大庆外围低渗透油田分类方法及开发对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着大庆外围油田开发的不断深入,生产中的许多矛盾也逐渐显现出来,概括起来有3个方面:一是已开发油气田含水快速上升,产量递减加快,开发效果变差;二是开发储量品位越来越低,主要集中在特低丰度和特低渗透储层中,注水开发的技术难度越来越大;三是开发潜力和有效措施逐渐减少,成本上升,投入与产出的矛盾日益加大。在这种形势下,原有的评价方法、优选技术,开采方式和方法难以满足低渗透油田持续发展的需要,针对这一情况,本文从低渗透油藏微观结构特征入手,对低渗透油藏进行了分类,在此基础上提出了开发对策,从而促进外围低渗透低品位油藏的有效动用和商业性开发。
     为了研究低渗透油层孔隙结构的特征,本文利用恒速压汞实验、金相电镜实验,结合现场的已有实验数据,研究了不同渗透率天然岩心中渗透率、平均孔道半径、平均喉道半径、孔喉比、迂曲度、配位数、形状因子、分形维数等参数的的分布规律,取得以下认识:不同低渗透岩石孔道半径分布规律较为接近,喉道半径分布差异明显,孔道半径与渗透率相关性较差,喉道半径与渗透率具有明显规律性,二者呈正相关关系;总体上看,低渗透储层的渗透率主要受喉道半径控制;相同渗透率条件下,其喉道分形维数与孔道分形维数无明显大小关系,说明喉道与孔道在复杂程度上差异较小。
     低渗透储层水驱效果除了受孔隙结构影响外,还与低渗透岩石的渗流规律有关。本文应用核磁共振方法对可动流体饱和度进行了分析,结果表明:可动流体饱和度与驱油效率间存在很好的对应关系,可动流体饱和度比渗透率参数更能反映储层开发潜力;通过启动压力实验分析,渗透率小于1×10-3μm2时,随着渗透率的降低启动压力梯度急剧增加,说明渗透率低于1×10-3μm2时,常规水驱方法已经不适用,需要探索其它驱替方法;对比水驱启动压力梯度与气驱启动压力梯度变化曲线,可知水驱与气驱启动压力梯度变化规律近似,水驱启动压力梯度大于CO2驱启动压力梯度,岩芯渗透率大于0.5×10-3μm2时,气体启动压力梯度数值较小,随渗透率增大启动压力梯度下降趋势变缓;相对渗透率曲线研究表明:低渗透储层的渗透率与采收率有较强的相关性,随着渗透率的降低,驱油效率降低,当渗透率低于10×10~(-3)μm~2时,采收率降低幅度增大,最低可降至16.5%,这说明渗透率低于10×10~(-3)μm~2时水驱效果较差;孔喉比对残余油饱和度有较大影响,随着孔喉比增大,残余油饱和度增大,两相流跨度变小,水驱采收率降低。
     在系统研究低渗透岩石孔隙结构和渗流特征的基础上,选取了渗透率、孔喉比、喉道半径和启动压力梯度4个参数,利用聚类分析法把大庆外围储层分为4类;分析统计了大庆外围区块的特征,结果如下:外围区块总体上埋藏深度较浅,1500m以下的区块有52个,地质储量占65%;外围油田有49个区块发育潜裂缝、微裂缝和显裂缝,地质储量占78.3%,26个区块裂缝不发育,朝阳沟、榆树林、头台油田的裂缝以东西向为主,其它方向发育裂缝较少;外围已开发区块储量丰度21×10~04t/km~2~92×10~4t/km~2,其中储量丰度小于50×10~4t/km~2的低丰度区块有25个,地质储量占44.8%,,丰度大于50×10~4t/km~2的特低丰度区块有54个,地质储量占扶杨油层总量的87.7%,平均储量丰度为58.9×10~4t/km~2,总体上属于较低丰度。针对以开发区块选含水率、注采比、水驱控制程度和采油速度对开发水平分级,为开发对策的制定提供了依据。
     根据大庆外围油田已开发区块的生产数据,研究了加密调整措施的作用,分析了大庆外围不同渗透率油田加密调整效果,确定不同类型油藏的加密调整方法;开展了低渗透储层的压敏效应实验,结果表明:无裂缝存在时,随着喉道半径减小,压敏效应变的显著,喉道半径是影响压敏效应的关键因素,渗透率相同时,裂缝对压敏现象影响较小;重点对超前注水、二氧化碳驱的机理进行了研究,给出了不同渗透率储层的超前注水和二氧化碳驱油效果;针对空气驱进行了可行性研究,当渗透率大于0.2×10-3μm~2时,能够形成稳定的燃烧前缘,随渗透率降低,燃烧前缘的推进速度有所降低,但降低幅度较小;不同孔喉比,在相同的轴向比例位置上,温度的上升速度不同,当孔喉比较小的时候,温度上升的速度快,说明孔喉比对燃烧效率有一定影响。
     分析了径向水平钻孔技术的应用效果,该技术具有可定向和可定深的特性,可以对受效差的井进行改造,缩短注采排距,完善注采关系,能够调整层间或平面矛盾。在低渗透油藏分类的基础上,结合文中给出的开发水平分级情况,针对不同类型油藏提出了开发对策,为大庆外围区块的合理开发提供了理论依据。
With the further development of the outskirt area surrounding Daqing oil field, many problems related to production appear gradually.Firstly, the production in the development process of the oil field is becoming less effective, the increase of the water cut and the decline of the production are both much faster than before; Secondly, the less grade of the production formation is, the more difficult in water flooding development technique is. The reservoir is mainly located in the area with much lower abundance and permeability.Thirdly, the develop -pment potential and effective methods decrease gradually, while the cost and the contradiction-n between input and output are increased day by day. In this condition, the requirement of continuous development of the low permeable oil field cannot be satisfied by the original evaluation method, optimum technologies, production modes and methods. According to this condition, the permeable reservoirs are classified by the study of micro characteristics of low permeable reservoirs in this paper. Based on this, production strategies are promoted to improve the effective production and commercial development of the outskirt low permeable and grade reservoirs.
