聚变堆中面向等离子体钨涂层的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过使用国内不同型号的大气等离子体喷涂设备,采用等离子体球化技术对普通商业钨粉进行球化,球化过程中利用水冷系统收集钨粉,研究了等离子球化功率等因素对钨粉性能的影响,最终把球化后钨粉制备钨涂层。研究结果表明采用SULZERMetco-7MC喷涂设备球化的钨粉综合性能最佳,等离子球化普通钨粉所制得的钨粉具有球形度较高、流动性能较好、氧含量增加不大等特点。当球化功率为25kW时,球形钨粉的流动速度为5.9s/50g,氧含量为0.095wt%。以球化钨粉经还原处理后为原料,所制备出的涂层与普通钨粉相比性能有了较大的提高。此外加入不同的梯度过渡层可制备出性能较好的钨涂层,与不加入过渡层相比,涂层在致密度、热导率、结合强度等性能有了较大的提高。
     采用冷动力喷涂法以钨和钨-镍-铁合金为原料在铜合金基体上制备了钨涂层和钨镍铁合金涂层。其中研究了冷喷涂过程中钨粉粒径、喷涂距离等因素对涂层性能的影响。用扫描电子显微镜等手段分析了涂层的表面、断面微观结构,并用原子力显微镜测量了涂层的粗糙度。此外,本文计算了冷喷涂过程中粉末颗粒的实际速度,并采用有限元分析软件ANSYS/LS-DYNA模拟了冷喷涂过程中颗粒撞击基体时的变形情况。当采用D50分别为2、7μm,喷涂距离为10~15mm时可在基体上制备出厚度为2μm的均匀、致密、结合强度较高的钨涂层,无明显氧化。当采用粉末粒径D50分别为2、7μm的W-Ni-Fe合金,可在基体上制备出厚度达80μm的均匀、致密、结合强度较高的涂层,涂层无明显氧化。根据模拟计算钨的临界速度为580m/s,钨颗粒在喷涂过程中速度为722.1~794.8m/s。
     采用金属有机化学气相沉积(MOCVD)的方法以羰基钨为前驱体在CuCrZr合金和低活化钢上制备了钨涂层,并且在实验过程中对沉积设备进行了改造。当沉积温度在270~600℃,羰基钨升华温度在90℃左右,最终在CuCrZr合金和低活化钢上制备了β-W。经实验证实沉积温度是影响钨涂层最终性能最重要的一个因素,当沉积温度为500℃时能制备出性能较优的涂层,经一定温度700~800℃条件下进行退火,涂层由β-W向a-W转变,即由介稳状态相转变为稳定相。此外,以CuCrZr合金为基体制备的涂层比低活化钢上制备的钨涂层在厚度、结合性能等方面较优。
Ordinary tungsten powder was spheroidized by different types of atmosphere plasma spraying machine with water cooling system. The influence of power to properties of tungsten powder was studied. The results indicate that the tungsten powder has a high degree of spherical. When the power is low, the tungsten powder has high recycle rate, low oxygen content, high flowability; however, when the power is high, the tungsten powder has a low recycle rate, high oxygen content, poor flowability. Under the same process conditions, the powder by different atmosphere plasma spraying machine have different characteristics. Furthermore, the device of SULZER Metco-7MC has good performances to prepare spherical tungsten powder. When tungsten was spheroidied by7MC at25KW, its flowability is5.9s/50g, oxygen content is0.095/wt%. The tungsten coating with spherical powders has higher density, bond strength, etc than using normal powders. Besiedes, different graded interlayers are used in coating, compared the coating without graded interlayers, the form coating have high bond strength and density, etc.
     Results of optical microscopy, scanning electron microscopy, AFM are presented for tungsten and W-Ni-Fe coating produced by low and high cold gas dynamic spraying, respectively. With size D502and7μm, spraying distance10~15mm, high properties coatings without obvious oxide can be compared. The critical velocity of tungsten powder was calculated, what is more, tungsten particles collision was also simulated by soft ANSYS/LS-DYNA. Cold gas dynamic spray (CGDS) is a rapidly developing coating technology, in which spraying particle is deposited through plastic impact on s substrate at high velocities at low temperature. In these experiments, the process produced a reasonably dense tungsten coating and tungsten alloy coating. This paper reports the effect of deposition parameters which including temperature, spraying distance, particle size, etc. on the structures formed.
