用户名: 密码: 验证码:
低氧诱导因子1α在白蛋白过负荷致肾小管上皮细胞损伤中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
持续低氧状态促进肾脏纤维化进展的观点已被学界广泛接受。低氧促进CKD进展的作用主要通过低氧诱导因子(Hypoxia inducible factor, HIF)/低氧反应元件(hypoxia responsive element,HRE)途径。HIF-1是在低氧状态下发挥活性的特异性转录因子,由低氧敏感的α亚单位和结构性的p亚单位组成的异二聚体。HIF-1α在低氧条件下进入细胞核内,与β亚单位组成稳定的HIF-1异二聚体,与HRE结合并启动靶基因转录而发挥生物学效应。持续稳定表达HIF-1α的基因敲除小鼠肾脏纤维化加重,提示HIF-1α是二个新的调节肾脏纤维化的因子。
     传统上认为蛋白尿是慢性肾脏病(Chronic Kideny Disease,CKD)进展的最重要危险因素之一,与CKD患者的生存率及肾存活率都有明确的相关性。持续蛋白尿可导致严重的小管间质损害及肾脏疾病的进展,做为蛋白尿的主要成分——白蛋白对小管间质损害起到决定性作用。肾小球疾病导致尿中增加的白蛋白在肾小管重吸收和分解的过程中消耗大量能量,而由于肾脏本身结构的因素,肾小管所在区域的氧分压又比较低,故临床上低氧张力常同白蛋白过负荷同时存在,因此很自然考虑到白蛋白过负荷与低氧张力在促进肾脏纤维化方面是否存在某些联系。事实上,HIF-1的很多下游基因在白蛋白过负荷诱导的肾小管上皮细胞损伤中发挥重要作用,如CTGF和TIMP-1等。白蛋白诱导肾小管上皮细胞表达CTGF和TIMP-1,进而促进胶原蛋白的合成,并抑制胶原蛋白的降解。
     基于以上背景,本研究假设白蛋白通过HIF/HRE途径启动靶基因转录,发挥致肾小管上皮细胞损伤的作用,设计如下:首先在构建HRE-Luc报告基因质粒的基础上,检测无脂肪酸的牛血清白蛋白(BSA)对大鼠肾小管上皮细胞系(NRK-52E)HIF/HRE转录活性的影响;然后观察BSA对NRK-52E细胞凋亡、前纤维化因子的合成和转分化三个方面的影响,并应用RNAi技术沉默HIF-1α,深入探讨HIF-1α在其中的作用。
     目的应用HRE报告基因质粒检测不同浓度白蛋白孵育不同时间对NRK-52E细胞HIF/HRE转录活性的影响。方法pGL3-Epo-HRE-Luc报告基因质粒转染的NRK-52E细胞在含BSA(0,5,10及20mg/ml)的培养基中孵育24h,48h及72h,双荧光素酶法检测各组的相对荧光强度,Western Blotting法检测相应条件下HIF-1 a的表达。结果小剂量(5mg/ml) BSA孵育24h就能够增加NRK-52E细胞的HIF/HRE转录活性,并且HIF/HRE转录活性随BSA剂量增加和刺激时间延长而增强。BSA(20mg/ml)呈时间依赖性增强NRK-52E细胞HIF-1 a蛋白表达。小结表明BSA增强肾小管上皮细胞HIF/HRE转录活性。
     实验一shRNAHIF-1。转染对BSA过负荷致肾小管上皮细胞凋亡的影响
     目的探讨BSA过负荷对NRK-52E细胞凋亡的影响及HIF-1 a在其中的作用。
     方法NRK-52E细胞在含不同浓度BSA的培养基中孵育不同时间的凋亡情况应用TUNEL和Annexin V-FITC/PI双染流式细胞学技术检测,同时应用Western Blotting方法检测Bax蛋白表达。然后观察应用shRNA沉默HIF-1 a对NRK-52E细胞凋亡的影响。结果抗BSA抗体与dUTP双染细胞免疫荧光技术检测到NRK-52E细胞在含BSA20mg/ml的培养基中发生凋亡细胞的位置与摄取BSA细胞的位置一致;流式细胞学技术检测到低浓度BSA(5mg/ml)对NRK-52E细胞凋亡影响较小,而高浓度(>10mg/ml)长时间(>48h)刺激则显著加重凋亡;Western Blotting方法检测NRK-52E细胞在BSA(20mg/ml,72h)刺激下总Bax蛋白表达无显著改变,而6A7单克隆抗体检测到的活化Bax蛋白表达显著增高。shRNA-Hiflα转染细胞在BSA(20mg/ml,72h)刺激下的凋亡率和活化Bax蛋白表达显著低于空质粒转染的细胞。小结BSA诱导NRK-52E细胞凋亡需要较大浓度和较长刺激时间,HIF/HRE转录活性增加参与了较大剂量BSA诱导的NRK-52E细胞凋亡。
     目的探讨巨噬细胞趋化因子-1(MCP-1)、结缔组织生长因子(CTGF)和组织型金属蛋白酶组织抑制剂-1(TIMP-1)等前纤维化因子在BSA诱导NRK-52E细胞合成细胞外基质中的作用,及HIF-1 a在其中的作用。方法NRK-52E细胞在含不同浓度BSA的培养基中孵育不同时间,层粘连蛋白(FN)、MCP-1、CTGF和TIMP-1的表达应用Western Blotting、RT-PCR和ELISA等方法检测。结果较低浓度BSA(5mg/ml)在较短的刺激时间(24h)即诱导NRK-52E细胞MCP-1蛋白高表达,BSA浓度愈高、刺激时间愈长,MCP-1表达愈高;在BSA10mg/ml刺激72h时,NRK-52E细胞FN,CTGF和TIMP-1的表达显著高于BSA(Omg/ml)组。shRNA-Hifl a转染细胞在BSA(10mg/ml,72h)刺激下FN,MCP-1,CTGF和TIMP-1的表达显著低于空质粒转染的细胞。小结BSA呈剂量和时间依赖性诱导NRK-52E细胞前纤维化因子和细胞外基质蛋白的表达,并且这种作用部分通过HIF/HRE途径实现。
     目的探讨BSA对NRK-52E细胞转分化的影响,及HIF-1α在其中的作用。方法NRK-52E细胞在含不同浓度BSA的培养基中孵育不同时间,细胞间紧密连接(Z0-1)、α平滑肌肌动蛋白(α-SMA)、转化生长因子β1(TGF-β1)的表达应用Western Blotting、RT-PCR和ELISA等方法检测。结果在BSA 10mg/ml刺激72h时,NRK-52E细胞ZO-1表达显著高于BSA(Omg/ml)组,而α-SMA则显著高于BSA(Omg/ml)组,shRNA-Hifl a转染部分逆转BSA的作用。在BSA10mg/ml刺激24h,48h和72h时,NRK-52E细胞TGF-β1蛋白含量都显著高于BSA(Omg/ml)组,shRNA-Hifl a转染细胞TGF-β1蛋白含量则显著低于空质粒转染对照组。小结较小剂量的BSA即可诱导NRK-52E细胞转分化为肌成纤维细胞及TGF-β1高表达,HIF-1α在其中发挥重要作用。
     结论BSA增强NRK-52E细胞HIF/HRE转录活性;BSA诱导NRK-52E细胞凋亡、转分化及前纤维化因子高表达等损伤至少部分是通过激活HIF-1α途径而发挥
It's well been accepted by the majority of nephrologists that renal fibrosis could be accelerated by sustained hypoxia. Hypoxia promoted chronic kidney disease (CKD) through Hypoxia inducible factor/hypoxia responsive element (HIF/HRE) pathway. As a specific transcription factor stimulated by low oxygen tension, HIF-1 was composed by two subunits, the oxygen sensitive (HIF-1 a) and the constitutive (HIF-1β) subunit. Under low oxygen condition, stable HIF-1αsubunit translocated into the nucleus, where it dimerized with HIF-1 P subunit, recognized and combined with HRE, and then triggered a number of target genes transcription. It's proved that HIF-1αmight be a new regulator of renal fibrosis by the evidence that interstitial fibrosis was promoted by sustained and stable expression of HIF-1 a in tubular epithelial cells of gene knock-out mice.