     In order to study the characteristic of the pore configuration in the low permeable formation, the constant flowing rate mercury-injection and Kim Sang-electron microscope experiments are adopted to study the parameters pattern of the natural cores with different permeabilities such as: permeability, average porous channel radium, average throat channel radium, pore throat ratio, tortuosity, coordinate number, form factor and fractal dimensionality. Some recognition can be obtained by followings: the distribution pattern of the pore channel radium is similar with different low permeable rock; however, the difference in distribution of the throat channel radium is apparent. The correlation between the throat channel radium and permeability is less, on the contrary, there is apparent pattern of the correlation between the throat radium and permeability. In a word, the permeability of low permeable reservoir is controlled by the throat radium. At the condition of the same permeability rock, there is no apparent relationship between the throat channel fractal dimensionality and the pore channel fractal dimensionality which can be concluded that the difference in complexity between throat channel and pore channel is small. The water flooding effect in low permeable reservoirs is not only affected by pore structure but also by the pattern of fluids flowing in porous media in low permeable rock. The mobile fluid saturation analysis is made by the nuclear magnetic resonance method, as the results indicate that: There is a favorable correlation between the mobile fluid saturation and the sweepefficiency,the production potential of the reservoir can be better revealed by the mobile fluidsaturation rather than the parameters of the permeability.
     Based on the experimental analysis of the actuating pressure test,when the actuatingpressure gradient permeability is less than 1×10~(-3)μm~2,the actuating pressure will increasesharply with the decreased permeability,which indicate that when the permeability is lowerthan 1×10~(-3)μm~2,the other displacing methods should be explored because of the unfavorableuse of water flooding.Based on the comparison between the cure of actuating pressuregradient of water flooding and that of gas flooding,it indicates that the alternation pattern ofactuating pressure gradient is similar between the water flooding and gas flooding. When theactuating pressure of water flooding is higher than that of CO_2 flooding,and the permeabilityis higher than 0.5×10-3μm2,the value of the gas actuating pressure gradient is lower,andthe trend of the decrease in actuating pressure gradient will be flatten out with the increase ofthe permeability.According to the relative permeability curves,there is a more strong
     correlation between the permeability and recovery in the low permeable reservoirs,and thesweep efficiency will decrease with the decrease of the permeability. When the permeability islower than 10×10~(-3)μm~2,the decrease amplitude of the recovery is the most,the lowestvalue can be to 16.5%,which can indicate that when the permeability is lower than10×10~(-3)μm~2,the water flooding effect will be worse; the pore throat ratio has a greatinfluence in the residual oil saturation,with the increase of the pore throat ration,theresidual oil saturation will be increased,if the stretch of two phase flowing fluids is less,the recovery of water flooding will be decreased.