     The tungsten membranes with ultra microstructure on CuCrZr alloy and CLAM substrates have been prepared using remaked cold-wall reactor, metal organic chemical vapor deposition (MOCVD). The membranes were produced by pyrolysing the tungsten hexacarbonyl in low pressure, at air and argon atmosphere. When formed at or below600℃, they were poorly crystalline. Besides, the membranes had low properties including thickness, density, bonding performance with substrate and so on. While above this temperature, the properties of tungsten membranes had been greatly improved, and all the membranes consist of tungsten in the β-W. Then annealed at700~800℃, β-W will be converted into a-W. As in other variations of the pyrolysis, oxygen is observed, although these reduce with increasing temperature of deposition. In addition, when filled with argon, the oxygen content will also reduce. Moreover, these membranes have stable chemical composition and microstructure. The bonding properties and polish of surface could be enhanced greatly. The coating on CuCrZr alloy has better properties than CLAM.
引文
[1]张建中,刘常乐.托卡马克第一壁涂层工艺方法的比较[J].新技术新工艺2006,9:73-75.
    [2]许增裕.聚变材料研究的现状与展望[J].原子能科学技术,2003,37:106-110.
    [3]R. Neu, R. Dux, A. Kallenbach,20th IAEA FusionEnergy Conference[R]. Villamoura,Portugal, November1-6,2004.
    [4]I. Smid, M. Akiba, G. Vieider, et al. Development of tungsten armor and bonding to copper for plasma-interactive components [J]. Journal of Nuclear Materials,258-263(1998)160-172.
    [5]R. Neu, R. Dux, A. Kallenbach, et al.,20th IAEA Fusion Energy Conference[R]. Villamoura, Portugal, Nov.1-6,2004.
    [6]T.Hirai, H.Maier, M.Rubel, et al. R&D on full tungsten divertor and beryllium wall for JET ITER-like wall project [J]. Fusion Engineering and Design,82(2007)1839-1845.
    [7]H.Maier, R.Neu, H.Greuner. Tungsten coatings for the JET ITER-like wall project[J]. Journal of Nuclear Materials,363-365(2007)1246-1250.
    [8]H.Greuner, H.Bolt, B.Boswirth et al. Vacuum plasma-sprayed tungsten on EUROFER and316L:Results of characterization and thermal loading tests [J]. Fusion Engineering and Design,75-79(2005)333-338.
    [9]Y. Yahiro, M. Mitsuhara, K. Tokunakga, et al. Characterization of thick plasma spray tungsten coating on ferritic/martensitic steel F82H for high heat flux armor[J]. Journal of Nuclear Materials,278(2008)87-92.
    [10]J.H.You, T.Hoschen, S.Lindig. Determination of elastic modulus and residual stress of plasma-sprayed tungsten coating on steel substrate [J]. Journal of Nuclear Materials,348(2006)94-101.
    [11]Xiang Liu, Fu Zhang, Shunyan Tao et al. Research and development of plasma sprayed tungsten coating on graphite and copper substrates [J]. Journal of Nuclear Materials,363-365(2007)1299-1303.
    [12]H.Maier, J.Luthin, M.Balden et al. Properties of tungsten coatings deposited onto fine grain graphite by different methods [J]. Surface and Coatings Technology,142-144(2001)733-737.
    [13]C. Ruset, E. Grigore, I. Munteanu, et al. Industrial scale10um W coating of CFC tiles for ITER-like Wall Project at JET [J]. Fusion Engineering and Design.2008.
    [14]A. Cambe, E. Gauthier, J. M.Layet, et al. Development of tungsten coating for fusion applications[J]. Fusion Engineering and Design,56-57(2001)331-336.
    [15]凌云汉,周张键等.超高压梯度烧结法制备W/Cu功能梯度材料[J].中国有色金属学报2001,11(4):576-581.
    [16]G.Sergienko a,B.Bazylev,et al.Erosion of a carbon limiter under high heat flux in TEXTOR[J]. Journal of Nuclear Materials,363-365(2007)96-100.
    [17]R.Neu,R,Dux,et al.31stEPS Conference on Plasma Physics[R].london,Un-Ited Kingdom,28June-2July,2004.
    [18]H.Bolt, V.Barabash, W.Krauss, et al.Materials for the plasma-facing components of fusion reactor [J].Joural of Nuclear Matericals,329-333(2004)66-73.
