聚变堆第一壁材料氢行为和力学性质的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核聚变能,是未来解决能源危机的终极方案。核聚变反应堆中复杂的工况环境,对材料提出了苛刻的要求。第一壁结构材料的辐照损伤是目前核聚变研究的一个重要方面。本论文简单地讨论了氢原子在第一壁材料中的行为,研究了铁磁体心立方Fe-Cr二元合金随着铬元素含量不同而引起的力学性质与平均磁矩的变化,针对低活化钢中重要的少量元素钨,系统地研究了铬、钨元素对Fe-Cr-W三元合金力学性质的影响。我们希望我们的计算结果对理解钨材料中的氢原子行为和低活化钢组分的设计能起到一定的指导作用。
     钨基材料已经被应用于国际热核聚变实验反应堆(ITER)中的第一壁材料设计中。氢原子等杂质将会通过反应等离子体的轰击而引入,对于面向等离子体钨基壁材料的性能和稳定性有很重要的影响。采用第一性原理密度泛函理论和平面波赝势技术,我们研究了氢原子在完美体心立方钨晶格中的行为。我们比较了氢原子在不同吸附间隙位的结合能以确定氢原子在钨晶格中的最佳吸附位为四面体间隙位。我们还计算了氢原子在钨晶格中扩散的迁移势垒,发现最优的迁移路线为四面体间隙位一对角线间隙位一四面体间隙位。我们同时还研究了两个孤立氢原子在钨晶格中的相互作用,我们的研究对氢原子的扩散以及钨基材料中氢泡的形成提供了一定的理论依据。
     由于优良的抗辐照肿胀、抗辐照脆性性能和很好的热力学性质,低活化铁素体/马氏体钢被认为是热核聚变实验反应堆的重要结构材料候选材料。低活化马氏体/铁素体钢主要以铁磁体一心立方Fe-Cr二元合金(其中Cr的质量含量为7-12%)为基础,同时含有钨、钒等微量元素。大量的实验、理论研究表明, Cr元素对于低活化钢力学性能、抗辐照效应有着重要的影响。由于低活化钢是聚变反应堆的主要结构材料,其力学性质对于聚变反应堆的安全而言非常重要,因此研究Cr元素对低活化钢力学性质的影响也具有重要的意义。论文以Fe-Cr二元合金(Cr的原子个数比为0-15.6%)体系的随机固溶体模型为研究对象,采用第一性原理方法研究了Cr元素对Fe-Cr二元合金体系力学性能的影响。计算结果表明,Fe-Cr二元合金的晶格常数均大于铁磁体心立方纯铁晶体的晶格常数;Fe-Cr二元合金的杨氏模量、剪切模量随着Cr元素含量的增加呈非单调增加的趋势。不同组分的Fe-Cr二元合金均表现为展性行为。Fe-Cr二元合金的平均原子磁矩随Cr元素含量的增加呈线性下降的趋势。
     低活化铁素体/马氏体钢的最丰要成分为Fe-Cr-W三元合金。采用基于密度泛函理论的精确松饼势轨道(EMTO)方法,结合相干势近似(CPA)和全电荷密度(FCD)技术,我们研究了一系列随机固溶体模型Fe-Cr-W三元合金的力学性能随组分变化的情况。计算了体模量B、剪切模量G、杨氏模量E、体模量与剪切模量比值(B/G)和泊松比(v)与三组元含量的相应关系。整体而言,Fe-Cr-W三元合金体系的弹性模量随着Cr元素的增加而增大,W元素对合金体系的弹性模量变化影响不大。
Nuclear fusion energy is the future ultimate solution to the energy crisis. Nuclear fusion reactor works with the complicated environment, and that put forward stringent requirements for materials in fusion reactors. The irradiation effects of the first wall structural materials are important for the research of nuclear fusion. In this thesis, We briefly discussed the irradiation effects of hydrogen atoms in the first wall materials, investigated the changes in the mechanical properties and average magnetic moment caused by different chromium content in the ferromagnetic BCC Fe-Cr binary alloys. Considering the important elements tungsten with small amount in low activation steels, a systematic study of effect of chromium and tungsten element to mechanical properties of Fe-Cr-W ternary alloy was carried out. We hope these theoretical results help us to understand the irradiation effects in the relevant materials, and the calculations of the mechanical properties of steels are helpful for determining suitable compositions for the low activation steels.
     Tungsten-based materials are used as the first wall materials in ITER. Hydrogen impurities were introduced via bombarding with the reaction plasma, which are important for the behavior and stability of the tungsten wall. Using the first-principles density functional theory and planewave pseudopotential technique, we have simulated the behaviors of hydrogen atoms inside the perfect tungsten bcc lattice. The binding energies for different interstitial sites were compared to determine the optimal trapping site for the hydrogen atom inside the tungsten host lattice. The diffusion barriers for hydrogen atom migration between nearby trapping sites and the interaction between two interstitial hydrogen atoms were also calculated. The implication of our theoretical results on the hydrogen diffusion and accumulation behavior was also discussed.