     Based on the research on the low permeable rock pore structure and the characteristic offluid flowing in porous media,four parameters such as permeability,pore throat ratio,throat channel radium and actuating pressure gradient are adopted. Cluster analysis is adoptedto classify the outskirt reservoir of Daqing oil field into four categories: The characteristics ofoutskirt reservoirs in Daqing oil field are analyzed,following results can be obtained: Thedepth for the whole outskirt areas is lower,and there are 52 reservoirs which is less than1500m,the reserve ratio is 65%. There are 49 reservoirs in outskirt with shallow fracture,micro fracture and apparent fracture,the formation reserve is 78.3%. There are 26 reservoirwithout fractures,the fractures are mainly in east-west direction in Chao Yanggou,YuShulin and Tou Tai oil fields. There are less fractures in other directions. The reservesabundance of developed outskirt reservoirs is 21×10~4t/km~2~92×10~4t/km~2,and there are 25reservoirs with the reserves abundance less than 50t/km2,which is 44.8% of the geologicreserve. There are 54 reservoirs with the much lower reserves abundance more than 50 t/km2, where the geologic reserve is the 87.7% of the Fu Yang formations, the average reserves abundance is 58.9×10~4t/km~2, which belongs to lower reserves abundance.The water cut, injection production ratio, control degree of water flooding and production rate are chosen to classify the developed reservoirs, which provide the foundation for the development strategy.
     According to the production data of outskirt developed reservoirs in Daqing oil field, the effect of the infill adjustment is studied. The adjustment infill effect of the reservoirs with different permeability in Daqing oil field is analyzed, plans of infill adjustment are determined for different types of reservoirs. The experiments on pressure sensitive effect of low permeable reservoirs are operated. The results indicate that when there is no fracture, the pressure sensitive effect will be apparent with the decrease of the throat radium. The main factors that affect the pressure sensitive effect can be due to the throat radium. When the permeability is the same, the fracture will affect a little on the pressure sensitive , the degree of pressure sensitive effect will be higher with the increase of the fracture density.The research is mainly focused on the theory of advancing water injection and CO2 flooding, the displacement effects of different type reservoirs with advancing water injection and CO2 flooding are provided; The air displacement possibility is studied, when the permeability is higher than 0.2×10-3μm2, the stale burning front can be formed. With the decease of the permeability, the displacing rate of the burning front will decrease, but which is less. At the same position of axial ratio, the increasing rate of temperature will be different with different pore throat ratio. When the pore throat ratio is less, the increase of the temperature will be larger which can indicate that the burning efficiency could be influenced by the pore throat ratio. The effect of horizontal drilling process in radial direction is analyzed, this technique with the characteristic of direction determination and depth determination. It can also improve the less effective layers or wells condition, short the space between the injection and production wells, improve the relationship between the injection and production, which can also adjust the contradiction of the layer space or the plane.
     Based on the classify of the low permeable reservoirs, combined with the development grading methods, according to the different kinds of reservoirs, the production development strategies are promoted, also, the theoretical foundation of the reasonable development of the outskirt reservoirs in Daqing oil field is provided.
引文
[1]徐运亭,徐启,郭永贵.低渗透油藏渗流机理研究及应用[M].北京:石油工业出版社,2006:3-4.
    [2]胡志明,把智波,熊伟.低渗透油藏微观孔隙结构分析[J].大庆石油学院学报,2006,30(3):51.
    [3]高慧梅,姜汉桥,陈民峰.储层孔隙结构对油水相对渗透率影响微观模拟研究[J].西安石油大学学报(自然科学版),2007,22(2):59.
    [4]高旺来.安塞低渗油田孔隙结构对渗流特征曲线的影响[J].石油勘探与开发,2003,30(1):79.
    [5]中国石油学会石油工程学.不同类型油气藏高效开发技术论文集[M].北京:石油工业出版社,2001:146~154.
    [6]王文环,袁向春,王光付等.特低渗透油藏分类及开采特征研究[J].石油钻探技术,2007,35(1):84-85.
    [7] SoederD JChowdiah,Prasan.Pore geometry in high-and low-permeability sandstones, travis peak formation,East Texas[C].SPE,1990,11729.
    [8]何更生.油层物理[M].北京石油工业出版社,1993:202-204.
    [9]陈杰,周改英,赵喜亮.层岩石孔隙结构特征研究方法综述[J].特种油气藏,2005,2(4),12-14.
