生物造粒流化床污水处理工艺的物化—生化协同作用及工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物造粒流化床是将混凝造粒固液分离工艺应用于污水处理的一种尝试。通过对装置进水进行预充氧,维持流化床内的好氧状态,使微生物在流化床内得以繁殖与富集,从而实现物化与生化耦合作用下的污染物强化去除。前期针对城市生活污水的实验研究已证明了生物造粒流化床不仅能有效去除污水中悬浮态或胶体态的污染物,而且能去除较高比例的溶解性COD、氨氮和总磷,在总水力停留时间为1~2h的条件下,达到优于强化一级处理的效果。作为一种短流程的一体化污水处理工艺,生物造粒流化床具有良好的推广应用前景。为了揭示生物造粒流化床对溶解性污染物的物化-生化协同作用,本文设计了小型实验装置,采用人工配水,针对生物造粒流化床对溶解性污染物的去除特性、流化床中的颗粒污泥特性、混凝剂对污泥中微生物生理生态的影响开展了实验和理论研究。本文的主要工作及成果如下:
     (1)生物造粒流化床对溶解性污染物的去除特性
     在实验室条件下,建立小型生物造粒流化床装置并投入连续运行。生物造粒流化床连续操作控制条件为:PAC50mg/L,PAM3mg/L,上升流速u1mm/s,机械搅拌速度ω25rpm,回流污泥池水力停留时间2h,流化床泥层高度控制范围110cm~130cm;回流污泥池参数的控制为:平均每2个小时回流污泥0.5L至回流污泥池, SS0.82g/L,DO8mg/L。稳定运行条件下对溶解性COD、NH3-N及TP的平均去除率分别为85%、34%和46%。
     (2)生物造粒流化床对溶解性污染物的去除机理研究
     流化床对溶解性污染物去除过程中包括混凝、吸附和生物降解等物化和生化作用。量化溶解性COD在不同作用机理下的去除效果为:回流污泥池生化降解46%,混凝去除6%,吸附去除8%,流化床原位生化降解22%,未降解18%;溶解性NH3-N在不同作用机理下的去除效果为:回流污泥池生化降解9%,混凝去除5%,吸附去除10%,流化床原位生化降解11%,未降解65%;溶解性TP在不同作用机理下的去除效果为:回流污泥池生化降解27%,混凝去除1%,吸附去除3%,流化床原位生化降解17%,未降解52%。其中回流污泥池生化降解是完成在回流污泥池中的吸附于回流污泥中溶解性污染物的生化降解作用,因此对于附着于颗粒污泥的溶解性污染物而言,回流污泥池生化降解仍是生物降解的一部分。因此,生物降解对于溶解性COD、NH3-N和TP的总的作用分别为68%、20%和44%,说明生物降解是生物造粒流化床污染物去除的去除效果更为明显。
     (3)生物造粒流化床中颗粒污泥的物理和生化特性研究
     生物造粒流化床由下至上不同高度处的颗粒呈现良好的球形状态,颗粒粒径呈沿床高逐渐降低的趋势,其中,10cm、50cm、90cm三个高度的中值粒径d50依次为2.84、2.22、1.92mm。生物造粒流化床中颗粒污泥密度趋于均一,随粒径变化的趋势不明显,有效密度的范围为0.006~0.013g/cm3,远高于常规絮凝体的有效密度,说明通过生物造粒流化床操作形成的颗粒污泥具有更加紧实的构造。
     对流化床中的颗粒污泥进行生化特性分析可知,DO进入流化床内不断被消耗,从入口处的8mg/L降至顶部的1.7mg/L,且主要在底部被消耗。同时沿流化床自下而上MLSS逐渐降低,但每个断面MLSS的浓度远高于常规活性污泥法。细菌计数结果表明,流化床柱体内各断面生物量均在108的数量级,与常规活性污泥法的生物量基本相当,由于流化床底部营养基质丰富,DO充足,因此微生物量最高。随着流化床高度的增加,生物量呈降低的趋势。
     (4)生物造粒流化床中颗粒污泥中的微生物群落分布特性
     运用FISH技术对流化床中颗粒污泥的亚硝化菌和硝化菌鉴定分析得出,在流化床10cm、50cm、90cm处AOB/DAPI和NOB/DAPI分别达到3.4%,3.9%,2.5%以及1.8%,1.8%。1.4%。表明就亚硝化菌和硝化菌的分布而言,在流化床高度上没有较大变化的。在生物造粒流化床形成的颗粒污泥中AOB、NOB占DAPI染色总菌的比例与悬浮活性污泥法中的比例基本相同;而每个高度的颗粒污泥中NOB的数量均低于AOB的数量,这可能是由于NOB具有较低的比增值速率的缘故。
     从DGGE谱图可以看出,生物造粒流化床内微生物种群丰富,且因其独特的空间结构使好氧、兼性、厌氧微生物均能生长。生物造粒流化床处理工艺装置不同位置的活性污泥中微生物的结构相差不大,曝气池与流化床内微生物种群结构对比,少数细菌的种类与数量在曝气池中锐减(如兼性厌氧细菌Actinobacillus),但总体来说相差不大,其余优势种群都是好养菌群(Actinobacillus,Arcobacter sp.,Epsilon proteobacteria和Beta proteobacteria类群)。表明在微生物对于底物变化和DO浓度改变适应性较好,工艺运行较为稳定。
     为了提高生物造粒流化床的脱氮能力,针对生物造粒流化床颗粒污泥进行3个月的亚硝化细菌和硝化细菌的富集培养,运用PCR-DGGE技术鉴定出富集培养液中完全自养型硝化菌的优势菌群为Nitrosospira sp.(亚硝化螺菌)和Nitrobactersp.(硝化杆菌),且还被鉴定出异养细菌Pseudomonas sp.(假单胞菌)以及Pseudomonas aeruginosa(铜绿假单胞菌)。这些异养细菌Pseudomonas sp.为好氧反硝化菌,与自养硝化细菌起到了共生的作用。
     (5)混凝剂对颗粒污泥中功能菌群的影响研究
