板叠式回热器段的介观研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热声热机是一种新型的热机,有着传统热机无法比拟的优点。例如结构简单、没有运动部件、稳定性好、寿命长、无污染等优点,使其成为热机技术研究中的一个热点。回热器段是热声热机的关键部件。热声学的核心是回热器内气体微团的介观热力学微循环。随着热声系统实验研究的不断深入,迫切需要借助粒子成像测速仪等先进的热物理测试技术。热声系统流场的介观测量研究还存在很多空白。Micro-PIV(显微粒子图像测速)技术是上世纪末在传统PIV技术基础之上产生和发展起来的。它运用现代计算机技术、激光技术和数字图像处理技术,突破了传统单点测量的局限性,实现了高精度、无干扰的微流体全场观测。
     本文使用Micro-PIV系统、自制荧光示踪粒子、透明回热器段模型等搭建了热声学介观测试平台。全文工作可以分为以下几个方面:
     1.回顾了近几年热声技术研究进展以及激光测速在热声领域的初步研究,总结了近年来热声技术研究的若干热点方向。
     2.初步建立了适用于热声系统介观测量研究中示踪粒子的模型,对热声交变流场中粒子的运动进行了数值计算,得出了可用于本热声系统介观测量实验的示踪粒子的粒径范围,1并定量分析了粒径、密度、频率等参数对粒子跟随性的影响。
     3.自制荧光示踪粒子,设计并加工透明板叠式回热器段模型,最后搭建热声学介观测试系统,采集并处理速度场图像,分析了回热器内的流场。最后对整个实验过程中发现的问题提出了几点改进措施。
Thermoacoustic engine which has incomparable advantages is a new kind of engine, different from the traditional engine. It has simple structure, no moving part, high reliability, long life-span and green gas media. So it has become a hotspot in the engine technology research. The regenerator is an important part in thermoacoustic engine. The essence of thermoacoustic technology is mesoscopic thermodynamic cycle of gas parcels in the regenerator. With the rapid development of experimental study of thermocoustics, it is urgent to draw support of particle image velocimetry and other advanced metrology of modern thermal Physics. There are a lot of blanks in the mesoscopic study of thermoacoustic flow field.
     Micro-PIV(Micro Particle Image Velocimetry ) has been a modification of PIV (Particle Image Velocimetry)which is a well-established technique for microscopic flows since the end of last century. It bases on modern computer technology,laser technology and digital image processing technology to provide a high precision and non-intrusive measurement technique in microscale devices, which breakthrough the traditional methods of single-point measurement.
     A thermoacoustic mesoscopic test platform is build based on MicroPIV system, self-made fluorescence tracer particles, and transparent regenerator section models. This thesis research work can be described as the following several aspects,
     1. The progress of thermoacoustic technology and laser velocimetry in this Research area is reviewed. Some recent research hotspots are summarized.
     2. The performance of tracer particles is very important to the experiment. A tracer particle model is constructed for experimental study of thermoacoustic mesoscopic measurement in this thesis. In the thermoacoustic oscillating flow field, a particle size range which is suitable for thermoacoustic mesoscopic measurement experiments is obtained. The particles’transient motions are investigated numerically, and the effects of several parameters, such as particle diameter and density, on particles’velocity in responses to oscillating flow are analyzed quantitatively.
     3. All of the tracer particles are self-made. Several transparent regenerator models are designed and processing, then, a thermoacoustic mesoscopic test platform is build. The velocity field image in the regenerator flow field is processing and analyzed after acquisition. According to the problems found in the experimental process, several measures for improvement are put forward.
引文
[1]李青.热机的新发展——热声热机[J].世界科技研究与发展, 2000,(04),59~63.
    [2]周刚.小型行波热声热机系统的研究[D].华中科技大学博士学位论文.2007.
    [3] Rott N. Thermoacoustics [J]. Adv. Appl. Mech, 1980, 20:135~175.
    [4] G.W.Swift.Thermoacoustics:A unifying perspective for some engines and refrigerators [M],2001.
    [5]郭方中.李青.热动力学[M],华中科技大学出版社,2007.
    [6] Peter In’T Panhuis, Sjoerd Rienstra, Jos Zeegers et al.Weakly non-linear thermoacoustics for general porous media[J].J. Acoust. Soc. Am.,2008,vol.123,3709.
    [7]张晓青.微型热声制冷及热声模拟的格子方法[R].清华大学博士后研究报告,2005.7.
    [8] Chen Y. Liu X, Zhang X Q. Thermoacoustic simulation with lattice gas automata [J] .Journal of Applied Physics, 2004, 95(8) :4497~4499.
    [9] Backhaus S, Swift G W. A thermoacoustic-stirling heat engine[J]. Nature, 1999, 399: 335~338.