     Because of the excellent resistance to swelling and embrittlement under irradiation and good thermal and mechanical properties, reduced activation ferritic/martensitic steels (RAFM steels) are considered as the primary structural materials of future fusion reactors. RAFM steels are composed of the body centered cubic (BCC) Fe-Cr alloys (7-12 wt.% Cr) with some trace elements (such as, W, V, etc.). Amount of experimental and theoretical results indicate that the Cr element play a significantly role in the mechanical properties and irradiation effect of RAFM steels. As the primary structure materials in ITER fusion reactors, the mechanical properties of RAFM steels are important to the safety. Thus, it is necessary to investigate the fundemental mechanical properties of Fe-Cr alloys with different Cr content. Modelling Fe-Cr alloys as a random solid solution model, we employed the first-principles method to inverstigate the effect of Cr element to the lattice constants and the elastic properties of ferromagnetic bcc Fe1-xCrx (0=x=0.156) alloys. We found that the lattice parameters of Fe-Cr alloys are all larger than that of BCC pure Fe solid. The Young's modulus and shear modulus of Fe-Cr alloys rise non-monotonically with increasing Cr composition. All Fe-Cr alloys with diferent compositions exhibit the ductile behavior.The average magnetic moment per atom of Fe-Cr alloys decrease linearly with increasing Cr concentration.
     The basic composition of RAFM steels is Fe-Cr-W alloy. Using the exact muffin-tin orbitals (EMTO) method, combined with coherent potential approximation (CPA) and full charge density (FCD) technology, we investigated composition dependence of mechanical properties for Fe-Cr-W random alloys within the composition range of 7.8-10.0 wt.% of Cr and 1.0-2.0 wt.% of W. Bulk modulus B, shear modulus G, Young's modulus E, BIG ratio, and Poisson ratio v were discussed as functions of ternary composition. On the whole, the elastic moduli of Fe-Cr-W alloys increase with chromium content; the influence of tungsten is relatively weak.
引文
[1]邱励俭.聚变能及其应用[M].北京:科学出版社,2007.
    [2]许增裕.聚变材料研究的现状和展望[J].原子能科学技术,2003,37:106-110.
    [3]DINGH-C, HUANG J-H. Progress and Prospect of Controlled Nuclear Fusion Research [J]. Chinese Journal of Nature,2006,28:143.
    [4]The ITER Story [U]. http://www.iter.org/proj/iterhistory
    [5]SHIMOMURA Y. ITER overview [J]. Nuclear Fusion 1999,35:1295.
    [6]李晓庆.聚变堆结构材料力学性能及缺陷效应[D].大连:大连理工大学,2011.
    [7]ITER in France [U]. http://www.iter.org/org/iterinfrance
    [8]KALININ G, BARABASH V, CARDELLA A, et al. Assessment and selection of materials for ITER in-vessel components [J]. Journal of Nuclear.Materials,2000,283-287: 10-19.
    [9]SAITO S, KIKUCHI K, HAMAGUCHI D, et al. Proton irradiation effects on tensile and bend-fatigue properties of welded F82H specimens [J]. Journal of Nuclear Materials,2010,398:49-58.
    [10]FENG K M, PAN C H, ZHANG G S, et al. Progress on solid breeder TBM at SWIP [J]. Fusion Eng Des,2010,85:2132-2140.
    [11]NORAJITRA P, ABDEL-KHALIK S I, GIANCARLI L M, et al. Divertor conceptual designs for a fusion power plant [J]. Fusion Eng Des,2008,83:893-902.
    [12]EL-GUEBALY L, MASSAUT V, TOBITA K, et al. Goals, challenges, and successes of managing fusion activated materials [J]. Fusion Eng Des,2008,83:928-935.
    [13]AYMAR R, BARABASCHI P, SHIMOMURA Y, et al. The ITER design [J]. Plasma Physics and Controlled Fusion,2002,44:519-565.
    [14]LEE E H, BYUN T S, HUNN J D, et al. Origin of hardening and deformation mechanisms in irradiated 316 LN austenitic stainless steel [J]. Journal of Nuclear Materials, 2001,296:183-191.
    [15]LEE E H, HUNN J D, BYUN T S, et al. Effects of helium on radiation-induced defect microstructure in austenitic stainless steel [J]. Journal of Nuclear Materials, 2000,280:18-24.
    [16]KRSJAK V, EGGER W, PETRISKA M, et al. Helium implanted fecr alloys studied by positron annihilation lifetime technique [J]. Problems of Atomic Science and Technology,2009,4:109-115.
    [17]WANG P H, NOBUTA Y, HINO T, et al. Helium Retention and Desorption Behaviour of Reduced Activation Ferritic/Martenstic Steel [J]. Plasma Science and Technology, 2009,11:225-230.
    [18]王佩玻,李玉璞.金属中氦的特性及不诱钢[J].核科学与工程,1989,9:119-130.