     在生物造粒流化床的操作条件基础上,利用SBR反应器进行了不投加和分别投加聚合氯化铝(PAC)和聚丙烯酰胺(PAM),对活性污泥生长及其污染物降解特性的对比试验。生物量分析和FISH检测结果表明投加PAC和投加PAM不会影响活性污泥中微生物的繁殖和生长。对污染物的去除效果分析发现,投加PAC和投加PAM的反应器都要比未投加药剂的反应器COD的去除率要高;三种反应器内各种形态的氮去除效果非常接近,说明PAC和PAM对微生物的硝化作用无抑制作用;且化学除磷能够提高磷的去除率。
     (6)生物造粒流化床颗粒污泥的动态稳定性研究
     利用基于两个生物造粒流化床的二级串联交替运行模式研究了流化床颗粒污泥的动态稳定性。生物造粒流化床采用二级串联交替运行模式后,总的水力停留时间延长,有效处理泥床高度加倍,溶解性污染物的去除得到强化,溶解性COD、氨氮、磷在二级柱的去除率分别为10%、3%以及5%。在交替轮回的一个周期内,由于铝盐混凝剂和高分子絮凝剂投量减小,颗粒的粒径减小,反之,颗粒粒径增大。在流化床多次轮回切换,颗粒污泥多次经历“破碎——成长——再破碎——再成长”的过程中,颗粒的有效密度并未发生明显变化,且此条件下形成的颗粒污泥仍保持着紧实的结构。流化床中的颗粒能保持良好的动态稳定性。
It was a new technology in wastewater treatment that fluidized-pellet-bedbioreactor(FPB) which could integrate the sludge granulation and pellet solid/liquidseparation in one reactor. By providing appropriate biological environment such asoxygen, the microbe were enrichment, and then the contaminants could be removedeffectively on the physical-biochemical effects. On the earlier research, it was provedthat the FPB could not remove particular or colloidal contaminants efficiently, but alsocould remove high percentage of soluble COD, nitrogen and phosphorus. And on thecondition of HRT1-2h, the removal of contaminants in FPB was more effective thanCEPT. As one type of short-process treatment, the prospect of popularization andapplication of FPB ischeerful. In order to reveal synergic physical-biochemical effectsof soluble contaminants, a small-scale FPB system with simulated wastewater wasestablished, on the research of the removal of soluble contaminants, physical andbiochemical property of pellets, and influence of coagulant on microbe in FPB. Resultsand findings in the study were including the perspectives as:
     (1) Removal of soluble contaminants in FPB
     On the condition of laboratory, a small-scale FPB system was established and along-term operation was carried out. The operational conditions in FPB weredetermined as: PAC dosage50mg/L, PAM dosage3mg/L, upflow velocity1mm/s,mechanical stirring speed ω25rpm, HRT in aerated tank2h, and the blanketheight110cm~130cm; the parameters in aerated tank were determined as: SS0.82g/L,DO8mg/L and recycled0.5L sludge to aerated tank in every2hours. Under the aboveconditions, the removal efficiency for soluble COD, nitrogen and total phosphorus was85%,34%and46%.
