进行了如下工作:
     1 收集并阅读了大量的中外文献,阐述了中外高温空气气化研究和技术的发展动态。
     2 为认识生物质高温空气气化过程,并为工艺过程设计及实验装置设计提供理论指导,对生物质高温空气气化进行了理论探讨,将生物质高温气化分为不完全燃烧与高温干馏阶段和高温气化阶段,并对各阶段的理论计算进行了分析。
     3 为了设计生物质高温空气气化系统实验装置及编制生物质高温空气气化工艺过程的计算机程序,首先以无烟煤为原料对高温空气气化工艺过程作了手工设计计算,计算结果为:气化温度为1537℃、气化效率为93.8%、合成燃气热值为6746kJ/Nm~3、系统热效率为43.8%、燃烧室的燃烧温度为1575℃、蓄热体的流通截面积为0.02m~2、蓄热体的高度为0.23m。然后采用Visual C++编制了高温空气气化工艺过程的计算机程序,并运用该程序进行了如下两类工作:(1)取高温空气温度为1100℃,对无烟煤气化工艺进行了计算,其结果与手工计算完全一致,验证了该程序的正确性;同样地对木块、垃圾分别进行计算,木块的计算结果为:气化温度为1338℃、气化效率为81%、合成燃气热值为5692kJ/Nm~3、系统热效率为42.3%、燃烧室的燃烧温度为1386℃、蓄热体的流通截面积为0.023m~2、蓄热体的高度为0.38m;垃圾的计算结果为:气化温度为1269℃、气化效率为82.1%、合成燃气热值为6153kJ/Nm~3、系统热效率为50%、燃烧室的燃烧温度为1386℃、蓄热体的流通截面积为0.045m~2、蓄热体的高度为0.38m。(2)对高温空气气化的主要影响因素进行了分析,结果指出:对于确定的氮碳比,蒸汽消耗率增加气化温度降低,气化所得的煤气热值增大;对于确定的蒸汽消耗率,气化温度随氮碳比的增大而升高,然而气化所得的煤气热值却随氮碳比的增加而降低;对于确定的蒸汽消耗率、氮碳比,煤气热值随气化温度的增加而增加,但是增加量不大。
     4 高温空气发生器是我校“生物质高温空气气化技术研究”课题组正在研制的实验研究系统的关键部件之一,其主要功能是产生温度为800~1500℃的空气。作者按照给定的设计参数结合上述工艺计算的结果,设计了以高温低氧弥散燃烧为核心技术的高温空气发生器,绘制了全套工程图纸,并自始至终参加了该装置的建造过程。
     5 高温空气发生器呈对称结构,其中一侧进行燃烧,另一侧产生高温空气,形成的高温空气必须分成两部分,一部分流向发生器的另一侧用作助燃剂,另一部分流向气化器用作气化剂。为掌握高温空气发生器内空气流量的分配特性及送出空气的压力大小,在高温空气发生器实验装置上进行了冷态实验。结果表明,通过冷端调节就可以实现分流的目的,即:对于确定的排烟机开度,可以调
Gasification from Biomass Using High Temperature Air is a new technology developed in the fields of fuel utilization and energy supply. The great attention has been paid on the new technology in many countries such as Japan、 the United States and some developed countries in west Europe because of its great significance considering the increasingly serious energy crisis and environmental pollution. However, as the relevant study in China is just at the initial stage, there is neither enough research on the process of HTAG (High Temperature Air Gasification) nor perfect experimental system. In order to improve the study level and form independent property right of information concerned, it is very necessary to set about the revelent study work to meet the challenge of joining the WTO.As the first-phase work of the "Research on Gasification from Biomass Using High Temperature Air Technology", subproject of "863 Program"—Optimization System and Demonstration Project of Gasification and Power Generation from Biomass", the author carried out the mainly research work as follows:(1) Many pieces of Chinese and foreign literatures are collected and read, and the development dynamic of HTAG in China and foreign countries is stated.(2) In order to comprehend the process of HTAG and to provide academic directions for the design of process and experimental devices, the author conducted theoretical analysis and divided it into two phases: One of them is the imperfect combustion and high temperature carbonization phase and the other is the high temperature gasification phase. Each phase was analyzed and calculated theoretically.(3) For the purpose of designing experimental device and compiling the computer program, firstly, the author made manual design calculation on the HTAG of the anthracite coal in detail. The results show: the gasification temperature is 1537℃; gasification efficiency is 93.8%; caloric value of syngas is 6746kJ/Nm~3; thermal efficiency of system is 43.8%; combustion temperature in the combustion chamber is 1575℃; Circulation section area of the regenerator is 0.02m~2; height of the regenerator is 0.23m. Then, the process of HTAG has been programmed with Visual C++. The computer program was applied on the following work: ① Supposing the air temperature is 1100℃, the computer calculation results coincide with the manual results completely, which validates