    [10]朱永贤,孙卫,于锋.应用常规压汞和恒速压汞实验方法研究储层微观孔隙结构[J].天然气地球科学,2008,19(4):553-556.
    [11] YuanHH,Swanson B F.Resolving pore-space charater-istics by rate-controlled porosimetry[J].SPE,1989,3:19-24.
    [12]王金勋,杨普华,刘庆杰.应用恒速压汞实验数据计算相对渗透率曲线[J].石油大学学报(自然科学版),2003,27(4):67-69.
    [13]胡勇,朱华银,万玉金.大庆火山岩孔隙结构及气水渗流特征西南石油大学学报[J].西南石油大学学报,2007,29(5):64-65.
    [14]林玉保,张江,刘先贵,周洪涛.喇嘛甸油田高含水后期储集层孔隙结构特征[J].石油勘探与开发,2008,32(5),215-219.
    [15]朱永贤,孙卫,于锋.应用常规压汞和恒速压汞实验方法研究储层微观孔隙结构[J].天然气地球科学,2008,19(4):554-556.
    [16]Banavar J R,Schwartz L M.Magnetic Resonance as a Probe of Permeability in Porous Media[J].Phys RevLett,1987,58(14):1411-1414.
    [17]Carati C,Maddinelli G.NMR Spectroscopy and Relaxation: Powerful Tools for Estimating Residual Fluids and Petrophysical Parameters[C].Trans Pap No K,16th SPWLA Europe Formation Evaluation Symp,Aberdeen,Scot,1994,10.
    [18] Brancolini A,Gossenberg P,Lyne Aetal.The Use of NMR Core Analysis in the Interpretation of Downhole NMR Logs[C].Annu SPE Tech Conf,Dallas,1995,10.
    [19] Borgia G C, Bortolotti V, Brancolini Aetal.Developments in Core Analysis by NMR Measurements [J].Magnet Resonance Imaging,1996,14(7-8):751-760.
    [20] Watson A T,Chang C T P.Characterizing Porous Media with NMR Methods[J].Prog Nucl Mag Res Spec,1997,31::343-386.
    [21] Marschall D. Magnetic Resonance Technology and Its Application in the Oil and Gas Industry[J].PetrolEng Int,1997,70(4):65,68-70.
    [22] Kleinberg K J.Estimation of Permeability[C].Soc Core anal NMR Workshop,Calgary,Can,1997,9.
    [23] Shafer J L. Integration of NMR with Other Petrophysical Information[C].Soc Core Anal NMR Workshop,Calgary,Can,1997,9.
    [24] Freedman R, Boyd A, Gubelin G,etal.Measurement of Total NMR Porosity Adds New Value to NMR Log-ging[C].Trans Pap No OO, 38th Annu SPWLA Logging Symp,Houston,1997,6.
    [25] Watson A T,Hollenshead J T,Uh J,etal.NMR Determination of Porous Media Property Distributions [R].Annual Reports on NMR Spectroscopy (v48,p113):Academic Press,2002.
    [26]刘曰强,乔向阳,魏尚武等.应用核磁共振技术研究吐哈盆地低渗透储层渗流能力[J].特种油气藏,2005,12(2):97-99.
    [27]佟国章,李丹,王胜新.核磁共振技术在低渗透砂岩油藏酸化研究中的应用[J].新疆石油天然气,2006,2(3):69-71,76.
    [28]宋明会,苑洪瑞,王爱霞.核磁共振录井技术在辽河油田N74区块的应用[J].录井工程,2006,17(3):47-48.
    [29]杨正明,苗盛,刘先贵.特低渗透油藏可动流体百分数参数及其应用[J].西安石油大学学报(自然科学版),2007,22(2):97-99.
    [30]熊伟,刘华勋,高树生.低渗透储层特征研究[J].西南石油大学学报(自然科学版),2009,31(5):89-92.
    [31] Petrovic A M,Siebert J E ,Rieke P E.Soil bulk density analysis in three dimensions by computed tomographic scanning[J].Soil Sci. Soc. Am. Jour.,1982,46(3):445-450.
    [32] Wang S Y etal.Reconstruction of oil saturation distribution histories during immiscible liquid-liquid displacement by computer-assisted tomography[J].AIChE Jour.1984,30(4):642-646.
    [33] Wellington S L,Vinegar H J.X-ray computerized to mography[J].JPT,1987,8:885-898.
    [34] Sedgwick G E, Miles-dixon E.Application of X-ray imaging techniques to oil sandsexperiments[J].JCPT,1988,27(2):104-110.