     Early, it's been believed that proteinuria was the key factor accelerating renal fibrosis, and that it had a direct-propotional relationship with CKD patients'kidney survival.Sustained proteinuria induced severe tubulointerstitial damage and disease progression. Albumin was the key protein leading to tubulointerstitial damage as albumin comprises the major portion of proteinuria. Large amount of energy was consumed in the process of increased albumin reabsorption and dissolution in tubular epithelial cells (TEC).Another wise, peritubule low oxygen tension existed because of kidney structure weakness. Thus, low oxygen tension along with albumin overload might have a positive relation with the pathogenesis of renal fibrosis. In fact, many target genes of HIF-1,such as Connective Tissue Growth Factor(CTGF) and Tissue Inhibitor of Metalloproteinases-1 (TIMP-1),played crucial roles in the pathogenesis of tubular damage resulted from albumin overload. CTGF and TIMP-1 overexpression induced by albumin in TEC increased the production of extra cellular matrix (ECM) and decreased their degeneration.
     Based on these evidences, we assumed that it's through the HIF/HRE pathway that bovine serum albumin (BSA) induced TEC damage, then triggered target genes expression and promoted renal fibrosis. Experiment protocol:the effects of fatty acid free bovine serum albumin (BSA) overload on rat NRK-52E cells HIF/HRE transcription activity was detected by a HRE-Luc reporter plasmid. And then, the effects of BSA overload on NRK-52E cells apoptosis, profibrosis factors expression and epithelial-myofibroblast transdifferentiation (EMT) were observed, and the role of HIF-1αin these pathological phenomenons was explored by silence HIF-la with RNAi technique.
     Objective To explore the effects of BSA at varying concentration in varying stimulus duration on HIF/HRE transcription activity of NRK-52E cells with HRE-Luc reporter plasmid. Methods Luciferase activity NRK-52E cells incubated in a medium contained BSA in varying concentration (0,5,10 or 20mg/ml) and stimulus duration (24h,48h or 72h) was detected by dual luciferase detecting system based on HRE-Luc reporter plasmid and HIF-la expression was detected by Western Blotting. Results HIF/HRE transcription activity of NRK-52E cells was increased by BSA at a relatively low concentration, and increased depended on BSA concentration and incubating duration. HIF-la expression was also increased depended on BSA concentration and incubating duration. Conclusions Our study showed that albumin increased the HIF/HRE transcription activity of TEC.
     Objective To explore the role HIF-la in BSA induced NRK-52E cells apoptosis. Methods NRK-52E cells apoptosis induced by BSA at varying concentration (0,5, 10 or 20mg/ml) in varying stimulus duration (24h,48h or 72h) was detected by TUNEL and Annexin V-FITC/PI dual labeling flow cytometry, as well as, Bax expression was detected by Western Blotting. And then, we observed the effects of shRNA-HIF-la transfection on BSA induced NRK-52E cells apoptosis.Results A large proportion of the cells that were positive for albumin staining also displayed positive dUTP-FITC staining of their nuclei.A low concentration of BSA (5mg/ml) had little effects on NRK-52E cells apoptosis, however, BSA at a higher concentration(>10mg/ml) or in a longer duration (>48h) promoted apoptosis. BSA (20mg/ml,72h) had no effects on total Bax expression, but elevated active Bax expression detected by 6A7 monoclone antibody. After incubated in a medium contained BSA at a concentration of 20mg/ml incubated for 72h, apoptosis cell ratio and Bax expression in shRNA-HIF-1αtransfected NRK-52E cells were lower than that in naked plasmid transfected cells. Conclusions Our study showed that a relatively higher concentration and longer incubating duration were needed for BSA induced NRK-52E cells apoptosis, and HIF/HRE transcription pathway took part in BSA induced NRK-52E cells apoptosis.