    [19]陈俊凌,梁荣庆.HT-7U装置第一壁抗热冲击SiC厚膜涂层研究[J].真空与低温,2000,6(4):207-212.离
    [20]F.Escourbiac, S.Constans, et al.Application of lock-in thermography non destructivetechnique to CFC armoured plasma facingcomponents [J]. Journal of Nuclear Materials,367-370(2007).
    [21]F. Escourbiac, S. Constans, et al. eApplication of lock-in thermography non destructive technique to CFC armoured plasma facing components [J]. Journal of Nuclear Materials,367-370(2007)1492-1496.
    [22]A. Widdowson a, M.J. Baldwin et al. Testing of beryllium marker coatings in PISCES-B for the JET ITER-like wall [J]. Journal of Nuclear Materials,390-391(2009)988-991.
    [23]钱蓉晖.面对等离子体材料铍的抗热冲击性能[J].核科学与工程,1999,19(1):57-61.
    [24]V.Thompsona, Y.Krivchenkov, et al. Analysis and design of the beryllium tiles for the JET ITER-like wall project [J]. Fusion Engineering and Design,82(2007)1706-1712.
    [25]W.J. Tobler, W. Durisch.Plasma-spray coated rare-earth oxides on molybdenum disilicide-High temperature stable emitters for thermophotovoltaics [J]. Applied Energy,85(2008)371-383.
    [26]姚伟志.面向等离子体钼涂层的设计、制备与评价[D].北京:北京科技大学,2008.
    [27]Q.Y. Hou, Y.Z. He, Influence of molybdenum on the microstructure and wearresi stance of nickel-based alloy coating obtained by plasma transferred arc process[J].Materials and Design,28(2007)1982-1987.
    [28]W.J. Tobler, W. Durisch, Plasma-spray coated rare-earth oxides on molybdenum disilicide High temperature stable emitters for thermophotovoltaics[J]. Applied Energy,85(2008)371-383.
    [29]许增裕.聚变材料研究的现状与展望[J].原子能科学技术,2003,37:106-110.
    [30]凌云汉,李江涛等.聚变变堆面向等离子SiC/Cu梯度材料的制备与评价[J].北京科技大学学报,2001,23(3):257-261.
    [31]S.C. Jardin, C.E. Kessel. Physics basis for the advanced tokamak fusion power plant [J]. ARIES-AT Fusion Engineering and Design,2006,80(1):25-62.
    [32]H. Kawashima, S. Sakurai, et al. Divertor modeling for the design of the National Centralized Tokamak with high beta steady-state plasmas [J]. Fusion Engineering and Design,2006,81(8):1613-1620.
    [33]R.B. Gomes, H. Fernandes,et al. Interaction of a liquid gallium jet with the tokamak ISTTOK edge plasma Fusion Engineering and Design[J].2008,83(1):102-111.
    [34]HE Kaihui, Satoshi NISHIO.Thermo-mechanical Design of SiC/SiC Composite First Wall [J]. Nuclear Fusion and Plasma Physics,2003,23(1):25-30.
    [35]Ph. Chappuis a, F. Escourbiac et al. Infrared characterization and high heat flux testing of plasmasprayed layers [J]. Journal of Nuclear Materials,283±287(2000)1081±1084.
    [36]李云凯,葛昌纯.B4C涂层作为等离子体面对材料的一些性质[J].核科学与工程,2002,22(1):53-58.
    [37]周张健,葛昌纯.等离子喷涂法制备B4C/Cu梯度材料[J].北京科技大学学报,2002,22(2):142-144.
    [38]G. Kalinin, V. Barabash. Assessment and selection of materials for ITER in-vesselComponents[J]. Journal of Nuclear Materials,283±287(2000)10±19.
    [39]武安华,葛昌纯等.面向等离子体SiC/C功能梯度材料的研究[J].材料工程,2002,6:25-28.
    [40]Barnes N P, Rodriguez W J, Walsh B M. Ho:Tm:YLF laser amplifiers. J. Opt. Soc. Am. B,1996.13(12):2872-2882.
    [41]陈俊凌,李建刚等.HT-7U第一壁材料在HT-7装置中的辐照实验研究[J].核聚变与等离子体物理,2002,22(2):105-110.