    [35] Withjack E M.Computed tomography for rock-property determination and fluid-flow visualization[J].SPE Formation Evaluation,1988,12:696-704.
    [36]Ander S H,Gantzer C J,Boone J M,etal.Rapid nondestructive bulk density and soil water content determination by compute dtomography[J].Soil Sci. Soc. Am.Jour.,1988,l:35~40.
    [37]戴贤忠,李小孟,王家新等.CT在油气藏储量计算参数测定中的应用[J].石油学报,1993,14(4):60-68.
    [38]李向良,李奎祥.利用计算机层析确定岩心的基本物理参数[J].石油勘探与开发,1999,26(6):86-91.
    [39] Schembre J M,Kovscek A R. 2004.Thermally Induced Fines Mobi-lization:It's Relationship to wettability and Formation Damage[J].SPE(86937):1~16.
    [40] Sun W,Qu Z,Tang G.Characterization of water injectionin low permeability rock using sandstone micromobles[J].Journal of Petroleum Technology,2004,56(5):71-72.
    [41]刘池洋,赵红格,王锋等.鄂尔多斯盆地西缘(部)中生代构造属性[J].地质学报, 2005,79(6):737-747.
    [42]孙卫,史成恩,赵惊蛰等.X-CT扫描成像技术在特低渗透储层微观孔隙结构及渗流机理研究中的应用[J].地质学报,2006,80(5):775-776.
    [43]张顺康,陈月明,侯健.岩石孔隙中微观流动规律的CT层析图像三维可视化研究[J].石油天然气学报,2006,28(4):102-107.
    [44]张顺康,陈月明,侯健.岩心CT微观驱替实验的图像处理研究[J].大庆石油地质与开发,2007,26(1):10-12.
    [45]文玲,李时平.五号桩油田沙三下湖相浊积扇砂体的扫描电镜研究[J].电子显微学报,2003,22(6):614-615.
    [46]包书景.扫描电镜及能谱仪在河南油田石油地质研究中的应用[J].电子显微学报,2003,22(6):607-607.
    [47]任康绪.扫描电镜对低渗透储油层砂岩基质内孔隙铸体法分析的剖析[J].化工矿产地质,1997,19(1):69-72.
    [48]李时平,白光勇,王彪.临盘油田盘二断块沙三下段储层的扫描电镜分析[J].石油大学学报,1996,20(1):123-126.
    [49]李学万,宋柏荣,高占琴.扫描电镜在辽河油田变质岩储层研究中的应用[J].电子显微学报,2005,24(4):335-336.
    [50]文玲.靖安油田延长组低孔低渗储层的扫描电镜研究[J].电子显微学报,2003,22(4):352-357.
    [51]胡书毅,尤少燕.济阳坳陷下第三系冲积扇储层的扫描电镜研究[J].电子显微学报,2004,23(4):471-471.
    [52] Hansbo S.Consolidation of Clay eith Special Reference to Influence of ertical Sand Drains [J].Swedish Geotech Inst Proc,1960,1482159.
    [53] Miller.R.J.et al.Threshold gradient for water flow in clay system[J].Proc.Soil.Sci.Soc.A -m.,1963,27:606-609.
    [54] Mitchell J K,Younger J S.Abnormalities in Hydraulic Flow Through inegrained Soils [J].ASTMSpech,1967,417:1062141.
    [55]刘慈群.有起始压降固结问题的近似解[J].岩土工程学报,1982,4(3):107-109.
    [56]闫庆来,何秋轩,任晓娟等.低渗透油层中单相液体渗流特征研究[J].西安石油学院学报,1990,5(6):126.
    [57]程时清.低速非达西渗流试井模型的数值解及其应用[J].天然气工业,1996,16 (3):32~35.
    [58]程时清.双重介质油藏低速非达西渗流试井有效井径数学模型及典型曲线[J].天然气工业[J],1997,17(2):32-36.
    [59]邓英尔,刘慈群.低渗多孔介质单相非定常渗流数值模拟[J].低渗透油气田,1998,4(3):56-59.
    [60]吴景春,袁满,张继成等.大庆东部低渗透油藏单相流体低速非达西渗流特征[J].大庆石油学院学报,1999,23(2):82-83.
    [61]陈永敏.低速非达西渗流现象的实验论证[J].重庆大学学报:自然科学版,2000,23 (增刊):59-60.
    [62]姚约东,葛家理.低渗非达西渗流规律的研究[J].新疆石油地质,2000,(3):45-48.
