钢坯热过程节能与氧化烧损数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以空气预热温度、含氧浓度和空气过剩系数三因素联合作用下钢坯加热炉热效率和氧化烧损率的变化规律为研究对象,目的是为进一步提高钢坯加热炉操控优化水平和降低钢铁生产成本提供理论依据。
     首先以步进式钢坯加热炉为对象,运用STEEL-TEMP软件,耦合钢坯热流密度模型、热平衡模型和氧化皮线性及抛物线性增长组合模型,编制了钢坯热过程模拟计算程序。利用该程序可以直接得到钢坯升温曲线、炉内各区温度、炉墙内表面温度曲线、金属氧化烧损等数据。从这些数据中,可以计算出热效率和氧化烧损率。
     然后利用这一程序,采用不同的空气预热温度、含氧浓度和空气过剩系数组合,研究了钢坯加热热效率和氧化烧损随空气温度、含氧浓度和空气过剩系数的变化规律。研究中空气温度变化范围为200-900℃,含氧浓度变化范围为21-54%,空气过剩系数变化范围为1.0-1.3。研究结果表明,在加热终了温度相同的情况下:(1)空气温度越高,加热时间越短,加热速率越大,热效率和生产率越高,总的氧化皮生成量越少。(2)烟气含氧浓度对氧化皮生成量有重要影响。低的烟气含氧浓度可抑制Fe的氧化反应,增加烟气发射率,缩短加热时间,从而可减小氧化皮生成量,降低吨钢能耗。(3)空气过剩系数越低,加热速率越大,热效率和生产率越高,加热时间越短,氧化皮生成量越小。氧化皮生成速率最慢的燃烧条件是空气过剩系数1.0-1.1且空气温度400-500℃。空气过剩系数越低,最小氧化皮生成速率所对应的空气温度范围越宽。(4)空气含氧浓度越高,加热速率越大,热效率和生产率越高,加热时间越短,氧化皮生成量就越小。氧化皮生成速率最慢的燃烧条件是空气温度400-600℃且空气含氧浓度低于45%。
     在以上研究的基础上,本文最后提出了“逐级配风”的热工操作制度。即:控制总空气过剩系数为1.0,执行“从加热一区、加热二区到均热区空气过剩系数按5-10%逐级递减,使高温均热区处于弱氧化气氛。采用“逐级配风”热工操作制度,可提高热效率,并降低氧化皮生成量。
The change of both the thermal efficiency of reheating furnace and the formationof scale during the heating process with time under different combination of airpreheat temperature, oxygen concentration and excess air coefficient have beenstudied in this paper. The objective is to obtain theoretical basis for improving theoptimization level of design, operation and control to the heating process of billet anddecreasing the billet production cost.
     Firstly taking the walking beam furnace as an example, using STEEL-TEMPsoftware and coupling with billet heat-flow-density model, thermal-balance modeland linear-parabola increase model of oxidation scale, simulation calculation programhas been constructed. The temperature curve of billet, the flue gas temperature in eachzone and the temperature curve of inner surface of furnace wall, scale formation canbe obtained. The thermal efficiency and the rate of scale formation can be calculatedfurther.
     Secondly the change of thermal efficiency and scale formation with the changeof air temperature, oxygen concentration and air excess coefficiency has beenresearched under the different combination of air preheat temperature, the oxygenconcentration and the air excess coefficiency. The temperature of preheated air rangesfrom 200℃to 900℃, the air excess coefficient from 1.0 to 1.3 and oxygenconcentration from 21% to 54%.
     To compare the effects of the significant factors above on heating efficiency andscale formation, the fmal temperature of billet is set at 1235℃+2℃. The followingresults have been obtained:
     (1) The higher the air temperature is, the shorter the heating time is, the larger theheating velocity is, the higher the thermal efficiency is, the higher the productivity isand the less the scale formation is.
     (2) The oxygen concentration of flue gas has an important effect on the scaleformation. The low oxygen concentration of flue gas can restrain the ferrous oxidationreaction, increase the flue gas emissivity and shorten the heating time. Further more,the low oxygen concentration of flue gas lead to the low scale formation and the lowenergy consumption per ton steel.
     (3) The lower the air excess coefficient is, the larger the heating rate is, thehigher the thermal efficiency is, the higher the productivity is, the shorter the heatingtime is and the less scale formation is. The combustion conditions for the minimumrate of scale formation should be the air excess coefficient 1.0-1.1 and the airtemperature 400-500℃. The lower air excess coefficient is, the wider range of airtemperature corresponding to the minimum rate of scale formation is.