    [10] Arman B, Wollan J J, Swift G.W, et al. Thermoacoustic natural gas liquefiers and recent developments[R].Cryogenics and Refrigeration-Proceedings of ICCR’2003, International Academic Publishers, 2003:123~127.
    [11] http://www.score.uk.com/research/default.aspx.
    [12] Berson , Blanc-Benon, Nonperiodicity of the flow within the gap of a thermoacoustic couple at high amplitudes[J], JASA Express Letters,2007.
    [13] Gaelle Poignand, Bertrand Lihoreau, Pierrick Lotton, et al, Optimal acoustic fields in compact thermoacoustic refrigerators[J], Applied Acoustics 68 (2007) 642~659.
    [14] Gordon P.Smith, Richard Raspet, Robert Hiller et al. Evanescent modes and anomalous streaming in a thermoacoustic device[J], Applied Acoustics 69 (2008) 23~30.
    [15]汪双凤,西尾茂文,曾朝霞.热声发动机在低温余热利用方面的研究[J].化工进展,2007年第26卷第3期,448~451.
    [16] http://www.chinadaily.com.cn/hqbl/2007-06/11/content_891519.htm.
    [17] M.E.H. Tijani, S. Spoelstra, Study of a coaxial thermoacoustic-Stirling cooler[J], Cryogenics 48 (2008) 77~82.
    [18] S.Backhaus,G.W.Swift, and R.S. Reid, High temperature self-circulating thermoacoustic heat exchanger[J].Applied Physics Letters, 2005(87),014102.
    [19] Insu Paek, James E. Braun, Luc Mongeau, Evaluation of standing-wave thermoacoustic cycles for cooling applications[J].International Journal of Refrigeration 30(2007)1059~1071.
    [20] Emmanuel C. Nsofor, Serdar Celik, Xudong Wang, Experimental study on the heat transfer at the heat exchanger of the thermoacoustic refrigerating system[J]. Applied Thermal Engineering, Volume 27, Issues 14-15, October 2007, Pages 2435~2442.
    [21] Daming Sun, Limin Qiu, Wu Zhang et al. Investigation on traveling wave thermoacoustic heat engine with high pressure amplitude[J], Energy Conversion and Management, Volume 46, Issue 2, January 2005, Pages 281-291.
    [22]胡剑英,罗二仓,戴巍,等.突破液氢温度的热驱动热声制冷机[J].科学通报, 2006,51 (23) : 2823~2824.
    [23]罗二仓,吴张华,戴巍,等.百瓦级行波热声发电机实验样机研究[J],科学通报,2007年,52(23)2818~2820
    [24]胡忠军.高频级联型热声系统研究[D].中国科学院博士论文,2007
    [25] Syed Nisar Ahmed, C.V. Krishna Reddy, R.R. Reddy et al, Thermoacoustic parameters of rare earth and reference materials at 298 K[J]. Materials Letters Volume 62, Issues 12-13, 30 April 2008, Pages 1871~1873.
    [26]金滔,张葆森,马文彬.利用热声效应的气体分离方法[J].深冷技术,2005(2),9~12
    [27]朱新亚,杨国胜,李洪义.微波热声成像的技术进展[J].医疗卫生装备, 2004年(11),33~35
    [28] Liming Nie, Da Xing, Diwu Yang,et al , Detection of foreign body using fast thermoacoustic tomography with a multielement linear transducer array[J], Applied Physics Letters, v 90, n 17, 2007, p 174109.
    [29]盛森芝,徐月亭,袁辉靖编著.热线热膜流速计.北京,中国科学技术出版社,2003
    [30]文键.基于PIV技术的换热器内部场分布特性研究.西安交通大学,博士论文,2007.
    [31]由长福,祁海鹰,徐旭常,显微PIV系统与实现.流体力学实验与测量. 2003,17(4):84~88.
    [32]许联锋,陈刚,李建中,等.气液两相流动粒子成像测速技术(PIV)研究进展.水力发电学报,2004,23(6):103~107.
    [33]邢丽燕.微通道结构对流动影响的数值模拟与实验研究,西安建筑科技大学,硕士论文,2006.
    [34]李凌风.两平行平板间微通道层流流动的实验研究和数值模拟,西安建筑科技大学,硕士论文,2004.
    [35] M. Gad-el-Hak, The fluid mechanics of microdevices, The Freeman scholar lecture, J. Fluids Eng. 121, 5~33 (1999).
    [36]王昊利,王元. Micro-PIV技术——粒子图像测速技术的新进展[J].力学进展. 2005, 35(1).77~99.
    [37]黄欢明.轴流泵内流场的数值模拟与PIV实验研究,上海交通大学,硕士论文,2008.