    [42]K.Tokunaga, N. Yoshida. Behavior of plasma-sprayed tungsten coatings on CFC and graphite under high heat load [J]. Journal of nuclear material,1999,226-269:1224-1229.
    [43]武建军等现代金属热喷涂技术[M].北京:化学工业出版社,2007:131-132
    [44]张建中等.托卡马克第一壁涂层工艺方法的比较[J].新技术新工艺,2006,9:73-75.
    [45]F.L.Chong, J.L.Chen, J.G.Li, Thermal analysis of tungsten coating on CuCrZr with different interlayer used as EAST divertor target materials [J].Materials and Design29(2008)1675-1678.
    [46]宋书香聚变堆中高热负荷部件钨(钼)基涂层的制备和性能评价[D].北京:北京科技大学,2007.
    [47]Hyun-Ki Kang, Suk Bong Kang. Effect of feedstock injection methods on oxidation behavior and microstructure of plasma sprayed W/Cu composites [J].Surface&Coatings Technology.2004,182:124-130.
    [48]Hedger H. J., Hall A. R. Preparation of spherical powder [J]. Powder Metallurgy,1961,8:65.
    [49]姚伟志面向等离子体钼涂层的设计、制备与评价[D].北京:北京科技大学,2008
    [50]张小锋,葛昌纯,李玉杰,郭双全,刘维良.冷动力喷涂法制备钨和钨合金涂层及其涂层的计算模拟[J].物理学报,2012,61(2)-020207-1-020207-8
    [51]Hyun-Ki Kang, Suk Bong Kang. Tungsten/copper composite deposits produced by a cold spray [J]. Scripta Materials49(2003)1169-1174
    [52]王炳根.用羰基法制取(钼)钨粉[J].中国钼业,1994,19(1):23-24
    [53]聂俊辉,李一.羰基金属复合材料的研究与应用[J].粉末冶金工业,2008,18(2):46-52.
    [54]T.C. Xenidou, M.K. Koukou.Computational analysis of horizontal cold wall CVD reactors at lowpressure:Application to tungsten deposition from pyrolysisof W(CO)6[J]. J.Phys. ZV France11(2001)1239-1245
    [55]章娴君,吕戈,罗玲.羰基金属气相沉积工艺条件及膜结构研究[J].西南师范大学学报(自然科学版),1999,24(4),422-437.
    [56]Gesheva K A, Abrosimova V, Beshkov G D. CVD car-bonyl thin films of tungsten and molybdenum and their silicides a good alternative to CVD fluoride tungsten technology [J]. Journal de Physique IV (Coloque),1991,1(2):865-71.2.
    [57]Leeni Hirsivaara, Matti Haukka. Intramolecular hydrogen bonding and cation p-interactions affecting cis-trans isomerization in tungsten hexacarbonyl derivatives of2-pyridyldiphenylphosphane and triphenylphosphane [J]. Inorganic Chemistry Communications2000,3:508-510.
    [58]Donald J. Darensbourg, Brian J. Frost, Agnes D. Coordination Chemistry, Structure, and Reactivity of Thiouracil Derivatives of Tungsten Hexacarbonyl:A Theoretical and Experimental Investigation into the Chelation/Dechelation of Thiouracilvia CO Loss and Addition [J]. American Chemical Society,1999,38(2):4715-4723
    [59]Klinkovsv, Kosarev V. F. Rein M. Cold spray deposition:significance of particle impact phenomena [J]. Aerospace Science&Technology,2005,9(7):582-591.
    [60]A.M. Lennon, K.T. Ramesh. The thermoviscoplastic response of polycrystalline tungsten in compression[J]. Materials Science and Engineering A,2000,276:9-12.
    [61]Stoltenhoff T., Voyer J.and Kreye H., Cold Spraying-State of the Art and Applicability [J]. Thermal Spray (2002):366-374.
    [62]安家财,杜三明,肖宏滨,张永振.等离子喷涂ZrO2/Al2O3陶瓷涂层的摩擦磨损性能[J].中国表面工程,2011,24(1):21-23.
    [63]T. Schmidt, F. Gartner, H. Assadi, et al. Development of a generalized parameter window for cold spray deposition [J]. Acta Materialia,2006,54:729-742.
    [64]R.C. Dykhuizen, M.F. Smith. Gas dynamic principles of cold spray[J]. Journal of Thermal Spray Technology,1998,7(2):205-212.