    [19]KALININ G, GAUSTER W, MATERA R, et al. Structural materials for ITER in-vessel component design [J]. Journal of Nuclear Materials,1996,233:9-16.
    [20]BALUC N, ABE K, BOUTARD J L, et al. Status of R&D activities on materials for fusion power reactors [J]. Nuclear Fusion,2002,47:S696-S717.
    [21]SHIMADAM, PITTS R A. Wall conditioning on ITER [J]. Journal of Nuclear Materials, 2010, Article in Press, Corrected Proof
    [22]IOKI K, BARABASH V, CARDELLA A, et al. Design and material selection for ITER first wall/blanket, divertor and vacuum vessel [J]. Journal of Nuclear Materials, 1998,258:74-84.
    [23]NEU R, DUX R, KALLENBACH A, et al. Tungsten:an option for divertor and main chamber plasma facing components in future fusion devices [J]. Nuclear Fusion, 2004,45:209.
    [24]XU Q, YOSHIDA N, YOSHIIE T. Accumulation of helium in tungsten irradiated by helium and neutrons [J]. Journal of Nuclear Materials,2007,367:806-811.
    [25]TOKUNAGA K, FUJIWARA T, EZATO K, et al. Effects of helium implantation on damage during pulsed high heat loading of tungsten [J]. Journal of Nuclear Materials, 2007,367:812-816.
    [26]LEE H, HAASZ A, DAVIS J, et al. Hydrogen and helium trapping in tungsten under simultaneous irradiations [J]. Journal of Nuclear Materials,2007,363:898-903.
    [27]LEE H, HAASZ A, DAVIS J, et al. Hydrogen and helium trapping in tungsten under single and sequential irradiations [J]. Journal of Nuclear Materials,2007,360: 196-207.
    [28]KATAYAMA K, IMAOKA K, OKAMURA T, et al. Helium and hydrogen trapping in tungsten deposition layers formed by helium plasma sputtering [J]. Fusion Eng Des,2007, 82:1645-1650.
    [29]DEBELLE A, BARTHE M, SAUVAGE T, et al. Helium behaviour and vacancy defect distribution in helium implanted tungsten [J]. Journal of Nuclear Materials,2007, 362:181-188.
    [30]YE M. Effects of Low Energy and High Flux Helium/Hydrogen Plasma Irradiation on Tungsten as Plasma Facing Material [J]. Plasma Science and Technology,2005,7: 2828.
    [31]TRASKELIN P, JUSLIN N, ERHART P, et al. Molecular dynamics simulations of hydrogen bombardment of tungsten carbide surfaces [J]. Phys Rev B,2007,75:174113.
    [32]HENRIKSSON K 0 E, NORDLUND K, KRASHENINNIKOV A, et al. Difference in formation of hydrogen and helium clusters in tungsten [J]. Applied Physics Letters,2005, 87:163113.
    [33]VENHAUS T, CAUSEY R, DOERNER R, et al. Behavior of tungsten exposed to high fluences of low energy hydrogen isotopes [J]. Journal of Nuclear Materials,2001, 290:505-508.
    [34]FRANZEN P, GARCIA-ROSALES C, PLANK H, et al. Hydrogen trapping in and release from tungsten:Modeling and comparison with graphite with regard to its use as fusion reactor material [J]. Journal of Nuclear Materials,1997,241:1082-1086.
    [35]MIURA H, KUROKI Y, YASUI K, et al. Evaluation of hydrogen atom density generated on a tungsten mesh surface [J]. Thin Solid Films,2008,516:503-505.
    [36]ARKHIPOV I, KANASHENKO S, SHARAPOV V, et al. Deuterium trapping in ion-damaged tungsten single crystal [J]. Journal of Nuclear Materials,2007,363:1168-1172.
    [37]YE M, KANEHARA H, FUKUTA S, et al. Blister formation on tungsten surface under low energy and high flux hydrogen plasma irradiation in NAGDIS-I [J]. Journal of Nuclear Materials,2003,313:72-76.
    [38]HENRIKSSON K, NORDLUND K, KRASHENINNIKOV A, et al. The depths of hydrogen and helium bubbles in tungsten:a comparison [J]. Fusion science and technology,2006, 50:43-57.
    [39]PAN H, FENG Y P, LIN J. Hydrogen adsorption by tungsten carbide nanotube [J]. Applied Physics Letters,2007,90:223104.
    [40]ROSENWASSER S N, MILLER P, DALESSANDR J A, et al. The application of martensitic stainless steels in long lifetime fusion first wall/blankets [J]. Journal of Nuclear Materials,1979,85-86:177-182.
    [41]VAN DER SCHAAF B, GELLES D S, JITSUKAWA S, et al. Progress and critical issues of reduced activation ferritic/martensitic steel development [J]. Journal of Nuclear Materials,2000,283-287:52-59.
    [42]JONES R H, HEINISCH H L, MCCARTHY K A. Low activation materials [J]. Journal of Nuclear Materials,1999,271:518-525.