    [38]郭强.PIV图像处理技术在叶轮机械中的应用及开发,上海交通大学,硕士论文,2004.
    [39]段仁庆.基于Micro-PIV技术的电动微流体测量研究,大连理工大学,硕士论文,2006
    [40] Wang Haoli, Wang Yuan. Flow in the microchannel with rough wall: flow pattern and pressure drop. J. Micromech. Microeng. 2007, 17 (3): 586~596.
    [41] Wang Haoli, Wang Yuan. Influence of three-dimensional wall roughness on the laminar flow in microtube. Int. J. Heat Fluid Flow 2007, 28 (2): 220~228.
    [42]王昊利,王元,邢丽艳.微通道内流微尺度粒子图像测速技术实验研究,西安交通大学学报,2007,41(11):43~47.
    [43]戴光清,吴燕华,刘齐宏.乳化空气泡示踪粒子在PIV测速中的应用[J];四川大学学报(工程科学版); 2000年01期; 3~5.
    [44]戴光清,王滨蓉,杨庆.数字PIV技术在圆柱振荡流中的应用[J];四川大学学报(工程科学版); 2001年06期; 4~8.
    [45]董明哲.新型燃烧方式电控系统设计与PIV技术在发动机测量中的应用,天津大学,硕士论文,2005.
    [46]汪洋,王雪雁,董明哲等.用PIV技术研究汽油机的缸内气体流场,燃烧科学与技术, 2005年11卷6期, 520~523.
    [47]谢海波,傅新,杨华勇.典型微管道数值模拟与Micro-PIV检测研究,机械工程学报,2006,42(5):32~38.
    [48] Wang Ruijing, Lin Jianzhong,Xie Haibo,Velocity measurement of flow in the microchannel with barriers using micro-PIV, Journal of Visualization, 2006,9(2):209~217.
    [49]吴学成.多相流颗粒运动特性的激光测试技术研究,浙江大学,博士论文,2007.
    [50]张永泽,李嘉,赵文谦.紊流中悬浮颗粒跟随性对粒径和密度的依赖性分析,四川水力发电,1997,16(2),83~87.
    [51]黄社华,魏庆鼎.激光测速粒子对复杂流动的响应研究——Ⅰ颗粒非恒定运动数学模型及其数值方法,水科学进展, 2003,14(01),20~27.
    [52]黄社华,魏庆鼎.激光测速粒子对复杂流动的响应研究——Ⅱ典型流场中粒子跟随性的数值分析,水科学进展, 2003,14(01),28~35.
    [53]韩炜.风力机叶尖加小翼周围流场的PIV试验研究,内蒙古工业大学,硕士论文,2007.
    [54]谢东,王汉青.粒子图像速度场仪在室内气流场测试中的应用,建筑热能通风空调,2004,23(1),104~106.
    [55]王健,丁为民,杨红兵.温室风压通风室内外流场的粒子图像速度(PIV)试验,2008,24(5),221~224.
    [56] C D Meinhart,S T Wereley,M H B Gray,Volume illumination for two-dimensional particle image velocimetry, Meas.Sci.Technol.11(2000)809~814.
    [57] Tchen C M, Mean values and correlation prolblems connected with the motion ofsmall particles suspended in a turbulent fluids[M], Doctoral dissertation. Delft Holland. 1947.
    [58] Odar F, Hamilton W S, Forces on a sphere accelerating in a viscous fluid. J of Fliud Mechanics, 1964, 18 :302~314.
    [59] Hinze J O. Turbulence McGraw-hill Book Co[M] .2nd. 1975.
    [60]刘小兵,程良骏.水涡轮机械流场中的颗粒运动[J].华中理工大学学报, 1994,(01)10~16.
    [61] Brody J, Yager P. Low Reynolds number microfluidic devices. Technical Digest Solid State Sensors and Actuator Workshop.1996, 7: 105~108.
    [62] Odar F,Hamilton W S .Forces on a sphere accelerating in a viscous fluid[J].J Fluid Mech,1964,18:302-314.
    [63]刘应中,缪国平.高等流体力学[M],上海交通大学出版社,2000.
    [64]罗惕乾,流体力学.机械工业出版社(第二版)[M],2003.
    [65]闻建龙,陈汇龙,王军锋.荷电两相流动颗粒运动微分方程的建立,排灌机械[J],2000,21(4),43~45.
    [66]张永泽,李嘉,赵文谦.紊流中悬浮颗粒跟随性对粒径和密度的依耐性分析[J],四川水力发电,1997,16(2),83~87.
    [67]肖美添,刘华信,朱艳.工业炉旋风预燃器煤粉颗粒运动轨迹.华侨大学学报(自然科学版),2001,22(3):303~308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700