     Objective Profibrosis factors, such as MCP-1,CTGF and TIMP-1,played crucial role in BSA induced ECM production in NRK-52E cells. This study was designed to explore the role of HIF-1αin BSA induced profibrosis factors expression in NRK-52E cells.Methods Expressions of Fibronectin(FN), MCP-1,CTGF and TIMP-1 in NRK-52E cells induced by BSA in varying concentration and stimulus duration was detected by Western Blotting, RT-PCR or ELISA. Results MCP-1 production in NRK-52E cells was incerased by BSA at a low concentration of 5mg/ml in a short duration of 24h. BSA increased MCP-1 production in NRK-52E cells in a dosage and duration dependent manner. BSA(10mg/ml,72h) induced higher expression of FN, CTGF and TIMP-1 than BSA(0mg/ml,72h).After incubated in a medium contained BSA at a concentration of 10mg/ml incubated for 72h,FN,MCP-1, CTGF and TIMP-1 expression in shRNA-HIF-la transfected NRK-52E cells were lower than that in naked plasmid transfected cells. Conclusions Our study showed that BSA increased these profibrosis factors expression in NRK-52E cells in a dosage and duration dependent manner, and this effect partially depended on HIF/HRE pathway.
     Objective To explore the role HIF-1αin BSA induced NRK-52E cells EMT. Methods Expressions of tight junction protein ZO-1,myofibroblast marker a-smooth muscle actin (a-SMA) and transforming growth factorβ1(TGF-(31) expression in NRK-52E cells induced by BSA in varying concentration and stimulus duration was detected by Western Blotting, RT-PCR or ELISA. Results BSA (10mg/ml,72h) induced a significantly higher expression of ZO-1 and a lower expression of a-SMA than BSA (0mg/ml,72h), and these effects were partially reversed by shRNA-HIF-1αtransfection. BSA (10mg/ml) induced a significantly higher production of TGF-β1 than BSA (Omg/ml) in varying duration (24h,48h or 72h), and these effects were partially reversed by shRNA-HIF-1αtransfection.Conclusions Our study showed that NRK-52E cells EMT and TGF-β1 overexpression were induced by BSA, and HIF-1αplayed a crucial role in this pathological phenomenon. Above all, all these study showed that albumin increased the HIF/HRE transcription activity of TEC, and indicated that HIF-1αat least partially involved in the effects of BSA on NRK-52E cells damage.
引文
1. Astor BC, Hallan SI, Miller ER III, et al. Glomerular filtration rate, albuminuria, and risk of cardiovascular and all-cause mortality in the US population. Am J Epidemiol 2008; 167:1226-1234.
    2. Coresh J, Selvin E, Stevens LA, et al. Prevalence of chronic kidney disease in the United States. JAMA 2007; 298:2038-2047.
    3. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002; 36(2 suppl 1):S1-S266.
    4. Hemmelgarn BR, Manns BJ, Lloyd A, er al. Relation between kidney function, proteinuria, and adverse outcomes.JAMA 2010; 303(5):423-429.
    5. Efstratiadis G, Divani M, Katsioulis E, Vergoulas G.Renal fibrosis. Hippokratia. 2009; 13(4):224-229.
    6. Nangaku M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure.J Am Soc Nephrol 2006; 17(1):17-25.
    7. Nangaku M, Inagi R, Miyata T, Fujita T. Hypoxia and hypoxia-inducible factor in renal disease. Nephron Exp Nephrol 2008;110:e1-e7.
    8. Bohle A, Mackensen-Haen S, Wehrmann M. Significance of postglomerular capillaries in the pathogenesis of chronic renal failure. Kidney Blood Press Res 1996; 19:191-195.
    9. Miyata T, de Strihou CY. Diabetic nephropathy: a disorder of oxygen metabolism? Nat Rev Nephrol. 2010; 6(2):83-95.
    10. Tanaka T, Nangaku M. The role of hypoxia, increased oxygen consumption, and hypoxia-inducible factor-1 alpha in progression of chronic kidney disease. Curr Opin Nephrol Hypertens. 2010; 19(1):43-50.
    11. Neusser MA, Lindenmeyer MT, Moll AG, et al. Human nephrosclerosis triggers a hypoxia-related glomerulopathy. Am J Pathol 2010; 176(2):594-607.
    12. Ivan M, Kondo K, Yang H, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for 02 sensing. Science 2001; 292:464-468.
    13. Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by 02-regulated prolyl hydroxylation. Science 2001; 292:468-472.
    14. Ma D, Lim T, Xu J, et al. Xenon preconditioning protects against renal ischemic-reperfusion injury via HIF-1 alpha activation. J Am Soc Nephrol 2009; 20(4):713-720.
    15. Kimura K, Iwano M, Higgins DF,et al. Stable expression of HIF-1 alpha in tubular epithelial cells promotes interstitial fibrosis. Am J Physiol Renal Physiol 2008; 295(4):F1023-F1029.
    16. Katavetin P, Inagi R, Miyata T, et al. Albumin suppresses vascular endothelial growth factor via alteration of hypoxia-inducible factor/hypoxia-responsive element pathway. Biochem Biophys Res Commun 2008; 367(3):305-310.
    17. Erkan E, DeLeon M, Devarajan P. Albumin overload induces apoptosis in LLC-PK1 cells. Am J Physiol 2001; 280: F1107-F1114.
    18. 刘章锁,王沛,程根阳,李海剑,刘书真,李继昌,刘仲明.罗格列酮对实验性慢性环孢素肾病的作用.中华肾脏病杂志. 2007,23 (4):235-241.
    19. Chau NM, Rogers P, Aherne W, et al. Identification of novel small molecule inhibitors of hypoxia-inducible factor-1 that differentially block hypoxia-inducible factor-1 activity and hypoxia-inducible factor-1 alpha induction in response to hypoxic stress and growth factors.Cancer Res 2005; 65(11):4918-4928.
    20. Lee S, Kim K, Kim HA, et al. Augmentation of erythropoietin enhancer-mediated hypoxia-inducible gene expression by co-transfection of a plasmid encoding hypoxia-inducible factor 1 alpha for ischemic tissue targeting gene therapy.Drug Target 2008; 16(1):43-50.