     (4) The higher the air oxygen concentration is, the larger the heating rate is, thehigher the thermal efficiency is, the higher the productivity is, the shorter the heatingtime is and the less the scale formation is. The combustion conditions for theminimum rate of scale formation should be the air temperature 400-600℃and the airoxygen concentration below 45%.
     Finally, based on the above studies, a thermo-technical operation system called"stepwise distribution" has been brought forward. According to this system, the airexcess coefficient decreases from 5% to 10% in turn Zone One, Zone Two and thesoaking zone while the total air excess coefficient remains at the value of 1.0. Thesemeasures make the soaking zone be at the weak oxidative atmosphere. The newoperation system can lead to high thermal efficiency and low scale formation.
引文
[1] 萧泽强,吉川邦夫.高温空气燃烧新技术讲座[C].北京:中国科学技术协会,1999.
    [2] Jiang S J, Yang W H, Peng H Y, et al. Experimental Investigation And Numerical Simulation of Combustion Using High Temperature And Low Oxygen Content Air[A].//International Conversion and Application [C]. Wuhan: 2001.773-776.
    [3] Jiang S J. Prospects of Development And Application of High Temperature Air Combustion In China |A].// Fourth International Symposium on High Temperature Air Combustion and Gasfication [C]. Rome,Italy: 2001.91-97.
    [4] 艾元方.低氧弥散燃烧物理化学特征及薄壁蓄热摄动解析[D].长沙:中南大学能源科学与工程学院,2006.
    [5] Vesterberg P,Joachim V S,Moroz G.富氧燃烧与节能减排[J].节能与环保,2006,(1):59-64.
    [6] 戴树业,韩建国,李宏.富氧燃烧技术的应用[J].玻璃与搪瓷,2000,28(2):26-29.
    [7] 宋青.欧洲钢铁企业节能的主要做法[J].冶金管理,2002,(3):41-45.
    [8] 张科峰.膜法富氧助燃技术提高加热炉热效率[J].化工技术,2000,8(6):39-42.
    [9] 郑晓峰,冯耀勋,贾明生.富氧燃烧的节能特性及其对环境的影响[J].节能,2006,288(7):26-28.
    [10] 毕春长,黄道.面向工程应用的钢坯加热炉零维数学模型[J1.华东理工大学学报,2003,29(4):409-412.
    [11] 董伟,陈海耿,李瑞阳,等.加热炉热过程动态操作数学模型[J].工程热物理学报,2003,24(2):295-297.
    [12] 姜泽毅,汪霞,张欣欣,等.钢(荒)管加热炉计算机控制数学模型及应用[J].金属学报,2000,36(4):429-432.
    [13] 刘向军,赵燕,潘小兵.步进式加热炉内钢坯加热过程的模拟研究[J].钢铁,2005,40(7):76-79.
    [14] 吴光亮,李士琦,郭汉杰,等.高温低氧空气燃烧(HTAC)技术在我国冶金工业中应用的现状分析[J].钢铁,2004,39(9):69-73.
    [15] 魏厚培,易梦.蓄热式高温空气燃烧技术与钢坯加热[J].中国设备工程,2002,8(11):42-44.
    [16] 温志红,郭汉杰.加热富氧燃烧技术的应用研究[J].steel Roiling,2004,21(4):63-65.
    [17] 蒋绍坚,彭好义,艾元方,等.高温低氧气氛中气体燃料的火焰特性[J].中南工业大学学报,2000,31(3):228-231.
    [18] 王义芳,张晓力.蜂窝体蓄热式HTAC技术在加热炉上的应用[J].钢铁,2002,37(2):56-63.
    [19] 邓淑惠,严静,欧亚松,等.高温空气燃烧技术在加热炉上的应用[J].冶金能源,2005,24(5):42-45.
    [20] 蔡九菊,杜涛.我国钢铁工业能源环境负荷分析及减负对策研究[J].冶金环境保护,2004,(2):48-53.
    [21] 布焕存.蓄热式高温空气燃烧技术的应用[J].钢铁研究学报,2005,17(5):1-6.
    [22] HKOBMA. O CHOB OE TEOP TE OBO PA OTI EE[M]. MOCKB: OC APCTBEHHOE HA HO-TEXH ECKOE 3 ATE CTBO TEPAT PI O EPHO BETHO META P, 1959. On Russian)
    [23] Chen W H, Chung Y C, Liu J L. Analysis on energy consumption and performace of reheating furnace in a hot strip mill [J]. International Communication in Heat and Mass Transfer, 2005, 32: 695-706.
    [24] 黄冰松.三钢热轧车间加热炉节能技术改造[J].冶金能源,2002,21(3):36-37.