the correctness of the program; In the same way, both the charcoal and garbage are calculated respectively. For the block, the gasification temperature is 1338℃; gasification efficiency is 81%; caloric value of syngas is 5692kJ/Nm~3; thermal efficiency of system is 42.3%; combustion temperature in the combustion chamber is 1386℃; Circulation section area of the regenerator is 0.023m~2; height of the regenerator is 0.38m. Similarly, for the garbage, the gasification temperature is 1269℃; gasification efficiency is 82.1%; caloric value of syngas is 6153kJ/Nm~3; thermal efficiency of system is 50%; combustion temperature in the combustion chamber is 1386℃; Circulation section area of the regenerator is 0.045m~2; height of the regenerator is 0.38m. ②The main factors dominating the HTAG process were analyzed. As a results, the calculation results indicate: when steam consumption rate is raised, gasification temperature decreases and caloric value of syngas increases; when the rate of nitrogen and carbon is enhanced, gasification temperature goes up while the caloric value of syngas drops; caloric value of syngas increases a little when gasification temperature increases.(4) As one of the key components of the experimental system being developed by the study group on "Research on Technology of Gasification from Biomass Using High Temperature Air" in CSU, the primary function of the high temperature air generator is to produce high temperature air of 800~1500℃.
    According to the related design parameters and the calculation results, the high temperature air generator was designed whose core technology is the high temperature air combustion with low oxygen concentration. At the same time, the author drew up the whole engineering drawings and took part in the construct process all the time.(5) The structure of the high temperature air generator is symmetrical. One side is used for combustion and the other side is used to produce high temperature air. The high temperature air is divided into two parts; one is used for combustion of syngas to heat up the other side honeycomb and the other is extracted toward the gasifier. With the aim to grasping the distribution performance of the air flow rate inside the generator and the outlet pressure at the shunting, the author carried out cold-state experiment on the high temperature air generator. The results show that cold-end regulation can realize flow distribution, that is to say, on condition that the switching value of fume blower is definite, adjusting the switching value of air blower can regulate shunting outlet flow rate; Similarly, if the switching value of air blower is definite, adjusting the switching value of fume blower can regulate shunting outlet flow rate; the total range of the divided flow is between -0.012 and 0.102Nm3/s. For a certain switching value of shunt baffle, shunting outlet pressure enhances with the decrease of the switching value of fume blower and with the increase of that of air blower. The range of regulation is between -50 and 210Pa.In the end, the author put forward a series of proposals on further research work.
引文
1 K. Yoshikawa. Gasification and Power Generation from Solid Fuels Using High Temperature Air. Proceeding of High Temperature Air Combustion Symposium, Beijing, Oct. 1999: 48~68
    2 H. Kobayashi, K. Kawai, K. Yoshikawa. Gasification Power Generation System and Boiler Performance Using High Temperature Air. Hsiao Tsechiang, Yoshikawa Kunio. Proceedings of Beijing Symposium on High Temperature Air Combustion.