    21. Fung ML, Li M, Lahiri S.Increased endogenous nitric oxide release by iron chelation and purinergic activation in the rat carotid body. Open Biochem J 2007; 1:1-6.
    22. Lemus-Varela ML, Flores-Soto ME, Cervantes-Munguia R, et al. Expression of HIF-1 alpha, VEGF and EPO in peripheral blood from patients with two cardiac abnormalities associated with hypoxia.Clin Biochem. 2010; 43(3):234-239.
    23. Knowles HJ, Athanasou NA. Acute hypoxia and osteoclast activity: a balance between enhanced resorption and increased apoptosis. J Pathol 2009; 218(2):256-264.
    24. Kroening S, Neubauer E, Wullich B, et al. Characterization of connective tissue growth factor expression in primary cultures of human tubular epithelial cells: modulation by hypoxia. Am J Physiol Renal Physiol 2010; 298(3):F796-806.
    25. Ginouves A, Ilc K, Macias N, et al. PHDs overactivation during chronic hypoxia "desensitizes" HIFalpha and protects cells from necrosis. Proc Natl Acad Sci USA. 2008; 105(12):4745-4750.
    1.Astor BC, Hallan SI, Miller ER Ⅲ, et al.Glomerular filtration rate, albuminuria, and risk of cardiovascular and all-cause mortality in the US population. Am J Epidemiol 2008;167:1226-1234.
    2.Erkan E, DeLeon M, Devarajan P. Albumin overload induces apoptosis in LLC-PK1 cells. Am J Physiol 2001;280:F1107-F1114.
    3.Taniguchi H, Kojima R, Sade H, et.al. Involvement of MCP-1 in tubulointerstitial fibrosis through massive proteinuria in anti-GBM nephritis induced in WKY rats. J Clin Immunol 2007;27(4):409-429.
    4. Liu FY, Li Y, Peng YM, et al.Orcantharidin ameliorates proteinuria, associated tubulointerstitial inflammation and fibrosis in protein overload nephropathy. Am J Nephrol 2008;28(3):465-477.
    5.Stephan JP, Mao W, Filvaroff E, et al.Albumin stimulates the accumulation of extracellular matrix in renal tubular epithelial cells.Am J Nephrol 2004;24(1): 14-19.
    6.Thomas ME, Brunskill NJ, Harris KPG, et al.Proteinuria induces tubular cell turnover:a potential mechanism for tubular atrophy. Kidney Int 1999;55:890-898.
    7.Wasenius VM, Hemmer S,Kettunen E, et al.Hepatocyte growth factor receptor, matrix metalloproteinase-11,tissue inhibitor of metalloproteinase-1,and fibronectin are up-regulated in papillary thyroid carcinoma:a cDNA and tissue microarray study. Clin Cancer Res 2003;9(1):68-75.
    8.Norman JT, Clark IM, Garcia PL. Hypoxia promotes fibrogenesis in human renal fibroblasts. Kidney Int 2000; 58(6):2351-2366.
    9.Cameron JS.The discovery of diabetic nephropathy:from small print to centre stage. J Nephrol 2006;19, Suppl:S75-S87.
    10. Bright R. Cases and observations illustrative of renal disease accompanied with the secretion of albuminous urine. Guys Hosp Rep 1836;1:338-379.
    11.National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease:evaluation, classification, and stratification. Am J Kidney Dis 2002; 36(2 suppl 1):S1-S266.
    12. Bruzzi, I, Benigni A, and Remuzzi G.Role of increased glomerular protein traffic in the progression of renal failure. Kidney Int,1997; 62:S29-S31.
    13.Erkan E, Garcia CD, Patterson LT, et al. Induction of renal tubular cell apoptosis in focal segmental glomerulosclerosis:Roles of proteinuria and Fas-dependent pathways. J Am Soc Nephrol 2005;16:398-407.
    14. Erkan E, Devarajan P and Schwartz GJ. Mitochondria Are the Major Targets in Albumin-Induced Apoptosis in Proximal Tubule cells. J. Am. Soc. Nephrol 2007;18 (4):1199-1208.
    15.Thomas ME, Brunskill NJ, Harris KPG, et al.Proteinuria induces tubular cell turnover:a potential mechanism for tubular atrophy. Kidney Int 1999;55:890-898.
    16. Arici M, Chana R, Lewington A, et al.Stimulation of proximal tubular cell apoptosis by albumin bound fatty acids mediated by peroxisome proliferators activated receptor-gamma. J AmSoc Nephrol 2003;14:17-27.
    17. Iglesias J, Abernethy VE, Wang Z, et al.Albumin is a major serum survival factor for renal tubular cells and macrophages through scavenging of ROS.Am J Physiol 1999;46:F711-F722.
    18.Bleicken S, Classen M, Padmavathi PVL, et al.Molecular Details of Bax Activation, Oligomerization, and Membrane Insertion J. Biol.Chem 2010; 285:6636-6647.
    19.Wolter KG, Hsu Y, Smith CL, et al.Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 1997;139:1281-1292.
    20. Malhotra R, Tyson DW, Rosevear HM, Brosius FC 3rd.Hypoxia-inducible factor-1 alpha is a critical mediator of hypoxia induced apoptosis in cardiac H9c2 and kidney epithelial HK-2 cells.BMC Cardiovasc Disord 2008;30(8):9.
    21.Eddy AA, Giachelli CM.Renal expression of genes that promote interstitial inflammation and fibrosis in rats with protein-overload proteinuria. Kidney Int 1995; 47:1546-1557.
    22.Zoja C, Donadelli R, Colleoni S,et al.Protein overload stimulates RANTES production by proximal tubular cells depending on NF-kappa B activation. Kidney Int 1998;53(6):1608-1615.
    23.Shimizu H, Maruyama S,Yuzawa Y, et al. Anti-monocyte chemoattractant protein-1 gene therapy attenuates renal injury induced by protein-overload proteinuria.J Am Soc Nephrol 2003;14(6):1496-505.