    [25] 徐亚滨,尹志刚.轧钢工序能耗浅析及节能途径[J].河北冶金,2002,127(1):29-32.
    [26] 魏广军.带钢步进式加热炉节能技术的应用[J].山东冶金,2000,22(3):6-7.
    [27] 薛念福,李里,祁双扬.方坯加热炉热工制度优化研究及应用[J].钢铁钒钛,2005,26(3):53-59.
    [28] 杨茂麟.高线加热炉节能技术的应用[J].冶金标准化与质量,2004,42(4):36-37.
    [29] 毛玉军.降低大型加热炉能耗的技术分析及对策[J].四川冶金,200,(2):51-53.
    [30] 陈光,张丽徽,戴学成.宝钢HPH全氢罩式退火炉钢卷加热时间的研究[J].冶金能源,2005,24(5):24-26.
    [31] 于克勇.钢丝铅淬火在炉加热时间的控制[J].天津冶金,2005,(129):54-56.
    [32] 郭桐;叶建军.加热时间对钢板力学性能影响的数学模型及应用[J].宽厚板,2001,7(5):32-35.
    [33] 丛琦,高泰荫,边华.炉气黑度交替变化时高温炉内的传热效果[J].工业炉,2001,23(2):1-4.
    [34] 梅炽.有色冶金炉窑仿真与优化[M].北京:冶金工业出版社,2001.
    [35] 萧泽强,朱苗勇.冶金过程数值模拟分析技术的应用[M].北京:冶金工出版社,2006.
    [36] 周萍,周乃君,蒋爱华,等.传送过程原理及其数值仿真[M].长沙:中南大学出版社,2006.
    [37] Spalding D B. Heat Transfer from Turbulent Separated Flows [J]. J. Fluid Mech., 1967, 27(1):36-41.
    [38] 李金伟,徐惠芳.优化加热数学模型在步进式加热炉上的应用(续) [J].河北冶金,2001,124(4):10-13.
    [39] 刘向军,杜冰雁,潘晓兵.步进式加热炉内流动与传热过程的数值模拟[J].北京科技大学学报,2005,27(3):287-290.
    [40] 青格勒,程素森,杨天钧,等.步进梁式加热炉内的板坯温度场数值模拟[J].北京科技大学学报,2004,26(2):164-168.
    [41] 王华.推钢式连续加热炉最优炉温数学模型[J].昆明理工大学学报,1996,21(6):128-134.
    [42] 王俊生,牛钰,温志,等.辊底式连续热处理炉钢坯二维传热过程数学模型的研究[J].工业加热,2005,34(1):14-18.
    [43] 王增欣,王春,杨迎春.对锻造炉内锻件升温过程的数值模拟[J].山西能源与节能,2005,(4):16-18.
    [44] 张正言.宝钢热轧加热炉氧化烧损计算数模的建立和实施[J].宝钢技术,2003,(4):30-32.
    [45] 曹长吉.降低轧钢加热工艺的燃耗与烧损[J].鞍钢技术,1997,(10):45-50.
    [46] 曹开宸,王鑫.减少连铸板坯氧化烧损的对策[J].CISC TECHNOLOGY,2002,(3):26-27.
    [47] 高建舟,徐玉军,冀志红.减少钢坯氧化烧损的探讨[J].河南冶金,2006,14(1):25-2652.
    [48] 韩仁志,谢安国,李先春,等.热轧加热炉氧化烧损测定和分析[J].冶金能源,2006,25(2):41-4263.
    [49] 李玉华,吴学军.降低板坯氧化烧损的探讨[J].四川冶金,2000,(2):17-19.
    [50] 宋汝贵,李善磊,牛玮,等.提高中厚板成材率的途径及实践[J].山东冶金,2004,26(10):35-37.
    [51] 张劲松,付国利,卢成欣,等.加热炉氧化烧损严重的技术分析[J].鞍钢技术,2002,(4):69-71.
    [52] 张宇.钢坯加热过程中氧化烧损的因素及其控制[J].冶金设备管理与维修,2006,24(121(总)):46.
    [53] 刘占增,郑兆平,丁翠娇,等.加热炉氧化烧损原因与对策分析[J].冶金能源,2004,23(2):30-34.
    [54] 孙丽萍,吴道洪.蓄热式HTAC技术在武钢大型厂加热炉的应用与探索[J].钢铁,2004,39(10):72-74.
    [55] Chaur J, Wang S. The high-temperature oxidation behavior of hot'dipping Al-Si coating on low carbon steel [J]. Surface and Coatings Technology, 2006, 200(22-23): 6601-6605.
    [56] Teru H S, Horita K. Oxide scale formation of Fe-Cr alloys and oxygen diffusion in the scale [J]. Solid State lorries, 2004, (175): 157-163.