    [43]JITSUKAWA S, TAMURA M, VAN DER SCHAAF B, et al. Development of an extensive database of mechanical and physical properties for reduced-activation martensitic steel F82H [J]. Journal of Nuclear Materials,2002,307:179-186.
    [44]KLUEH R L, GELLES D S, JITSUKAWA S, et al. Ferritic/martensitic steels - overview of recent results [J]. Journal of Nuclear Materials 2002,307:455-465.
    [45]HASEGAWA T, TOMITA Y, KOHYAMA A. Influence of tantalum and nitrogen contents, normalizing condition and TMCP process on the mechanical properties of low-activation 9Cr-2W-0.2V-Ta steels for fusion application [J]. Journal of Nuclear Materials,1998,258:1153-1157.
    [46]KLUEH R L, ALEXANDER D J, RIETH M. The effect of tantalum on the mechanical properties of a 9Cr-2W-0.25V-0.07Ta-0.1C steel [J]. Journal of Nuclear Materials, 1999,273:146-154.
    [47]HUANG Q Y, LI J G, CHEN Y X. Study of irradiation effects in China low activation martensitic steel CLAM [J]. Journal of Nuclear Materials,2004,329:268-272.
    [48]ZHAO F, QIAO J S, HUANG Y N, et al. Effect of irradiation temperature on void swelling of China Low Activation Martensitic steel (CLAM) [J]. Materials Characterization,2008,59:344-347.
    [49]PENG L, HUANG Q Y, LI C J, et al. Preliminary analysis of irradiation effects on CLAM after low dose neutron irradiation [J]. Journal of Nuclear Materials, 2009,386:312-314.
    [50]SESHASAYEE D, COHEN R L, GREWAL I S, et al. Roles for a secreted cytokine recptor CLF-1 in T-cell development and differentiation. [J]. Blood,2001,98:820a-821a.
    [51]TAVASSOLI A A F, RENSMAN J W, SCHIRRA M, et al. Materials design data for reduced activation martensitic steel type F82H [J]. Fusion Eng Des,2002,61:617-628.
    [52]LI Y, HUANG Q, W Y, et al. Mechanical properties and microstructures of China low activation martensitic steel compared with JLF-1 [J]. Journal of Nuclear Materials,2007,367:117-121.
    [53]OGIWARA H, KOHYAMA A, TANIGAWA H, et al. Irradiation-induced hardening mechanism of ion irradiated JLF-1 to high fluences [J]. Fusion Eng Des,2006,81:1091-1097.
    [54]KOHYAMA A, HISHINUMA A, GELLES D S, et al. Low-activation ferritic and martensitic steels for fusion application [J]. Journal of Nuclear Materials,1996,233: 138-147.
    [55]MARTIN R. Electronic Structure:Basic Theory and Practical Methods [M]. Cambridge: Cambridge University Press,2004.
    [56]THOMAS L H. The calculation of atomic fields [J]. Proceedings of the Cambridge Philosophical Society,1927,23:542-548.
    [57]FERMI E. Un Metodo Statistico per la Determinazione di alcune Prioprieta dell'Atomo [J]. Rend R Accad Naz Lincei,1927,6:602-607.
    [58]GROSS E K U, KOHN W. Local density-functional theory of frequency-dependent linear response [J]. Physical Review Letters,1985,55:2850.
    [59]LICHTENSTEIN A I, KATSNELSON M I. Ab initio calculations of quasiparticle band structure in correlated systems:LDA++ approach [J]. Phys Rev B,1998,57:
    [60]KOHN W. Density Functional and Density Matrix Method Scaling Linearly with the Number of Atoms [J]. Physical Review Letters,1996,76:3168.
    [61]SCHR DINGER E. An Undulatory Theory of the Mechanics of Atoms and Molecules [J]. Physical Review,1926,28:1049-1070.
    [62]BORN M, OPPENHEIMER R. Zur Quantentheorie der Molekeln [J]. Annalen der Physik, 1927,389:457-484.
    [63]MARCH N H, MURRAY A M. Relation Between Dirac and Canonical Density Matrices, with Applications to Imperfections in Metals [J]. Physical Review,1960,120: 830.
    [64]S. N. Analysis of covalent bonding by nonergodic Thomas-Fermi theory [J]. Journal of Chemical Physics,1987,86:363-369.
    [65]LIEB E H, SIMON B. Thomas-Fermi Theory Revisited [J]. Physical Review Letters, 1973,31:681.
    [66]HOHENBERGP, KOHN W. Inhomogeneous Electron Gas [J]. Physical Review,1964,136: B864.
    [67]KOHN W, SHAM L. Self-consistent equations including exchange and correlation effects [J]. Physical Review,1965,140:1133-1138.
    [68]PERDEW J P, ZUNGER A. Self-interaction correction to density-functional approximations for many-electron systems [J]. Phys Rev B,1981,23:5048.