    24. Donadelli R, Abbate M, Zanchi C, et al. Protein traffic activates NF-kappaB gene signaling and promotes MCP-1-dependent interstitial inflammation. Am J Kidney Dis 2000; 36:1226-1241.
    25.Brigstock DR. Strategies for blocking the fibrogenic actions of connective tissue growth factor (CCN2):from pharmacological inhibition in vitro to targeted siRNA therapy in vivo. J Cell Commun Signal 2009;3:5-18.
    26.Gilbert RE, Akdeniz A, Weitz S, et al.Urinary connective tissue growth factor excretion in patients with type 1 diabetes and nephropathy. Diabetes Care 2003; 26(9):2632-2636.
    27.Lee YK, Kim EJ, Lee JE, et al.Hypoxia induces connective tissue growth factor mRNA expression.J Korean Med Sci 2009; 24 Suppl:S176-82.
    28.Hultstrom M, Leh S,Skogstrand T, Iversen BM.Upregulation of tissue inhibitor of metalloproteases-1 (TIMP-1)and procollagen-N-peptidase in hypertension-induced renal damage. Nephrol Dial Transplant 2008;23(3):896-903.
    29.Zhang X, Chen X, Hong Q, et al.TIMP-1 promotes age-related renal fibrosis through upregulating ICAM-1 in human TIMP-1 transgenic mice. J Gerontol A Biol Sci Med Sci (2006) 61:1130-1143.
    30. Norman JT, Clark IM, Garcia PL.Hypoxia promotes fibrogenesis in human renal fibroblasts.Kidney Int 2000; 58(6):2351-2366.
    31.Qi W, Poronnik P, Young B, et al.Human cortical fibroblast responses to high glucose and hypoxia. Nephron Physiol 2004;(4):p121-p129.
    32.Abbate M, Zoja C, Rottoli D, et al. Proximal tubular cells promote fibrogenesis by TGF-betal-mediated induction of peritubular myofibroblasts.Kidney Int 2002; 61:2066-2077.
    33.Hills CE,Squires PE.TGF-betal-induced epithelial-to-mesenchymal transition and therapeutic intervention in diabetic nephropathy.Am J Nephrol 2010;31(1): 68-74.
    34. Haase VH.Pathophysiological Consequences of HIF Activation:HIF as a modulator of fibrosis.Ann NY Acad Sci 2009;1177:57-65.
    35.Manotham K, Tanaka T, Matsumoto M, et al. Transdifferentiation of cultured tubular cells induced by hypoxia.Kidney Int 2004;65(3):871-880.
    36.de Laplanche E, Gouget K, Cleris G, et al.Physiological oxygenation status is required for fully differentiated phenotype in kidney cortex proximal tubules.Am J Physiol Renal Physiol 2006; 291(4):F750-F760.
    37.Nangaku M.Chronic hypoxia and tubulointerstitial injury:a final common pathway to end-stage renal failure. J Am Soc Nephrol 2006;17(1):17-25.
    38.Kroening S,Neubauer E, Wullich B,et al.Characterization of connective tissue growth factor expression in primary cultures of human tubular epithelial cells: modulation by hypoxia. Am J Physiol Renal Physiol 2010; 298(3):F796-F806.
    1.Warnecke C,Zaborowska Z, Kurreck J, et al.Differentiating the functional role of hypoxia-inducible factor (HIF)-1 alpha and HIF-2alpha (EPAS-1)by the use of RNA interference:erythropoietin is a HIF-2alpha target gene in Hep3B and Kelly cells.FASEB J 2004;18:1462-4.
    2.Ivan M, Kondo K, Yang H, et al.HIFalpha targeted for VHL-mediated destruction by proline hydroxylation:implications for 02 sensing. Science 2001;292:464-8.
    3.Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by 02-regulated prolyl hydroxylation. Science 2001;292:468-72.
    4. Mahon PC, Hirota K, Semenza GL. FIH-1:a novel protein that interacts with HIF-1 alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 2001;15:2675-86.
    5.Hewitson KS,McNeill LA, Riordan MV, et al.Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J Biol Chem 2002;277:26351-5.
    6.Zhong H, Chiles K, Feldser D, et al.Modulation of hypoxia-inducible factor 1 alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 2000;60:1541-5.
    7.Kojima I, Tanaka T, Inagi R, et al.Metallothionein is upregulated by hypoxia and stabilizes hypoxia-inducible factor in the kidney. Kidney Int 2009;75:268-77.
    8.Metzen E, Berchner-Pfannschmidt U, Stengel P, et al.Intracellular localisation of human HIF-1 alpha hydroxylases:implications for oxygen sensing. J Cell Sci 2003;116:1319-26.
    9.O'Rourke JF, Pugh CW, Bartlett SM, Ratcliffe PJ.Identification of hypoxically inducible mRNAs in HeLa cells using differential-display PCR. Role of hypoxia-inducible factor-1.Eur J Biochem 1996;241:403-10.
    10. Eckhart AD,Yang N, Xin X, Faber JE. Characterization of the alphalB-adrenergic receptor gene promoter region and hypoxia regulatory elements in vascular smooth muscle. Proc Natl Acad Sci U S A 1997;94:9487-92.
    11.Cormier-Regard S, Nguyen SV, Claycomb WC.Adrenomedullin gene expression is developmentally regulated and induced by hypoxia in rat ventricular cardiac myocytes. J Biol Chem 1998;273:17787-92.
    12.Wykoff CC, Pugh CW, Maxwell PH, Harris AL, Ratcliffe PJ. Identification of novel hypoxia dependent and independent target genes of the von Hippel-Lindau (VHL) tumour suppressor by mRNA differential expression profiling. Oncogene 2000;19:6297-305.
    13.Chun YS,Hyun JY, Kwak YG, et al.Hypoxic activation of the atrial natriuretic peptide gene promoter through direct and indirect actions of hypoxia-inducible factor-1.Biochem J 2003;370:149-57.
    14. Krishnamachary B,Berg-Dixon S,Kelly B, et al.Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1.Cancer Res 2003;63:1138-43.
    15.Semenza GL, Roth PH, Fang HM, Wang GL. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1.J Biol Chem 1994;269:23757-63.