     The removal of soluble contaminants was including coagulation, adsorption andbiodegradation. The removal of soluble COD in different mechanisms was estimated aspreaeration46%,coagulation6%, adsorption8%, biodegradation22%, undegradematerial22%; the removal of soluble nitrogen in different mechanisms was evaluated aspreaeration9%,coagulation5%, adsorption10%, biodegradation11%, undegradematerial65%; the removal of soluble phosphorus in different mechanisms was estimated aspreaeration27%,coagulation1%, adsorption3%, biodegradation17%, undegradematerial52%. The preaeration fulfilled in the aerated tank was the biodegradation of solublecontaminants which were adsorbed in the recycle sludge. For soluble contaminantsadsorbed in the pellets, it was equivalent to extending aeration which was also the partof bio-degradation. Therefore, the removal of soluble COD, nitrogen and phosphoruswith biodegradation was68%,20%and44%, suggesting that biodegradation couldremove soluble contaminants effectively.
     (2) Physical and biochemical property of pellets in FPB
     The formation process of pellets, the morphological characteristics and sizedistribution of the pellets in the reactor were examined, and the following results couldbe obtained: the pellets in the reactor were sphere and their sized decreased along theheight of reactor, namely, the average sizes of pellets which were described as d50fromthe bottom, middle and upper of the reactor were2.84,2.22,1.92mm. It was found thatthe effective density of pellets slightly decreased with the increasing diameter. Theeffective density was in the range of0.006-0.013g/cm3, which was much higher than theactivated sludge and was showing the compact structure.
     As the analysis of the biochemical property of pellets, DO was continuouslyconsumed from8mg/L in the bottom to1.7mg/L on the top of the reactor, obviously,mainly consumed in the bottom. The MLSS in the reactor decreased along the height ofreactor which was much higher than the activated sludge. It was found that the biomassin the reactor was in the magnitude of108, which was close to the activated sludge. Thebiomass in the bottom of the reactor was highest as a result of the plenty of substrateand sufficient DO, and the biomass in the reactor decreased along the height of reactor.
     (3) Microbial community distribution in the pellets of FPB
     As the identification of nitrosobacteria and nitrobactor using FISH, it could be judged that the percentages of AOB/DAPI and NOB/DAPI from10cm,50cm,90cm inthe reactor were3.4%,3.9%,2.5%and1.8%,1.8%,1.4%respectively. There wasslightly changed along the height of reactor in the distribution of nitrosobacteria andnitrobactor. The percentages of AOB/DAPI and NOB/DAPI in the pellets of FPB wereclose to the activated sludge.