    [65]郭双全,葛昌纯,冯云彪,等.低成本等离子体球化技术制备热喷涂用球形钨粉的工艺研究[J].粉末冶金工业,2010,20(3):1-4
    [66]刘正春,王志法.钨粉的等离子体球化[J].稀有金属和硬质材料,1999,138:7-10.
    [67]张小锋,刘维良,郭双全,等.聚变堆中面向等离子体材料的研究进展[J].科技创新导报,2010,3:118-119.
    [68]张庆明,刘彦,黄风雷,等.材料的动力学行为[M].2006,北京:国防工业出版社.
    [69]李文亚,李长久,王豫跃,等.冷喷涂粒子参量对其碰撞变形行为的影响[J].金属学报,2005,41(3):282-286.
    [70]鲍泽斌.冷喷涂纯铜工艺优化设计及其性能研究[D].硕士学位论文.沈阳:辽宁工程技术大学.2004.
    [71]T.H.V. Steenkiste, J.R. Smith, and R.E. Teets. Aluminum coatings via kinetic spray with relatively large powder particles [J]. Surface and Coatings Technology,2002,154:237-252.
    [72]卜恒勇,卢晨.冷喷涂技术的研究现状及进展[J].材料工程,2010(1):94-98.
    [73]Vicek J.et al., Kinetic Powder Compaction Applying the Cold Spray Process---A Study on Parameters [J]. Thermal Spray (2001):417-422
    [74]Gilmore D.L.et al., Particle Velocity and Deposition Efficiency in the Cold Spray Process [J]. Journal of Thermal Spray Technology,1999, Volume8(4):578.
    [75]T. Schmidt, F. Gartner, H. Assadi, et al. Development of a generalized parameter window for cold spray deposition [J]. Acta Materialia,2006,54:729-742.
    [76]C.J. Li, W.Y. Li, and H.I. Liao. Examination of the critical velocity for deposition of particles in cold spraying [J]. Journal of Thermal Spray Technology,2006,15(2):212-222.
    [77]R.C. Dykhuizen, M.F. Smith. Gas dynamic principles of cold spray [J]. Journal of Thermal Spray Technology,1998,7(2):205-212.
    [78]李文亚,李长久,王豫跃,等.冷喷涂粒子参量对其碰撞变形行为的影响[J].金属学报,2005,41(3):282-286.
    [79]张庆明,刘彦,黄风雷,et al材料的动力学行为[M].2006,北京:国防工业出版社.
    [80]M. Grujicic, C.L. Zhao, C. Tong, et al. Analysis of the impact velocity of powder particles in the cold-gas dynamic-spray process [J]. Materials Science and Engineering A,2004,368:222-230.
    [81]A.M. Lennon, K.T. Ramesh. The thermoviscoplastic response of polycrystalline tungsten in compression [J]. Materials Science and Engineering A,2000,276:9-12.
    [82]尚晓江,苏建宇,王化锋,等ANSYS/LS-DYNA动力分析方法与工程实例(第二版)[M].2008,北京:中国水利水电出版社.
    [83]柳学全.羰基金属的性质、合成及其在功能材料中的应用[J].功能材料,2008,5(1):12-15.
    [84]K.Tokunanga, N.Yoshida, et.al. Behavior of Plasma-sprayed tungsten coatings on CFC and graphite under hign heat load [J]. Journal of Nuclear Materials,266-269(1999)1224-1229.
    [85]Majetich SA, Jin Y. Magnetization directions of individual nanoparticles [J]. Science,1999,284(5413):470-473.
    [86]Stephan L, Mostafa A., et al.Spectral properties and relaxation dynamics ofsurface plasmon electronic oscillations in gold and silver nanodots andnanorods [J]. J Phys Chem B1999,103(40):8410-8026.
    [87]章娴君,王显祥.羰基金属气相沉积方法进行A1203基片表面合金化研究[J].西南师范大学学报(自然科学版),2002,27(4),521-523
    [89]Zarur AJ, Ying JY. Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion [J]. Nature,2000,403(6765):65-67.
    [90]Gesheva K A, Abrosimova V, Beshkov G D. CVD car-bonyl thin films of tungsten and molybdenum andtheir silicides a good alternative to CVD fluoridetungsten technology [J]. Journal de Physique IV (Coloque),1991,1(2):865-71.2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700