    16. Yamakawa M,Liu LX,Date T, et al.Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors.Circ Res 2003;93:664-73.
    17.Kelly BD, Hackett SF, Hirota K, et al.Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res 2003;93:1074-81.
    18.Wykoff CC, Beasley NJ, Watson PH, et al.Hypoxia-inducible expression of tumor-associated carbonic anhydrases.Cancer Res 2000;60:7075-83.
    19. Nishiyama J, Yi X, Venkatachalam MA, Dong Z. cDNA cloning and promoter analysis of rat caspase-9.Biochem J 2001;360:49-56.
    20. Kong T,Eltzschig HK, Karhausen J, Colgan SP, Shelley CS.Leukocyte adhesion during hypoxia is mediated by HIF-1-dependent induction of beta2 integrin gene expression. Proc Natl Acad Sci U S A 2004;101:10440-5.
    21.Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 2003;425:307-11.
    22.Bhattacharya S,Michels CL, Leung MK, Arany ZP, Kung AL, Livingston DM. Functional role of p35srj,a novel p300/CBP binding protein, during transactivation by HIF-1.Genes Dev 1999;13:64-75.
    23.Mukhopadhyay CK, Mazumder B, Fox PL. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency. J Biol Chem 2000;275:21048-54.
    24.Takahashi Y, Takahashi S, Shiga Y, Yoshimi T, Miura T. Hypoxicinduction of prolyl 4-hydroxylase alpha (I) in cultured cells.J Biol Chem 2000;275:14139-46.
    25.Higgins DF, Biju MP, Akai Y, Wutz A, Johnson RS, Haase VH. Hypoxic induction of Ctgf is directly mediated by Hif-1.Am J Physiol Renal Physiol 2004;287:F1223-32.
    26.Goda N, Ryan HE, Khadivi B,McNulty W, Rickert RC, Johnson RS. Hypoxia-inducible factor 1 alpha is essential for cell cycle arrest during hypoxia. Mol Cell Biol 2003;23:359-69.
    27.Schipani E, Ryan HE, Didrickson S,Kobayashi T, Knight M, Johnson RS. Hypoxia in cartilage:HIF-1 alpha is essential for chondrocyte growth arrest and survival.Genes Dev 2001;15:2865-76.
    28.Bazan NG, Lukiw WJ.Cyclooxygenase-2 and presenilin-1 gene expression induced by interleukin-lbeta and amyloid beta 42 peptide is potentiated by hypoxia in primary human neural cells.J Biol Chem 2002;277:30359-67.
    29.Hu J, Discher DJ, Bishopric NH, Webster KA.Hypoxia regulates expression of the endothelin-1 gene through a proximal hypoxia-inducible factor-1 binding site on the antisense strand. Biochem Biophys Res Commun 1998;245:894-9.
    30. Semenza GL, Jiang BH, Leung SW, et al.Hypoxia response elements in the aldolase A, enolase 1,and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1.J Biol Chem 1996;271:32529-37.
    31.Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 1992;12:5447-54.
    32.Oikawa M, Abe M, Kurosawa H, Hida W, Shirato K, Sato Y. Hypoxia induces transcription factor ETS-1 via the activity of hypoxia-inducible factor-1. Biochem Biophys Res Commun 2001;289:39-43.
    33.Yoon DY, Buchler P, Saarikoski ST, Hines OJ, Reber HA, Hankinson O. Identification of genes differentially induced by hypoxia in pancreatic cancer cells. Biochem Biophys Res Commun 2001;288:882-6.
    34. Chen C, Pore N, Behrooz A, Ismail-Beigi F, Maity A. Regulation of glutl mRNA by hypoxia-inducible factor-1.Interaction between H-ras and hypoxia. J Biol Chem 2001;276:9519-25.
    35.Graven KK, Yu Q, Pan D, Roncarati JS,Farber HW. Identification of an oxygen responsive enhancer element in the glyceraldehyde-3-phosphate dehydrogenase gene. Biochim Biophys Acta 1999,1447:208-18.
    36. Lee PJ, Jiang BH, Chin BY, et al.Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J Biol Chem 1997;272:5375-81.
    37. Mathupala SP, Rempel A, Pedersen PL. Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions.J Biol Chem 2001;276:43407-12.
    38.Lee MJ, Kim JY, Suk K, Park JH. Identification of the hypoxia-inducible factor 1 alpha-responsive HGTD-P gene as a mediator in the mitochondrial apoptotic pathway. Mol Cell Biol 2004;24:3918-27.
    39.del Peso L, Castellanos MC, Temes E, et al.The von Hippel Lindau/hypoxia-inducible factor (HIF) pathway regulates the transcription of the HIF-proline hydroxylase genes in response to low oxygen. J Biol Chem 2003;278:48690-5.
    40. Melillo G, Taylor LS,Brooks A, Musso T, Cox GW, Varesio L. Functional requirement of the hypoxia-responsive element in the activation of the inducible nitric oxide synthase promoter by the iron chelator desferrioxamine. J Biol Chem 1997;272:12236-43.
    41.Lofstedt T, Jogi A, Sigvardsson M, et al.Induction of ID2 expression by hypoxia-inducible factor-1:a role in dedifferentiation of hypoxic neuroblastoma cells.J Biol Chem 2004;279:39223-31.
    42.Feldser D, Agani F, Iyer NV, Pak B,Ferreira G, Semenza GL. Reciprocal positive regulation of hypoxia-inducible factor 1 alpha and insulin-like growth factor 2.Cancer Res 1999;59:3915-8.
    43.Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1)gene. Cancer Res 2002;62:3387-94.
    44.Bruick RK. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci U S A 2000;97:9082-7.
    45.Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH, Harris AL. HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res 2001;61:6669-73.
    46.Synnestvedt K, Furuta GT, Comerford KM, et al.Ecto-5'-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clin Invest 2002;110:993-1002.
    47.Narravula S,Colgan SP. Hypoxia-inducible factor 1-mediated inhibition of peroxisome proliferator-activated receptor alpha expression during hypoxia. J Immunol 2001;166:7543-8.