     It was shown from DGGE profile that the bacteria in FPB are abundant. Thebacteria structure in different position of FPB were slightly changed, and the amount ofbacteria such as Actinobacillus declined sharply in the aerated tank, but the anotherbacteria were stable which were Actinobacillus, Arcobacter sp., Epsilon proteobacteriaand Beta proteobacteri. It was revealed that the bacteria could be adapted to thevariation of contaminants and DO, and the operation of FPB could be stable.
     AOB and NOB from FPB pellets were purified in3months in order to improve thenitrogen removal. It was found that Nitrosospira sp., nitrobacter sp., pseudomonas sp.and pseudomonas aeruginosa could be identified from the enriched solution usingPCR-DGGE. Pseudomonas sp. could be revealed that was co-existence with NOB,which was denitrifying bacteria.
     (4) Influence of coagulant on microbe in FPB
     It was found that the influence of the coagulant was dominated in FPB on thebacterial community of sludge by comparing a set of SBR reactors with the samecondition of PAC and PAM addition. It was indicated that the addition of PAC and PAMcould not have obvious influence on nitrifying bacteria by means of biomass analysisand FISH technology. The removal efficiency of TP was increased significantly withPAC addition, and COD removal was improved with the addition of PAC and PAM.Howerver, there was no obvious improvement of nitrogen removal in the same reactors.
     (5) Stabilization of FPB with two alternate stages
     It was revealed that the mechanism of soluble contaminants removal and thestabilization of pellets in FPB with two alternate stages. The size of pellets decreaseddue to the lessening PAC and PAM; on the converse, the sizes of pellets were increased.After two stages alternating repeatedly, it was shown that the pellets got into the cycleof“broken-grown-broken-grown”, and the effective density of the pellets did not changeobviously, indicating the pellets possessed a dense structure on this operation. It was revealed from the experimental that the pellets had very good dynamic stability. Due tothe FPB with two stages and extending HRT, the removal efficiency of solublecontaminants could be enhanced.
引文
[1] Rickert D A, Hunter J V. General nature of soluble and particle organics in sewage andsecondary effluent[J]. Wat Res,1971(5):421-436.
    [2] Odegaard H. Optimized particle separation in the primary step of wastewatertreatment[J]. Wat Sci Tech,1998,31(10):43-53.
    [3] Coma J, Jabbouri A, Grasmicc A, et al. Intensive primary treatment of urbanwastewater[J]. Wat Sci Tech,1991,24(7):217-222.
    [4] Madigan M, Martinko J M, Parker J. Brock biology of microorganisms,8th ed [M].Englewood Cliffs, NJ: PrenticeHall,1997.
    [5] Lengeler J W, Drews G, Schlegel H G. Biology of the prokaryotes [M]. New York:Blackwell Science,1999.
    [6] Levine A D, Tchobanoglous G, Asano T. Size distributions of particulate contaminantswastewater and their impact on treatbility [J]. Wat Res,1991,25:911~922.
    [7] Hu Z Q, Chandran K, Smets B F, Grasso D. Evaluation of a rapid physical-chemicalmethod for the determination of extant soluble COD [J]. Wat Res,2002,36:617~624.
    [8]刘则华,任云利,肖稳发,陈思浩.水处理絮凝剂的研究进展,上海工程技术大学学报,2005,19(3):201一205.
    [9]陆柱,陈中兴,蔡兰坤,黄光团编著.水处理技术[M],华东理工大学出版社,2000.
    [10] Metcalf&fEddy,Inc, Wastestewater Engineering Treatment and Reuse[M],MeGwar一Hill Companies,2002.
    [11]傅文德编著.高浊度给水工程[M],中国建筑工业出版社,1994.
    [12]崔玉川,袁果编著.水处理工艺设计技术[M],水利电力出版社,1986.
    [13]上海市政工程设计研究院.城市污水生物脱氮除磷设计规程[M].北京:中国计划出版社,2003.