    [63]王延峰.大庆扶杨低渗透迪层渗流机理研究与应用[D].大庆石油学院博士论文,2003.
    [64] Samaniego V.F.etal.An investigation of transient flow of reservoir fluids considering pressure dependent rock and fluids properties[J]. SPEJ,1977,4:140-50.
    [65] Samaniego V.F.Cineo-Ley.H.Produetion rate deelinein pressure sensitive reservoirs[J]. JCPT,1980,6:75-86.
    [66] Samaniego V.F.Cineo-Lev.H.On the determination of the Pressure dependent charaeteristies of a reservoir through transient pressure testing[J]. SPE,1977,4..
    [67] Pedrosa.0.A.Jr..Pressure transient resPonse in stress sensitive formations[J]. SPE,1986,15115.
    [68] ZhangM.Y.etal.New insights in pressure transient analysis for stress-sensitive reservoirs[J]. SPE,1994,28420.
    [69]苏玉亮等.变形介质油藏开发特征[J].石油学报,2000,21(2):51-55.
    [70]宋付权,刘慈群.变形介质油藏压力产量分析方法[J].石油勘探与开发,2002,7(1):57-59.
    [71]宋付权.变形介质低渗透油藏的产能分析[J].特种油气藏,2002,9(4):33-35.
    [72]尹红军.变形介质油藏渗流规律和压力特征分析[J].水动力学研究与进展A集,2002,17(5):538-546.
    [73]秦积舜.变围压条件下低渗透砂岩储层渗透率变化规律研究[J].西安石油学院学报(自然科学版),2002,17(4):28-31.
    [74]李道品.低渗透砂岩油田高效开发对策论[M].北京:石油工业出版社,1997:4-5.
    [75]杨满平,任宝生,贾玉梅.低流度油藏分类及开发特征研究[J].特种油气藏,2006,13(4):48-49.
    [76]唐曾熊.油气藏的开发分类及描述[M].北京:石油工业出版社,1994:10.
    [77]王文环,袁向春,王光付等.特低渗透油藏分类及开采特征研究[J].石油钻探技术,2007,35(1):84-85.
    [78]赵澄林,胡爱梅,陈璧迁等.中华人民共和国石油天然气行业标准,油气储层评价方法(SY/T6295~1997)[S].北京:石油工业出版社,1998.
    [79]樊继宗.聚类分析法在油藏分类中的应用[J].内蒙古石油化工,2002,(29):124-126.
    [80]张祥忠,吴欣松.模糊聚类和模糊识别法的流动单元分类新方法[J].石油大学学报(自然科学版),2002,26(5):19-22.
    [81]冯国庆,张烈辉,沈勇伟.应用模糊聚类分析方法评价油藏质量[J].西南石油学院学报,2004,26(3):34-36.
    [82]宋子齐,刘青莲.灰色系统评价特低渗透油藏方法研究及应用[J].油气地质与采收率,2004,11(1):1-3.
    [83]陈军斌,肖述琴,等.油气井压裂后效果评价的系统聚类分析方法[J].天然气工业,2004,24(10):56-58.
    [84]闫铁,毕雪亮,王长江.基于支持向量机和聚类分析理论的钻具失效分析方法[J].石油学报,2007,28(3):136-138.
    [85]崔传智,赵晓燕.水平井模糊聚类及开发指标预测方法研究[J].河南石油2004,18(6):44-47.
    [86]彭放,吴国平.灰色规划聚类及其在油气盖层评价中的应用[J].湖南科技大学学报(自然科学版),2005,20(2):5-10.
    [87]尹太举,张昌民.濮53块流动单元分类方法研究[J].天然气地球科学,2005,16(3):299-301.
    [88]王志杰,温长云.运用灰色聚类方法确定储层非均质分布[J].成都理工大学学报(自然科学版),2006,33(3):271-275.
    [89]徐海波,李瑞.模糊聚类实现岩性自动划分[J].物探化探计算技术,2006,28(4):319-321.
    [90]刘洪林,朱秋影.模糊聚类分析及其在测井识别油气层中的应用[J].勘探地球物理进展,2005,28(6):425-427.
    [91]黄彦庆,张昌民.白碱滩油田六中区克下组储层综合评价[J].中国西部油气地质,2007,3(1):49-52.
    [92]洪余刚,赵华,梁波,等.利用地震属性聚类分析技术预测辽河油田有利油气聚集带[J].西安石油大学学报,2007,22(4):36-39.