    48.Kietzmann T, Roth U, Jungermann K. Induction of the plasminogen activator inhibitor-1 gene expression by mild hypoxia via a hypoxia response element binding the hypoxia-inducible factor-1 in rat hepatocytes. Blood 1999;94:4177-85.
    49.Rolfs A, Kvietikova I, Gassmann M, Wenger RH.Oxygen-regulated transferrin expression is mediated by hypoxia-inducible factor-1.J Biol Chem 1997;272:20055-62.
    50. Lok CN, Ponka P. Identification of a hypoxia response element in the transferrin receptor gene. J Biol Chem 1999;274:24147-52.
    51.Scheid A, Wenger RH, Schaffer L, et al.Physiologically low oxygen concentrations in fetal skin regulate hypoxia-inducible factor 1 and transforming growth factor-beta3.FASEB J 2002;16:411-3.
    52. Gess B, Hofbauer KH, Deutzmann R, Kurtz A. Hypoxia up-regulates triosephosphate isomerase expression via a HIF-dependent pathway. Pflugers Arch 2004;448:175-80.
    53.Norris ML, Millhorn DE. Hypoxia-induced protein binding to O2-responsive sequences on the tyrosine hydroxylase gene. J Biol Chem 1995;270:23774-9.
    54. Estes SD,Stoler DL,Anderson GR. Anoxic induction of a sarcoma virus-related VL30 retrotransposon is mediated by a cis-acting element which binds hypoxia-inducible factor 1 and an anoxia-inducible factor. J Virol 1995;69:6335-41.
    55.Liu Y, Cox SR, Morita T, Kourembanas S.Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5'enhancer. Circ Res 1995;77:638-43.
    56. Wagner KD, Wagner N, Wellmann S,et al.Oxygen-regulated expression of the Wilms1 tumor suppressor Wtl involves hypoxia-inducible factor-1 (HIF-1). FASEB J 2003;17:1364-6.
    57. Rosenberger C, Mandriota S,Jurgensen JS,et al. Expression of hypoxia-inducible factor-1 alpha and-2alpha in hypoxic and ischemic rat kidneys. J Am Soc Nephrol 2002;13:1721-32.
    58.Rosenberger C, Pratschke J, Rudolph B, et al.Immunohistochemical detection of hypoxia-inducible factor-1 alpha in human renal allograft biopsies.J Am Soc Nephrol 2007;18:343-51.
    59.Bernhardt WM, Schmitt R, Rosenberger C, et al.Expression of hypoxia-inducible transcription factors in developing human and rat kidneys. Kidney Int 2006;69:114-22.
    60.Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular 02 tension. Proc Natl Acad Sci U S A 1995;92:5510-4.
    61.Beck I, Ramirez S,Weinmann R, Caro J.Enhancer element at the 3'-flanking region controls transcriptional response to hypoxia in the human erythropoietin gene. J Biol Chem 1991;266:15563-6.
    62. Plotkin MD, Goligorsky MS.Mesenchymal cells from adult kidney support angiogenesis and differentiate into multiple interstitial cell types including erythropoietin-producing fibroblasts.Am J Physiol Renal Physiol 2006;291:F902-12.
    63.da Silva JL, Schwartzman ML, Goodman A, Levere RD,Abraham NG. Localization of erythropoietin mRNA in the rat kidney by polymerase chain reaction. J Cell Biochem 1994;54:239-46.
    64.Scortegagna M, Ding K, Zhang Q, et al.HIF-2alpha regulates murine hematopoietic development in an erythropoietin-dependent manner. Blood 2005;105:3133-40.
    65.Ratcliffe PJ.HIF-1 and HIF-2:working alone or together in hypoxia? J Clin Invest 2007;117:862-5.
    66. Nangaku M, Inagi R, Miyata T, Fujita T. Hypoxia and hypoxia-inducible factor in renal disease. Nephron Exp Nephrol 2008;110:e1-7.
    67.Bohle A, Mackensen-Haen S,Wehrmann M. Significance of postglomerular capillaries in the pathogenesis of chronic renal failure. Kidney Blood Press Res 1996;19:191-5.
    68.Fine LG, Bandyopadhay D, Norman JT. Is there a common mechanism for the progression of different types of renal diseases other than proteinuria? Towards the unifying theme of chronic hypoxia. Kidney Int Suppl 2000;75:S22-6.
    69.Matsumoto M, Makino Y, Tanaka T, et al.Induction of renoprotective gene expression by cobalt ameliorates ischemic injury of the kidney in rats.J Am Soc Nephrol 2003;14:1825-32.
    70. Tanaka T, Kojima I, Ohse T, et al.Hypoxia-inducible factor modulates tubular cell survival in cisplatin nephrotoxicity. Am J Physiol Renal Physiol 2005;289:F1123-33.
    71.Bernhardt WM, Campean V, Kany S,et al.Preconditional activation of hypoxia-inducible factors ameliorates ischemic acute renal failure. J Am Soc Nephrol 2006;17:1970-8.
    72.Ma D, Lim T, Xu J, et al.Xenon preconditioning protects against renal ischemic-reperfusion injury via HIF-1 alpha activation. J Am Soc Nephrol 2009;20:713-20.
    73.Hill P, Shukla D, Tran MQ et al.Inhibition of hypoxia inducible factor hydroxylases protects against renal ischemia-reperfusion injury. J Am Soc Nephrol 2008;19:39-46.
    74.Kojima I, Tanaka T, Inagi R, et al.Protective role of hypoxia-inducible factor-2alpha against ischemic damage and oxidative stress in the kidney. J Am Soc Nephrol 2007;18:1218-26.
    75.Kolyada AY, Tighiouart H, Perianayagam MC, Liangos O, Madias NE, Jaber BL. A genetic variant of hypoxia-inducible factor-1 alpha is associated with adverse outcomes in acute kidney injury. Kidney Int 2009;75:1322-9.
    76. Matsumoto M, Tanaka T, Yamamoto T, et al.Hypoperfusion of peritubular capillaries induces chronic hypoxia before progression of tubulointerstitial injury in a progressive model of rat glomerulonephritis. J Am Soc Nephrol 2004;15:1574-81.