    [69]BL CHL P E. Projector augmented-wave method [J]. Phys Rev B,1994,50:17953.
    [70]KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys Rev B,1996,54:11169.
    [71]KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals [J]. Phys Rev B,1993,47:558.
    [72]VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys Rev B,1990,41:7892.
    [73]VITOS L. Computational quantum mechanics for materials engineers:the EMTO method and applications [M]. London:Springer Verlag,2007.
    [74]ZELLER R, DEDERICHS P H, UJFALUSSY B, et al. Theory and convergence properties of the screened Korringa-Kohn-Rostoker method [J]. Phys Rev B,1995,52:8807.
    [75]VITOS L, ABRIKOSOV I A, JOHANSSON B. Coherent potential approximation within the exact muffin-tin orbitals theory [M]. New York:Springer,2005.
    [76]GYORFFY B L. Coherent-Potential Approximation for a Nonoverlapping-Muffin-Tin-Potential Model of Random Substitutional Alloys [J]. Phys Rev B,1972,5:2382.
    [77]SOVEN P. Coherent-Potential Model of Substitutional Disordered Alloys [J]. Physical Review,1967,156:809.
    [78]KOLL R J, VITOS L, H. L. SKRIVER.//DREYSSE H. Electronic Structure and Physical Properties of solids:The uses of the LMTO method, Lecture Notes in Physics. Berlin; Springer-Verlag.2000:85.
    [79]VITOS L, KOLLAR J, SKRIVER H L. Full charge-density scheme with a kinetic-energy correction:Application to ground-state properties of the 4d metals [J]. Phys Rev B,1997,55:13521.
    [80]FEDERICI G, BROOKS J, COSTER D, et al. Assessment of erosion and tritium codeposition in ITER-FEAT [J]. Journal of Nuclear Materials,2001,290:260-265.
    [81]FEDERICI G, ANDERL R, ANDREW P, et al. In-vessel tritium retention and removal in ITER [J]. Journal of Nuclear Materials,1999,266:14-29.
    [82]ESTEBAN G A, PERUJO A, LEGARDA F. Study of the isotope effects in the hydrogen transport in polycrystalline tungsten [M]. Cross-Disciplinary Applied Research in Materials Science and Technology.2005:537-542.
    [83]SMITH D L, BILLONE M C, NATESAN K. Vanadium-base alloys for fusion first-wall/blanket applications [J]. International Journal of Refractory Metals and Hard Materials,2000,18:213.
    [84]HINO T, KOYAMA K, YAMAUCHI Y, et al. Hydrogen retention properties of polycrystalline tungsten and helium irradiated tungsten [J]. Fusion Eng Des,1998, 39-4:227-233.
    [85]BLASZCZYSZYN R, WACHOWICZ E, BLASZCZYSZYNOWA M. Interaction of hydrogen with vanadium layers preadsorbed on tungsten field emitter tip [J]. Acta Physica Polonica A,1998,93:763-773.
    [86]BLUDSKA J, VONDRAK J, JAKUBEC I. Insertion of hydrogen and/or lithium into cesium tungsten bronze [J]. Collection of Czechoslovak Chemical Communications,1997, 62:1177-1184.
    [87]LI X-C, GAO F, LU G-H. Molecular dynamics simulation of interaction of H with vacancy in W [J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2009,267:3197-3199.
    [88]LIU Y-L, ZHANG Y, LUO G N, et al. Structure, stability and diffusion of hydrogen in tungsten:A first-principles study [J]. Journal of Nuclear Materials,2009, 390-391:1032-1034.
    [89]PERDEW J P, BURKE K, ERNZERHOF M. Generalized Gradient Approximation Made Simple [J]. Physical Review Letters,1996,77:3865.
    [90]KITTEL C, MCEUEN P. Introduction to solid state physics [M]. Wiley New York,1996.
    [91]JOHNSON B G, GILL P M W, POPLE J A. The performance of a family of density functional methods [J]. Journal of Chemical Physics,1993,98:5612.
    [92]NAGATA S, TAKAHIRO K. Deuterium retention in tungsten and molybdenum [J]. Journal of Nuclear Materials,2000,283:1038-1042.
    [93]LIGEON E, DANIELOU R, FONTENILLE J, et al. Deuterium location and migration in metals:Comparison of implantation and solid solution [J]. Journal of Applied Physics,1986,59:108-119.
    [94]PICRAUX S, VOOK F. Ion beam studies of H and He in metals [J]. Journal of Nuclear Materials,1974,53:246-251.
    [95]PICRAUX S, VOOK F. Deuterium lattice location in Cr and W [J]. Physical Review Letters,1974,33:1216-1220.
    [96]FRAUENFELDER R. Solution and diffusion of hydrogen in tungsten [J]. Journal of Vacuum Science and Technology,1969,6:388-397.
    [97]SOMENKOV V, IRODOVA A. Lattice structure and phase transitions of hydrogen in intermetallic compounds [J]. Journal of the Less Common Metals,1984,101: 481-492.