    3 K. Yoshikawa. Present Status and Future Plan of CREST MEET Project. Proceeding of the 2nd International High Temperature Air Combustion Symposium, Taiwan, Jan. 1999: pA1-1~A1-7
    4 C. C. Pian. Biomass Fueled MEET Gasifier. Proceeding of High Temperature Air Combustion Symposium, Beijing, Oct. 1999: 69~88
    5 彭好义.高温空气燃烧的火焰特性实验与技术剖析[D].长沙:中南大学物热系,2001.3
    6 Carlson C. P. Pian, Lincoln Young. High-temperature, air~blown gasification of dairy~farm wastes for energy production[R]. RAN2001 3rd International Symposium on Advanced Energy Conversion System and Related Technologies, Nagoya, Japan, December 15(Sat.)—17(Man.), 2001
    7 Yoshikawa Kunio. R&D on small~scale gasification of solid fuels using high temperature air and stream[R]. RAN2001 3rd International Symposium on Advanced Energy Conversion System and Related Technologies, Nagoya, Japan, December 15(Sat.)—17(Man.), 2001
    8 Toru ISHII, Emi Yoshitaka, Takashi KIGA, etc. Gasification of solid fuel at the demonstration plant of meet system, MEET Ⅱ[R]. RAN2001 3rd International Symposium on Advanced Energy Conversion System and Related Technologies, Nagoya, Japan, December 15(Sat.)—17(Man.), 2001
    9 王革华.我国生物质能利用技术展望[J].农业工程学报,1999,15(4):19~22
    10 刘圣勇,张杰.生物质气化技术现状及应用前景展望[J].资源节约与综合利用,1999,2:24~27
    11 丁启朔,白金明.生物质能利用技术的开发研究[J].太阳能,1999,3
    12 邓可蕴.21世纪我国生物质能发展战略[J].中国电力,2000,33(9):82~84
    13 张无敌,宋洪川,钱卫芳等.我国生物质能源转换技术开发利用现状[J].能源研究与利用,2000,2:3~6
    14 徐冰燕,吴创之,罗曾凡等.中国生物质气化技术的发展与前景[J].太阳能学报,1999, (特刊)
    15 刘国喜,庄新姝,夏光喜.生物质气化技术讲座(一)—生物质气化是生物质能高层次利用的良好途径[J].农村能源,1999,5:20~22
    16 刘国喜,庄新姝,夏光喜等.生物质气化技术讲座(四)—生物质气化的热利用[J].农村能源,2000,2:16~19
    17 蒋绍坚,彭好义,艾元方等.我国生物质燃料利用的刍议[J].新能源,2000,22(8):38~41
    18 周篁.秸秆气化集中供气是一个大有前途的新产业[J].新能源,1999,21(4):37~3
    19 范维唐.二十一世纪的中国能源[R].高温空气燃烧新技术讲座,北京,1999.10:2~8
    20 刘国喜,庄新姝,尹天佑等.生物质气化技术讲座(六)—国外生物质气化技术的利用[J].农村能源,2000,4:12~14
    21 董宏林,P.F.RANDERSON,F.M.SLATER.生物质能源转换新技术及其应用[R].宁夏农林科技,1999,6:11~17
    22 P.F.RANDERSON,董宏林,F.M.SLATER.世界若干国家生物质能源利用及有关问题研究[J].宁夏农林科技,1999,5:5~8
    23 张包钊,郭风华.面向21世纪的美国生物质能源[J].能源工程,1999,2:9~11
    24 Y. Suzukawa, S. Sugiyama, Y. Hino etc. Heat Transfer Improvement and NOx Reduction by Highly Preheated Air Combustion. Energy Converts. Mgmt, 1997, vol 38(No. 10-13): 1061-1071