    77.Tanaka T, Matsumoto M, Inagi R, et al.Induction of protective genes by cobalt ameliorates tubulointerstitial injury in the progressive Thyl nephritis. Kidney Int 2005;68:2714-25.
    78.Ryan HE, Lo J, Johnson RS.HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J 1998;17:3005-15.
    79.Kudo Y, Kakinuma Y, Mori Y, et al.Hypoxia-inducible factor-1 alpha is involved in the attenuation of experimentally induced rat glomerulonephritis. Nephron Exp Nephrol 2005;100:e95-103.
    80. Eto N, Wada T, Inagi R, et al.Podocyte protection by darbepoetin:preservation of the cytoskeleton and nephrin expression. Kidney Int 2007;72:455-63.
    81.Manotham K, Tanaka T, Matsumoto M, et al.Evidence of tubular hypoxia in the early phase in the remnant kidney model.J Am Soc Nephrol 2004;15:1277-88.
    82.Deng A, Tang T, Singh P, et al.Regulation of oxygen utilization by angiotensin II in chronic kidney disease. Kidney Int 2009;75:197-204.
    83.Tanaka T, Kojima I, Ohse T, et al.Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model.Lab Invest 2005;85:1292-307.
    84. Kang DH, Kanellis J, Hugo C, et al.Role of the microvascular endothelium in progressive renal disease.J Am Soc Nephrol 2002;13:806-16.
    85.Elson DA, Thurston G, Huang LE, et al. Induction of hypervascularity without leakage or inflammation in transgenic mice overexpressing hypoxia-inducible factor-1 alpha. Genes Dev 2001;15:2520-32.
    86. Rajagopalan S, Olin J, Deitcher S,et al.Use of a constitutively active hypoxia-inducible factor-1 alpha transgene as a therapeutic strategy in no-option critical limb ischemia patients:phase I dose-escalation experience. Circulation 2007;115:1234-43.
    87. Watanabe D, Suzuma K, Matsui S, et al. Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N Engl J Med 2005;353:782-92.
    88.Bahlmann FH, Song R, Boehm SM, et al.Low-dose therapy with the long-acting erythropoietin analogue darbepoetin alpha persistently activates endothelial Akt and attenuates progressive organ failure. Circulation 2004;110:1006-12.
    89.Ries M, Basseau F, Tyndal B,et al.Renal diffusion and BOLD MRI in experimental diabetic nephropathy. Blood oxygen level-dependent. J Magn Reson Imaging 2003;17:104-13.
    90.Friederich M, Fasching A, Hansell P, Nordquist L, Palm F. Diabetes-induced up-regulation of uncoupling protein-2 results in increased mitochondrial uncoupling in kidney proximal tubular cells.Biochim Biophys Acta 2008;1777:935-40.
    91.Rosenberger C, Khamaisi M, Abassi Z, et al.Adaptation to hypoxia in the diabetic rat kidney. Kidney Int 2008;73:34-42.
    92.Katavetin P, Miyata T, Inagi R, et al.High glucose blunts vascular endothelial growth factor response to hypoxia via the oxidative stress-regulated hypoxia-inducible factor/hypoxia-responsible element pathway. J Am Soc Nephrol 2006;17:1405-13.
    93.Ohtomo S,Nangaku M, Izuhara Y, Takizawa S,Strihou CY, Miyata T. Cobalt ameliorates renal injury in an obese, hypertensive type 2 diabetes rat model. Nephrol Dial Transplant 2008;23:1166-72.
    94. Higgins DF, Kimura K, Bernhardt WM, et al.Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest 2007;117:3810-20.
    95.Manotham K, Tanaka T, Matsumoto M, et al.Transdifferentiation of cultured tubular cells induced by hypoxia. Kidney Int 2004;65:871-80.
    96.Harten SK, Shukla D, Barod R, et al. Regulation of renal epithelial tight junctions by the von Hippel-Lindau tumor suppressor gene involves occludin and claudin 1 and is independent of E-cadherin. Mol Biol Cell 2009;20:1089-101.
    97. Esteban MA, Tran MG, Harten SK, et al.Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Res 2006;66:3567-75.
    98.Sun S,Ning X, Zhang Y, et al.Hypoxia-inducible factor-1 alpha induces Twist expression in tubular epithelial cells subjected to hypoxia, leading to epithelial-to-mesenchymal transition. Kidney Int 2009;75:1278-87.
    99.Erler JT, Bennewith KL, Nicolau M, et al.Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 2006;440:1222-6.
    100. Higgins DF, Biju MP, Akai Y, Wutz A, Johnson RS,Haase VH.Hypoxic induction of Ctgf is directly mediated by Hif-1.Am J Physiol Renal Physiol 2004;287:F1223-32.
    101.Kroening S,Neubauer E, Wessel J, Wiesener M, Goppelt-Struebe M. Hypoxia interferes with connective tissue growth factor (CTGF) gene expression in human proximal tubular cell lines. Nephrol Dial Transplant 2009;24:3319-25.
    102.Bernhardt WM, Wiesener MS,Weidemann A, et al.Involvement of hypoxia-inducible transcription factors in polycystic kidney disease. Am J Pathol 2007;170:830-42.
    103.Esteban MA, Harten SK, Tran MG, Maxwell PH. Formation of primary cilia in the renal epithelium is regulated by the von Hippel-Lindau tumor suppressor protein. J Am Soc Nephrol 2006;17:1801-6.
    104. Chen B,Cepko CL. HDAC4 regulates neuronal survival in normal and diseased retinas. Science 2009;323:256-9.
    105.Dioum EM, Chen R, Alexander MS,et al. Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1.Science 2009;324:1289-93.
    106.Minamishima YA, Moslehi J, Bardeesy N, Cullen D, Bronson RT, Kaelin WG, Jr. Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure. Blood 2008;111:3236-44.
    107.Percy MJ, Zhao Q, Flores A, et al. A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostasis.Proc Natl Acad Sci U S A 2006;103:654-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700