    [98]SWITENDICK A C. Theoretical study of hydrogen in metals:current status and further aspects [J]. SAND,1978,78-0250:1.
    [99]LIU Y-L, ZHANG Y, ZHOU H-B, et al. Vacancy trapping mechanism for hydrogen bubble formation in metal [J]. Phys Rev B,2009,79:172103.
    [100]MUROGA T, GASPAROTTO M, ZINKLE S J. Overview of materials research for fusion reactors [J]. Fusion Eng Des,2002,61-2:13-25.
    [101]ALDRED A T. Ferromagnetism in Iron-chromium Alloys.1. Bulk Magnetization Measurements [J]. Phys Rev B,1976,14:219-227.
    [102]KLUEH R L, ALEXANDER D J, KENIK E A. Development of low-chromium, chromium-tungsten steels for fusion [J]. Journal of Nuclear Materials,1995,227: 11-23.
    [103]LU Z, FAULKNER R G, WAS G, et al. Irradiation-induced grain boundary chromium microchemistry in high alloy ferritic steels [J]. Scripta Materialia,2008,58: 878-881.
    [104]KOHYAMA A, KOHNO Y, SATOH K, et al. Micro-computer System for Quantitative Image-analysis of Damage Microstructure [J]. Journal of Nuclear Materials,1984, 122:619-623.
    [105]GELLES D S. Void Swelling in Binary Fe-Cr Alloys at 200 dpa [J]. Journal of Nuclear Materials,1995,225:163-174.
    [106]POROLLO S I, DVORIASHIN A M, VOROBYEV A N, et al. The microstructure and tensile properties of Fe-Cr alloys after neutron irradiation at 400 degrees C to 5.5-7.1 dpa [J]. Journal of Nuclear Materials,1998,256:247-253.
    [107]SPEICH G, SCHWOEBLE A, LESLIE W. Elastic constants of binary iron-base alloys [J]. Metallurgical and Materials Transactions B,1972,3:2031-2037.
    [108]PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation [J]. Phys Rev B,1992,46:6671-6687.
    [109]WALLACE D C. Solid State Physics [J]. Academic, New York,1970,25:301-404.
    [110]ZHAO J, WINEY J, GUPTA Y. First-principles calculations of second-and third-order elastic constants for single crystals of arbitrary symmetry [J]. Phys Rev B,2007, 75:094105.
    [111]VOIGT W. Uber die Beziehung zwischen den beiden Elasticitatsconstanten isotroper Korper [J]. Annalen der Physik (Leipzig),1889,38:573-587.
    [112]REUSS A. Berechnung der Flieβgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle [J]. Zeitschrift fur Angewandte Mathematik und Mechanik,1929,9:49-58.
    [113]HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society Section A,1952,65:349-354.
    [114]HILL R. Elastic properties of reinforced solids:Some theoretical principles [J]. Journal of the Mechanics and Physics of Solids,1963,11:357-372.
    [115]RAYNE J A, CHANDRASEKHAR B S. Elastic Constants of Iron from 4.2 to 300 K [J]. Physical Review,1961,122:1714.
    [116]VOCADLO L, WIJS G, KRESSE G, et al. First principles calculations on crystalline and liquid iron at Earth's core conditions [J]. Faraday Discussions,1997,106: 205-218.
    [117]ROPO M, KOKKO K, VITOS L. Assessing the Perdew-Burke-Ernzerhof exchange-correlation density functional revised for metallic bulk and surface systems [J]. Phys Rev B,2008,77:195445.
    [118]XIANWEI S, COHEN R. Thermal effects on lattice strain in epsilon-Fe under pressure [J]. Phys Rev B,2006,74:064103.
    [119]ZHANG H, JOHANSSON B, VITOS L. Ab initio calculations of elastic properties of bcc Fe-Mg and Fe-Cr random alloys [J]. Phys Rev B,2009,79:224201.
    [120]PEARSON W B. A handbook of lattice spacings and structures of metals and alloys [M]. Pergamon Press,1984.
    [121]KORZHAVYI P A, RUBAN A V, ODQVIST J, et al. Electronic structure and effective chemical and magnetic exchange interactions in bcc Fe-Cr alloys [J]. Phys Rev B,2009,79:054202.
    [122]SMIRNOVA E, KORZHAVYI P, VEKILOV Y K, et al. Origin of the asymmetric spinodal decomposition in the Al-Zn system [J]. Phys Rev B,2001,64:020101.
    [123]PUGH S F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals [J]. Philosophical Magazine A,1954,45:823-843.
    [124]PETTIFOR D G. Theoretical predictions of structure and related properties of intermetallics [J]. Materials Science and Technology,1992,8:345-349.
    [125]PADUANI C, KRAUSE J. A first-principles study of Cr impurities in iron [J]. Brazilian Journal of Physics,2006,36:1262-1266.
    [126]ZHANG C, XIA Z X, LAN H, et al. Influence of smelting processes on precipitation behaviors and mechanical properties of low activation ferrite steels [J]. Mat Sci Eng a-Struct,2010,528:657-662.