    [14]傅钢.悬浮填料滤池及生物氧化固液分离一体化废水处理新工艺的中试试验研究.同济大学工学博士学位论文,上海,2005.
    [15]杨守志,何方蔑编著.固液分离[M],冶金工业出版社,2003.
    [16] kenman.R.J.,Filtration and Separation [M],1974.
    [17]张林生编著.水的深度处理与回用技术[M],化学工业出版社,2004.
    [18]刘凡清,范德顺,黄钟编著.固液分离与工业水处理[M],中国石化出版社,2001.
    [19]刘茉娥编著.膜分离技术[M],化学工业出版社,2000.
    [20]耿土锁,袁嗣兵.过滤技术发展的回顾与展望[]J.西南给排水.1999(2):ll一15.
    [21]刘德绪,岳增运.多层滤料过滤技术在油田污水处理中的应用闭油田地面工程.1994,13(3):23一25.
    [22]张华,高负荷氧化沟处理城市污水效果分析[J],湖南大学学报,1998,25(5):25-27.
    [23]邵林广,南方城市污水处理工艺的选择[J],给水排水,2000,26(6):35-39.
    [24]裘湛,张之源,高速厌氧反应器处理城市污水的现状与发展[J],合肥工业大学学报,2002,25(1):3-6.
    [25]戴秋萍,胡勇, UASB一接触氧化一絮凝沉淀工艺处理低浓度生活污水小试研究[J],中国沼气,2002,20(2):9-11.
    [26] G. Andreottola, P. Foladori, M. Ragazzi and F. Tatàno, Experimental comparisonbetween MBBR and activated sludge system for the treatment of municipal wastewater[J],Water Science&Technology,2000,41(4–5):375-382
    [27] Friedler E, Kovalio R, Galil N.L, On-site greywater treatment and in multi-storeybuildings[J], Water science and techlology,2005,51(10):187~194.
    [28] M. Rodgers, M.G. Healy, J. Prendergast, Nitrification in a vertically moving biofilmsystem[J], Environmental Management,20067,9:242–246.
    [29] Rodgers M, Zhan XM, Gallagher B, A pilot plant study using a vertically movingbiofilm process to treat municipal wastewater[J], Bioresour Technol,2003,89(2):139-143.
    [30] Seviour R J, Mino T and Onuki M, The microbiology of biological phosphorus removalin activated sludge systems[J], FEMS Microbiology Reviews,2003,27(1):99-127.
    [31] Kuba T, Wschameister A and van Loosdrecht M C M, Effect of nitrate on phosphorusrelease in biological phosphorus removal system[J], Water Science and Technology,1994,30(6):263-269.
    [32] Ahn J, Daidou T, Tsuneda S, et al, Characterization of denitrifyingphosphate-accumulating organism cultivated under different electron acceptor conditionsusing polymerase reaction denaturing gradient gel electrophoresis assay[J], Water Research,2002,36(2):403-412.
    [33] Hu J Y, Ong S L, Ng W J, et al, A new method for characterizing denitrifying-phosphorus removal bacteria by using three different types of electron acceptors[J], WaterResearch,2003,37(3):3463-3471.
    [34] Kuba T, Smolders G J F, van Loosdrecht M C M, et al, Biological phosphorus removalfrom wastewater by anaerobic/anoxic sequencing batch reactor[J], Water Science andTechnology,1993,27(5-6):241-252.
    [35] Barker P S and Dold P L, Denitrification behaviour in biological excess phosphorusremoval in activated sludge systems[J], Water Research,1996,30(4):769-780.
    [36] Kuba T, van Loosdrecht M C M and Heijnen J J, Biological dephosphatation byactivated sludge under denitrifying conditions: pH influence and occurrence of denitrifyingdephosphatation in a full scale wastewater treatment plant[J], Water Science and Technology,1997,36(12):75-82
    [37] Lacko N, Drysdale G D and Bux F, Anoxic phosphorus removal by denitrifyingheterotrophic bacteria[J], Water Science and Technology,2003,47(11):17-22.