    [57] 陈冬,项长祥,曹杰,等.高速钢脱碳层深度与加热时间的关系[J].河北冶金,2001,122(2):22-24.
    [58] 陈敏军.钢锭氧化烧损与空然比的关系研究[J].宝钢技术,2005,(2):49-51.
    [59] 贾丽娣,刘常鹏,张宇,等.高碳钢加热过程脱碳特性分析[J].冶金能源,2004,23(2):11-14.
    [60] 聂维.浅析轧钢加热炉坯料氧化控制[J].天津冶金,2001,103:34—36.
    [61] 陈永,孙浩,薛念福,等.重轨钢坯加热工艺优化研究[J].钢铁,2005,37(9):52-55.
    [62] 华建设,周继良.碳钢高温氧化的实验研究[J1.铸造技术,2005,26(9):821-823.
    [63] 纪国富.利用差热天平研究钢在高温下的氧化特性[J].分析仪器,2003,(2):23-24.
    [64] Sun Z Y. High temperature oxidation behavior of Ti3SiC2-based material in air [J]. Acta. Materialia, 2001, 49(20): 4347-4353.
    [65] Wang Z G. Characterization of oxide layers on Ti-2Al-2.5Zr and Ti-4Al-2V alloys oxidized at 300℃ in a neutral water steam [J]. Alloys and Compounds, 2004, 384(1-2): 93-97.
    [66] XU X W. High-temperature oxidation behavior of Ti3AIC2 in air [J]. Transaction of Nonferrous Metals Society of China, 2006, (16): 869-873.
    [67] Chen X W. Studies on the oxidation behavior of niobium-implanted Zircaloy-4 at 500℃ [J]. Journal of Nuclear Materials, 2002, 306(2-3): 190-193.
    [68] Woo D B. High temperature oxidation of Ti-47%Al-1.7%W-3.7%Zr alloys [J]. Intermetallics, 2005,13(2): 169-177.
    [69] Wen J, Ding X M. Cyclic oxidation behaviour of cerium implanted AZ31 magnesium alloys [J]. Materials Letters, 2006,:
    [70] Sun W A. High temperature oxide scale characteristics of low carbon steel in hot rolling [,I]. Materials Processing Technology, 2004, 155-156:1307-1312.
    [71] Sun W A. Oxide scales growth of low-carbon steel at high temperatures [J]. Materials Processing Technology, 2004, 155-156: 1300-1306.
    [72] Hamid U I, An W. A TEM study of the oxide scale development in Ni-Cr-Al alloys [J]. Corrosion Science, 2004, 46(1): 27-36.
    [73] Teru H S, Horita Y P. Imaging of mass transports around the oxide scale/Fe-Cr alloy interfaces [J]. Solid State Ionics, 2004, (174): 41-48.
    [74] Taniguchi X Y. Correlation of high temperature oxidation with tensile properties for Ti- 48Al-2Cr-2Nb and Ti-48A1-2Cr-2Fe alloys [J]. Intermetallics, 2005, 13(7): 683-693.
    [75] Takeshi I T. Oxidation behavior of sulfidation processed TiAl-2at.% X (X=V, Fe, Co, Cu, Nb, Mo, Ag and W) alloys at 1173 K in air [J]. Intermetallics, 2001, 9(7): 547-558.
    [76] Sharma P R. Isothermal oxidation behaviour of Mo-Si-B and Mo-Si-B-Al alloys in the temperature range of 400-800℃ [J]. Materials Science and Engineering: A, 2006, 424(1-2): 251-265.
    [77] Moussa S O. High-temperature characterization of reactively processed nanostructure nickel aluminide intermetallics [J]. Alloys and Compounds, 2006, 19(6): 540-551.
    [78] Rutqvist S. Glodskalsbildning vid varmning avstal-Litteraturstudie [M]. BTF: MEFOS-BTF, 1979.
    [79] Leden B. Input Data Description of STEEL-TEMP 2D [R]. N-2007 Kjeller, Norway: MEFOS, 2001.1-92.
    [80] Leden B. STEELTEMP-A Program for Temperature Analysis in Steel Plants [J]. Journal of Metallurgy, 1986, 28(5): 215-223.
    [81] 邓伟,张青松,张宇.钢坯氧化烧损影响因素试验研究[A].∥全国能源与热工学术年会[C].张家界:中国金属学会能源与热工分会,2006.64-66.
    [82] 童辉,龚成宪,陈捷,等.富氧燃烧技术在工业炉窑的应用研究[A].∥全国能源与热工学术年会[C].张家界:中国金属学会能源与热工分会,2006.617-619.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700