    25 T. Hasegawa, R. Tanaka. High Temperature Air Combustion Contributing to Energy Saving and Pollutant Reduction in Industrial Furnace. Proceeding of High Temperature Air Combustion Sy-mposium, Beijing, Oct. 1999: 102~114
    26 R. Weber, A. L. Verlaan, S. Orsino, N. Lallemant. On Emerging Furnace Design Methodology that Provides Substantial Energy Savings and Drastic Reductions in CO2, CO and NOX Emissions. Journal of the Institute of Energy, Feb. 1999: 1~8
    27 M. Katsuki, T. Hasegawa. The Science and Technology of Combustion Highly Preheated Air. Proc. of 27th Int. Symp. on Combustion, 1998, pp3135~3146
    28 李芳芹.煤的燃烧与气化手册[M].北京:化学工业出版社,1955
    29 苏学泳,王智微,程从明.生物质在流化床中的热解和气化研究[J].燃料化学学报,2000,28(4):298~305
    30 喻霞,魏敦崧.生物质固定床气化过程的研究[J].煤气与热力,2000,20(4):243~246
    31 郭庆杰,张锴,刘振宇等.生物质的流化床转化[J].煤炭转化,1998,21(3):33~37
    32 张力,冉景煜,屈超蜀.城市生活垃圾物性与热解特性的试验研究[J].环境科学学报,2000,20(5):645~647
    33 肖新颜,万彩霞,李淑芬等.煤焦与水蒸汽气化反应的动力学模型[J].煤炭转化,1998,21(1):75~7
    34 H.B.拉夫罗夫.燃料燃烧及气化的物理化学基础[M].北京:科学出版社,1964
    35 姜正侯.燃气工程技术手册[M].上海:同济大学出版社,1993
    36 吕佐周,王光辉.燃气工程[M].北京:冶金出版社,1999
    37 《煤气设计手册》编写组.煤气设计手册[M].北京:中国建筑工业出版社,1986
    38 金利平,陈瑾瑜,张风仪.蓄热式燃烧器在电炉钢包加热装置上的应用[J].工业炉,1999,21(4):58~61
    39 郭伯伟,张者一.蓄热式燃烧器的开发及在现代工业炉中的应用[J].工业加热,1998,5:12~15
    40 赵振永,邱峰.蓄热式烧嘴在锻造加热炉上的应用[J].工业炉,1996,2:30~32
    41 刘夏丹,于宏,周琦等.陶瓷蜂窝体的结构特性及其蓄热燃烧系统的应用[J].冶金能源,1999,18(4):28~31
    42 余际星,曾有鹏.旋转型蓄热式交换器蓄热体材料的选择[J].工业炉,1996,2:37~40
    43 李朝祥,蔡九菊.填充床蓄热式热交换器的实验研究[J].工业炉,1999,21(1):1~4
    44 侯长连,胡和平,董为民.新型蓄热式高炉煤气加热炉[J].工业加热,1998,3:32~34
    45 刘日新,刘广林.蓄热燃烧技术及其在冶金工业炉中的应用[J].工业炉,2000,22(2):29~35
    46 蒋绍坚,艾元方,彭好义等.高温低氧燃烧技术及其高效低污染特性分析[R].中南工业大学学报,2000,31(4):311~314
    47 范荣谦,曹冠之,张先跃.蓄热室不稳态传热数学模型及其求解[J].工业炉,1992,3:54~59
    48 唐铁驯.蜂窝陶瓷热辐射特性的研究[R].东北工学院学报,1989,1:98~102
    49 饶荣水,戴方钦,王立.新型陶瓷燃烧器的模型实验研究[J].冶金能源,2001,20(2):18~22
    50 饶荣水.蓄热式热交换器热工特性的热力学分析[J].冶金能源,2000,19(5):25~31
    51 赵振永,邱峰.蓄热式高温预热烧嘴蓄热室传热性能的研究[J].工业炉,1996,1:17~21
    52 余际星,余世浩,曾有鹏.蓄热体材料的定性分析及选用[J].工业加热,1997,2:40~43
    53 蔡九菊,于娟,于庆波等.陶瓷球蓄热室传热特性的研究[J].钢铁,1999,34(2):54~58
    54 孙龙,唐铁驯.蜂窝体辐射特性的研究[J].工业炉,1990,2:12~16
    55 马晓茜,张凌.HTAC关键技术及其高效低污染特性分析[J].工业炉,2000,22(1):9~12
    56 王秉铨.工业炉设计手册[M].北京:机械工业出版社,1996