    [93]张京津,赵书铮.ISODA TA模糊聚类方法在油水层判别中的应用[J].内蒙古石油化工,2008,4:95-96.
    [94]姜瑞忠,刘小波.指标综合筛选方法在高含水油田开发效果评价中的应用[J].油气地质与采收率,2008,15(2):99-101.
    [95]丁熊,谭秀成.基于模糊聚类分析的复杂碳酸盐岩储层定量评价[J].西安石油大学学报(自然科学版),2009,24(3):25-27.
    [96]杨亚娟,王秀娟,张莉.头台油田储层天然裂缝对注水开发的影响[J].西北大学学报(自然科学版),2001,21(1):72-73.
    [97]战剑飞等.特低渗透油藏井网优化设计方法研究[R].大庆油田有限责任公司科研项目评定材料,2001.
    [98]李莉,韩德金,周锡生.大庆外围低渗透油田开发技术研究[J].大庆石油地质与开发,2004,23(5):8.
    [99]王峰.低渗透油藏井网加密试验研究[J].特种油气藏,2006,13(3):61-62.
    [100]何英,杨正明,熊生春.低渗透油藏矩形井网产能计算研究[J].钻采工艺,2009,32(1):46-48.
    [101]王玉普,计秉玉,郭万奎.大庆外围特低渗透特低丰度油田开发技术研究[J].石油学报,2006,27(6):70-74.
    [102]赵竹梅,张维平.大庆肇源油田矩形井网压裂开发效果分析[J].断块油气田,2009,16(3):85-87.
    [103]王瑞飞,李小罗,李彪.计算超前注水中合理注水时间与极限注水时间的一种方法[J].河南石油,2003,17(6):22-23.
    [104]陈国利,项东.嫩303井低渗透超薄油层高产稳产的原因及启示[J].大庆石油地质与开发,2005,24(6):33-34.
    [105]马福军,胡景春,庄健.新立油田低渗透油藏超前注水技术实践与应用[J].特种油气藏,2005,12(3):48-52.
    [106]王鹏.牛圈湖油田西山窑组油藏超前注水开发实践[J].石油天然气学报,2005,27(4):500-502.
    [107]展转盈,吴新民,刘晓娟等.吴旗油田长6油藏超前注水开发技术及效果分析[J].内蒙古石油化工,2007,8:191-192.
    [108]张建良.苏北盆地中低渗油藏早期注水开发技术研究[J].断块油气田,2007,14(3):50-52.
    [109]金拴联,蒋远征,杨秋莲.安塞油田注水开发技术研究[J].西北地质,2008,41(1):116-118.
    [110]余贝贝,唐海,李东林.低渗油藏超前注水考虑启动压力梯度时的合理注水井距研究[J].内蒙古石油化工,2008(5):199-201.
    [111]赵春鹏,岳湘安,尤源.低渗储层超前注水最优化实验研究[J].钻采工艺,2008,12(2):33-40.
    [112]谢晓庆,姜汉桥,王全柱.低渗透油藏压敏效应与注水时机研究[J].石油学报,2009,30(4):575-577.
    [113]高建,王仲林,王家禄.低渗透超前注水储层油水分布[J].辽宁工程技术大学学报,2009,28:18-20.
    [114] Holm , L.W. , Josendal . V.A.: Mechanisms of Oil Displacement by Carbon Dioxide[J].Pet. Tech,1974,12: 27-36.
    [115] Holm,L.W.,Josendal.Effect of Oil Composition on Misible-Type Displacement by Carbon Dioxide[J].Soc. Pet. Eng. J,1982,2:87-98.
    [116] Yellig,W.F.,Metcalfe.Determination and Prediction of CO2 Minimum Misciblitity Presssures[J].Pet. Tech.,1980,1:160-65.
    [117] Mungan Carbon Dioxide Flooding-Fundamentals[J].Cdn.Tech,1981,3:87-92.
    [118] Warner H.R.An Evaluation of Miscible CO2 Flooding in Waterflooded Sandstone Reservoirs[J].Pet. Tech,1977,12:1339-47.
    [119]R.E.Hadlow,Exxon Co.USA, Update of Industry Experience with CO2 Injection[J].,SPE,1992,12(24928):4-7.
    [120] Vega Sankur ,A. S. Emanuel. A Laboratory Study of Heavy Oil Recovery with CO2 Injection[J].SPE,1983,3(11692):23-25.