    [127]VITOS L, KORZHAVYI P A, JOHANSSON B. Modeling of alloy steels [J]. Materials Today, 2002,5:14.
    [128]BALUC N, SCHAUBLIN R, BAILAT C, et al. The mechanical properties and microstructure of the OPTIMAX series of low activation ferritic-martensitic steels [J]. Journal of Nuclear Materials,2000,283:731-735.
    [129]BAILAT C, ALMAZOUZI A, BALUC N, et al. The effects of irradiation and testing temperature on tensile behaviour of stainless steels [J]. Journal of Nuclear Materials,2000,283:446.
    [130]KOHNO Y, KOHYAMA A, HIROSE T, et al. Mechanical property changes of low activation ferritic/martensitic steels after neutron irradiation [J]. Journal of Nuclear Materials,1999,271-272:145-150.
    [131]OKUBO N, WAKAI E, MATSUKAWA S, et al. Effects of heat treatment and irradiation on mechanical properties in F82H steel doped with boron and nitrogen [J]. Journal of Nuclear Materials,2007,367-370, Part A:107-111.
    [132]SPEICH G R, SCHWOEBLE. AJ, LESLIE W C. Elastic-constants of Binary Iron-base Alloys [J]. Metall Trans,1972,3:2031.
    [133]HIWATASHI S, KOHNO Y, ASAKURA K, et al. Microstructural Developments in Fe-Cr-W Low Activation Ferritic Steels under Dual Beam Charged-Particle Irradiation [J]. Journal of Nuclear Materials,1991,179:709-713.
    [134]WAKAI E, HISHINUMA A, ABE H, et al. Microstructural evolution of Fe-Cr-W model alloys during Fe+ ion irradiation [J]. Mater T Jim,2000,41:1176-1179.
    [135]VITOS L. Total-energy method based on the exact muffin-tin orbitals theory [J]. Phys Rev B,2001,64:014107.
    [136]VITOS L, SKRIVER H L, JOHANSSON B, et al. Application of the exact muffin-tin orbitals theory:the spherical cell approximation [J]. Comput Mater Sci,2000, 18:24-38.
    [137]ANDERSEN 0, KUMAR V, MOOKERJEE A, et al. Lectures on Methods of Electronic Structure Calculations. Proceedings [M]. Singapore:World Scientific,1994.
    [138]SZUNYOGH L, UJFALUSSY B, WEINBERGER P, et al. Self-consistent localized KKR scheme for surfaces and interfaces [J]. Phys Rev B,1994,49:2721.
    [139]ANDERSEN 0 K, POSTNIKOV A V, SAVRASOV S Y.//BUTLER W H, DEDERICHS P H, GONIS A, et al. Applications of Multiple Scattering Theory in Materials Science. Pittsburgh; Materials Research Society.1992.
    [140]RUBAN A V, SKRIVER H L. Screened Coulomb interactions in metallic alloys. I. Universal screening in the atomic-sphere approximation [J]. Phys Rev B,2002, 66:024201.
    [141]RUBAN A V, SIMAK S I, KORZHAVYI P A, et al. Screened Coulomb interactions in metallic alloys. II. Screening beyond the single-site and atomic-sphere approximations [J]. Phys Rev B,2002,66:024202.
    [142]ABRIKOSOV I A, NIKLASSON A M N, SIMAK S I, et al. Order- N Green's Function Technique for Local Environment Effects in Alloys [J]. Physical Review Letters, 1996,76:4203.
    [143]ABRIKOSOV I A, SIMAK S I, JOHANSSON B, et al. Locally self-consistent Green's function approach to the electronic structure problem [J]. Phys Rev B,1997,56: 9319.
    [144]MURNAGHAN F D. The Compressibility of Media under Extreme Pressures [J]. Proceedings of the National Academy of Sciences,1944,30:244-247.
    [145]WESTBROOK J H, FLEISCHER R L. Intermetallic compounds:principles and practice. Vol.3, Progress [M]. Wiley,2002.
    [146]ZHANG H, PUNKKINEN M P J, JOHANSSON B, et al. Single-crystal elastic constants of ferromagnetic bcc Fe-based random alloys from first-principles theory [J]. Phys Rev B,2010,81:184105.
    [147]VITOS L, KORZHAVYI P A, JOHANSSON B. Evidence of Large Magnetostructural Effects in Austenitic Stainless Steels [J]. Physical Review Letters,2006,96:117210.
    [148]KISSAVOS A E, SIMAK S I, OLSSON P, et al. Total energy calculations for systems with magnetic and chemical disorder [J]. Comput Mater Sci,2006,35:1-5.
    [149]DUBROVINSKAIA N, DUBROVINSKY L, KANTOR I, et al. Beating the Miscibility Barrier between Iron Group Elements and Magnesium by High-Pressure Alloying [J]. Physical Review Letters,2005,95:245502.