    57 马旺.高温预热装置的研制[J].工业炉,1990,4:14~18
    58 俞佐平.传热学[M].北京:高等教育出版社,1994
    59 朱聘冠.换热器原理及计算[M].北京:清华大学出版社,1987
    60 《化学工业设计手册》编写组.化学工业设计手册[M].北京:化学工业出版社,1985
    61 《化学工业设计手册》编写组.化学工业设计手册—设计案例[M].北京:化学工业出版社,1985
    62 吕风翥.C++语言基础教程[M].北京:清华大学出版社,1999
    63 [美]JesseLiberty.Vc++从入门到精通[M].郭强,末黎松,韩珊译.北京:电子工业出版社,1999
    64 汪应凤.机械制图[M].武汉:华中理工大学出版社,1997
    65 [美]乔治.AutoCAD 14从入门到精通[M].符有光译.北京:电子工业出版社,1999
    66 韩小良.窑炉的经济炉衬厚度[J].陶瓷,2000,1:32~34
    67 葛霖.筑炉手册[M].北京:冶金工业出版社,1994
    68 张克铭,李焰.多晶莫来石耐火纤维及其应用技术[M].北京:北京冶金工业出版社,1992
    69 陈则韶,葛新石等量热技术和热物性测定[M].合肥:中国科学技术大学出版社,1990
    70 萧泽强.高风温无焰燃烧(HTAC)技术在日、欧几国的开发应用近况[R].中南工业大学应用物理与热能工程系,1999.7
    71 A.K.Gupta, T.Hasegawa. High Temperature Air Combustion: Flame Characteristics, Challenges and Opportunities[R]. Proceeding of High Temperature Air Combustion Symposium, Beijing, Oct. 1999: 10~28
    72 S.Mochida, T.Hasegawa. Development of a Combustion Diagnostics Method on Advanced Industrial Furnaces Making Use of High Temperature Air Combustion[R]. Proceeding of the 2nd International High Temperature Air Combustion Symposium, Taiwan, Jan. 1999: 94~105
    73 Tanaka R., KishimotoK., Hasegawa T.. High Efficiency Heat Transfer Method with use of High Temperature Preheated Air and Gas Recirculation[J]. Science and Technology, 1994, 1(4)
    74 Gupta, A.K. Bolz, S. and Hasegawa. Effect of Air Preheat and Oxygen Concentration on Flame Structure and Emission[J]. Energy Resources and Technology, 1999, 121
    75 Gupta A.K. , Li Z.. Effect of Fuel Property on the structure of Highly Preheated Air Flames[R]. Intl. ASME EC~VOL, 5, 1997
    76 Ryoichi Tanaka and Toshiaki Hasegawa. Innovative technology to change flame characteristics which highly preheated air combustion[R]. Japanese Flame Days~JFRC 20th Anniversary, Osaka, Japan, May 16 and 17, 1997
    77 Simon Lille. Experimental Study of Single Fuel Jet in Conditions of Highly Preheated Air Combustion[D]. Master Degree Dissertation. Royal Institute of Technology. Sweden, 1999. 5
    78 萧泽强,蒋绍坚,周孑民等.高温低氧空气燃烧过程实验研究和数值模拟[R].高温空气燃烧新技术讲座,北京,1999.10:116~137
    79 韩昭沧.燃料及燃烧[M].北京:冶金工业出版社,1994
    80 周谟仁.流体力学泵与风机[M].北京:中国建筑出版社,1979

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700