    [121] Abdassah, Siregar, Kristanto.The Potential of Carbon Dioxide Gas Iejection Application in Improving Oil Recovery[J].SPE,2000,11(64730):7-10.
    [122] Kamal Morsi,John Leslie,Doug Macdonald.CO2 Recovery and Utilization for EOR[J].SPE,2004,11(88641):10-13.
    [123]李孟涛,杨广清,李洪涛.CO2混相驱驱油方式对榆树林油田采收率影响研究[J].石油地质与工程,2007,21(4):52-54.
    [124]郭平,李苗.低渗透砂岩油藏注CO2混相条件研究[J].石油与天然气地质,2007,28(5):688-690.
    [125]郑浩,马春华,宋考平.注入气体及注气压力对特低渗透油藏驱油效果影响实验研究[J].大庆石油地质与开发,2008,27(2):110-112.
    [126]李孟涛.低渗透油田注气驱油实验和渗流机理研究[D].中科院渗流力学研究所博士论文,2005.
    [127] [美]R桑德拉,张晓宜译.R F尼尔森合著.油藏注气开采动力学[M].北京:石油工业出版社,1987:1-200.
    [128] MOHAMMED R F,KEVIN O M.Low temperature oxidation of viscous crudeoils[J].SPE Reservoir Engineer-ing,1990,5(4):609-616.
    [129]杨德伟,王世虎,王弥康.火烧油层的室内实验研究[J].石油大学学报(自然科学版),2003,27(2):52-54.
    [130]王史文,刘艳波,孙明磊.草南95-2井组火烧油层矿场试验[J].西安石油大学学报(自然科学版),2004,19(6):31-34.
    [131]刘应忠,胡士清.高3 6 18块火烧油层跟踪效果评价[J].长江大学学报(自然科学版),2009,6(1):52-56.
    [132]李士伦等.国内外注气提高石油采收率技术回顾与展望[J].油气地质与采收率,2002,4:1-5.
    [133]李松林,王东辉,陈亚军.利用高压注空气技术开发[J].低渗透轻质油油藏特种油气藏,2003,10(5):36-40.
    [134]李士伦,张正卿,冉新权等.注气提高石油采收率技术[M].成都:四川科学技术出版社,2001.
    [135]庞彦明等编译.国外油田注气开发实例[M].石油工业出版社,2001.
    [136]郭平,刘建仪等.提高采收率的注气实验评价体系[J].新疆石油地质,2002,23(5):408-410.
    [137]郭平,彭鹏商.不同种类气体注入对原油物性的影响研究[J].西南石油学院学报,2000,22(3):57-60.
    [138]曹贤辉,彭鹏商等.中原油田低渗透油藏氮气驱矿场先导试验[J].大庆石油地质与开发,2002,21(3):68-69.
    [139]刘萍,赵忠贤等.卫42块特低渗透油藏氮气驱研究[J].江汉石油学院学报,2001,23(2):58-60.
    [140]林振山.非线性科学及其在地学中的应用[M].北京:气象出版社,2003.
    [141]刘式达,刘式适.分形和分维引论[M].北京:气象出版社,1993.
    [142]陈士华,陆君安.混沌动力学初步[M].武汉:武汉水利电力大学出版社,1998.
    [143]卢侃,孙建华,欧阳容百等编译.混沌动力学[M].上海:上海翻译出版公司,1990.
    [144]苗东升,刘华杰.混沌学纵横论[M].北京:中国人民大学出版社,1993.
    [145]闫小龙.分形维数分析及其在地震剖面图像分割中的应用[D].南京理工大学硕士论文,2004.
    [146]同登科.具有应力敏感于地层渗透率的分形油气藏渗流问题的近似解析研究[J].石油勘探与开发,1999,26(3):53-57.
    [147]李廷芥,王耀辉,张梅英等.岩石裂纹的分形特性及岩爆机理研究[J].岩石力学与工程学报,2000,19(1):6-10.
    [148]何国良,向开理.变形双重介质分形油藏渗流数学模型及压力动态特征[J].西南石油学院学报(自然科学版),2002,24(4):24-27.
    [149]李沧松.岩溶地质分形预报方法的应用研究[D].西南交通大学博士论文,2006.
    [150]李永生.五大连池老黑山熔岩流分形特征及其成因研究[J].地质流体力学,2009,5.
    [151]胡风涛.水力喷射射孔工具的研制与应用[J].石油机械,2000,28(l):39-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700