    [38]陈庆星,马玉麟,昆明市第三污水处理厂(ICEAS)工艺简介[J],给水排水,1994,20(8):17~20.
    [39]张大群,王秀朵, SBR工艺新DAT-IAT法及新型滗水器[J],中国给水排水,1996,12(1):26-29.
    [40] Goronszy M.C.,朱明权,循环式活性污泥法(CAST)的应用及其发展[J],中国给水排水,1996,12(6)4-10.
    [41]张统,王守中,少怀, ASS工艺处理北京航天城污水,国内外废水处理工厂设计实例[M],化学工业出版社,2000年.
    [42]羊寿生,一体化活性污泥法UNITANK工艺及其应用[J],给水排水,1998,24(11):16-17.
    [43]冯生华,澳大利亚IDEA工艺污水处理厂工艺简介[J],给水排水,1996,22(11):26-27.
    [44]方先金,Horst A. Jezierski,薛平,间歇式双向循环活性污泥法在工业废水处理中的应用[J],给水排水,2001,27(10):59-61.
    [45]万金保,王建永,反硝化除磷理论及运用现状[J],水处理技术,2008,3(34):7-10.
    [46] Brotone G, Saltare Ⅱi R, A lonso V, et al., Biological anoxic phosphorus removal theDephanox process[J], Water Science and Technology,1996,34(1-2):119-128.
    [47]王九思,陈学民等.水处理化学[M].化学工业出版社.2002年.
    [48] A.M.Farmer. Reducing phosphate discharges: the role of the1991EC urban wastewatertreatment directive. Wat.Sci.&Tech,2001,44(1):41-48.
    [49] Munch E V, Barr K. Controlled struvite crystallization for removing phosphorus fromanaerobic digester sidestreams. Water Res.2001.35(1):151-159.
    [50]中华人民共和国国家标准. GB8978-1996.污水综合排放标准.
    [51] H.A.Nicholls, D.W.Osborn. Bacterial stress:prerequisite for biological removal ofphosphorus[J]. Journal WPCF,1979,51(3):557-569.
    [52]郭永龙,武强,王焰新,等.分散式生活污水污染源的治理技术与方法述评[J].环境科学与技术,2004,27(1):100-102.
    [53] VAN LIER J B, LETTINGA G. Appropriate technologies for effective management ofindustrial and domestic wastewaters: the decentralized approach [J]. Wat Sci Tech.,1999,40(7):171-183.
    [54]钱文敏,陆轶峰,普红平,等.分散生活污水的土地处理综析[J].环境科学,2005,24(4):40-43.
    [55]孙铁珩,杨翠芬,赵学群.城市污水土地处理适宜性评价系统[J].中国环境科学,1998,18(6):506-509.
    [56]向敏,杨冠.厌氧颗粒污泥技术[J]. Science&Technology information,2009,5:432一433.
    [57]王建龙,张子健,吴伟伟.好氧颗粒污泥的研究进展[J].环境科学学报.2009,29(3):449一473
    [58] G.Y. Yue, H.T.JOO. Characterization of the Granulation Process During UASBStart-up[J]. Wat. Res.,1997,31(7):1573-1580.
    [59] Zeng A. P., Deckwer W.D. Bioreaction techniques under microaerobic conditions: Frommolecular level to pilot plant reactors[J]. Chemical Engineering Science,1996,51(10):2305-2314.
    [60] PENG D. Aerobic granular sludge—a case report[J]. Wat. Res.,1999,33(3):890-893.
    [61] BEUN J J. Aerobic granulation in a sequencing batch reactor[J]. Water Research,1999,33(10):2283-2290.
    [62] MISHIMA K, NA KAMURA M. Self-immobilization of aerobic activated sludge-apilot study of the aerobic upflow sludge blanket process in municipal sewage treatment[J].Water Sci. Technol.,1991,23:981-990.