    [150]VITOS L, KORZHAVYI P A, JOHANSSON B. Stainless steel optimization from quantum mechanical calculations [J]. Natural Material 2003,2:25-28.
    [151]OLSSON P, ABRIKOSOV I A, VITOS L, et al. Ab initio formation energies of Fe-Cr alloys [J]. Journal of Nuclear Materials,2003,321:84-90.
    [152]DUBROVINSKY L, DUBROVINSKAIA N, LANGENHORST F, et al. Iron-silica interaction at extreme conditions and the electrically conducting layer at the base of Earth's mantle [J]. Nature,2003,422:58-61.
    [153]VITOS L, KORZHAVYI P A, JOHANSSON B. Elastic property maps of austenitic stainless steels [J]. Physical Review Letters,2002,88:155501.
    [154]RUBAN A V, KORZHAVYI P A, JOHANSSON B. First-principles theory of magnetically driven anomalous ordering in bcc Fe-Cr alloys [J]. Phys Rev B,2008,77:094436.
    [155]GUO G, WANG H. Gradient-Corrected Density Functional Calculation of Elastic Constants of Fe, Co and Ni in bcc, fcc and hcp Structures [J]. Chinese Journal of Physics,2000,38:
    [156]CASPERSEN K J, LEW A, ORTIZ M, et al. Importance of Shear in the bcc-to-hcp Transformation in Iron [J]. Physical Review Letters,2004,93:115501.
    [157]SHA X, COHEN R E. First-principles thermoelasticity of bcc iron under pressure [J]. Phys Rev B,2006,74:214111.
    [158]DEVER D J. Temperature dependence of the elastic constants in alpha-iron single crystals:relationship to spin order and diffusion anomalies [J]. Journal of Applied Physics,1972,43:3293-3301.
    [159]S DERLIND P, ERIKSSON 0, WILLS J M, et al. Theory of elastic constants of cubic transition metals and alloys [J]. Phys Rev B,1993,48:5844.
    [160]ZINKLE S J. Microstructures and Mechanical Properties of Irradiated Metals and Alloys
    Materials Issues for Generation IV Systems [M]//GHETTA V, GORSE D, MAZI RE D, et al. Springer Netherlands.2008:227-244.
    [161]MERGIA K, BOUKOS N. Structural, thermal, electrical and magnetic properties of Eurofer 97 steel [J]. Journal of Nuclear Materials,2008,373:1-8.
    [162]SHIBA K, YAMANOUCHI N, TOHYAMA A, Fusion Materials Semiannual Progress Report for Period ending June 30,1996, DOE/ER-0313/20 [R]:Oak Ridge National Lab,1996.
    [163]SHIBA K, HISHINUMA A, TOHYAMA A, et al., Report JAERI-Tech 97-038 [R]. Japan Atomic Energy Research Institute,1997.
    [164]LIN H T, CHIN B A, Fusion Reactor Materials Semiannual Progress Report for Period ending September 30,1987, DOE/ER-0313/3 [R]:Oak Ridge National Lab,1987.
    [165]ZINKLE S J, ROBERTSON J P, KLUEH R L. Thermophysical and Mechanical Properties for Fe-(8-9)%Cr reduced activation steels [U]. http://www-ferp.uesd.ed/LIB/PROPS/FS/FS.html#7
    [166]BLANCO M, FRANCISCO E, LUANA V. GIBBS:isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model [J]. Computer Physics Communications,2004,158:57-72.
    [167]GRIMVALL G. Thermophysical Properties of Materials [M]. Amsterdam:North Holland, 1999.
    [168]MEHL M J. Pressure dependence of the elastic moduli in aluminum-rich Al-Li compounds [J]. Phys Rev B,1993,47:2493.
    [169]FU C L, HO K M. First-principles calculation of the equilibrium ground-state properties of transition metals:Applications to Nb and Mo [J]. Phys Rev B,1983, 28:5480-5486.
    [170]MARADUDIN A A, MONTROLL E W, WEISS G H, et al. Theory of lattice dynamics in the harmonic approximation [M]. New York:Academic Press,1971.
    [171]BLANCO M A, PEND S A M, FRANCISCO E, et al. Thermodynamical properties of solids from microscopic theory:applications to MgF2 and Al2O3 [J]. Journal of Molecular Structure:THEOCHEM,1996,368:245-255.
    [172]FRANCISCO E, BLANCO M A, SANJURJO G. Atomistic simulation of SrF2 polymorphs [J]. Phys Rev B,2001,63:094107.
    [173]FL REZ M, RECIO J M, FRANCISCO E, et al. First-principles study of the rocksalt-cesium chloride relative phase stability in alkali halides [J]. Phys Rev B,2002,66:144112.
    [174]FRANCISCO E, RECIO J M, BLANCO M A, et al. Quantum-Mechanical Study of Thermodynamic and Bonding Properties of MgF2 [J]. The Journal of Physical Chemistry A,1998,102:1595-1601.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700