    [63] SHIN H S, LIM K H, PARK H S. Effect for shear stress on granulation in oxygenaerobic upflow sludge bed reactor[J]. Water Science and Technology,1992,26(3-5):601-605.71:761-766.
    [64] FANG W, YANG F L, ZHANG X W. et al. Effects of cycle time on properties ofaerobic granules in sequencing batch airlift reactors[J]. World Journal of Microbiology andBiotechnology,2005,21:1379-1384.
    [65] QIN L, TA YJ H, LIU Y. Selection pressure is a driving force of aerobic granulation insequencing batch reactor[J]. Process chemistry,2004,39(5):579-584.
    [66] YANG S F, TAY J H, LIU Y. Inhibition of free ammonia to the formation of aerobicgranules[J]. Biochemical Engineering Journal,2004,17(1):41-48.
    [67] LIU Yu, YANG Shufang, Xu Hui, et al. Biosorption kinetics of cadmium(Ⅱ) on aerobicgranular sludge[J]. Process Biochemistry,2003,38:997-1001.
    [68] TAY J H, LIU Q S, LIU Y. Microscopic observation of aerobic granulation in sequentialaerobic sludge blanket reactor[J]. Journal of Applied Microbiology,2001,91:168-175.
    [69] X.C.Wang, Kan Li, Zi-Hua Li. Characteristics of physical adsorption ofsoluble matter by granules formed in a fluidized pellet bed reactor[J].Environmental Technology,2010.3:76-95.
    [70]钱冬梅.浅谈平板法测定生活饮用水菌落总数[J].民营科技.2009,7:15.
    [71]朱彤,张洪军等.应用FISH法对污水生物处理系统中细菌数量的计算[J].环境保护科学,2007, l(33):22一25.
    [72] Poon C S, Chu C W. The use of ferric chloride and anionic polymer in the chemicallyassisted primary sedimentation process[J]. Chemosphere,,1999,39(10):1573-1582.
    [73] Zhang Z B, Zhao J F, Xia S Q et al. Particle size distribution and removal by achemical-biological flocculation process [J]. Environ. Sci,`2007,19(5):559-563.
    [74]李侃,王晓昌,王振等.造粒流化床颗粒污泥对溶解性有机物的吸附机理研究[J].环境工程学报,2009,3(11):42-45.
    [75] Hammed B. H., EI-Khairary M. I. Batch removal of malachite green from aqueoussolutions by adsorption on oil palm trunk fibre: Equilibrium isotherms and kinectics studies[J].Hazardous Materials,2008,154:237-244.
    [76] Muthukumar M., Mohan D. Studies on polymer concretes based on optimized aggregatemix proportion[J]. European Polymer Journal,40(9):2167-2177.
    [77] Wanner O., GujerW. Competition in biofilms[J].Water Sci. Technol.,1984,17(2/3):27-44.
    [78]杨晋,于莉芳,陈青青等.原生动物捕食对低年龄SBR硝化性能的影响[J].中国给水排水.2009,25(3):11-14.
    [79] Chae K-J., Rameshwar T., Jamg A. et al. Analysis of nitrifying bacterial community inBioCube sponge media using fluorescent in situ hybridization (FISH) and microelectrodes[J].Environmental Management,2008,88:1426-1435.
    [80] Muyzer G, Waal E. C. de, Uitterlinden A G. Profiling of complex microbial populationsby denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplifiedgenes coding for16SrRNA[J]. Appl Environ Microbiol.,1993,59:695-700.
    [81]混凝剂对生物造粒流化床污泥中微生物生理生态的影响研究[J].环境污染与防治,2013(2), Vol.35(2):6-10.
    [82]李侃,王晓昌,王文东,李忠民.二级串联自造粒生物流化床污染物降解特性研究.[J]水处理技术.2010(36):34-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700