低温烧结Ba_(6-3x)(Nd_(1-y)Bi_y)_(8+2x)Ti_(18)O_(54)体系陶瓷研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以制备高介电常数低温烧结陶瓷材料为目标,通过添加不同烧结助剂来降低Ba_(6-3x)(Nd_(1-y)Bi_y)_(8+2x)Ti_(18)O_(54) (x=2/3,0≤y≤1) (BNTB)系统陶瓷的烧结温度,研究了各种烧结助剂和实验工艺对BNTB系统陶瓷烧结性能、相组成、微观结构和介电性能的影响,并揭示了其低温烧结的机理。主要研究内容及结果如下:
     1.添加Bi_2O_3-TiO_2复合氧化物将Ba_(6-3x)(Nd_(1-y)Bi_y)_(8+2x)Ti_(18)O_(54) (x=2/3,y=0.2) (BNTB0.2)陶瓷的烧结温度降到了1160℃,这是低温时形成的Bi_2O_3液相和Bi_2O_3-TiO_2低共熔液相的作用。CaO-B_2O3-SiO_2 (CBS)玻璃和Li2O-B_2O3-SiO_2 (LBS)玻璃将Ba_(6-3x)(Nd_(1-y)Bi_y)_(8+2x)Ti_(18)O_(54) (x=2/3,y=0.6) (BNTB0.6)陶瓷的烧结温度降到了900℃以下,它们的熔点分别为700℃和744℃,在低温时形成液相,促进BNTB0.6陶瓷的烧结。CBS玻璃中Ca离子对BNTB0.6陶瓷中Ba离子的取代以及LBS玻璃和BNTB0.6陶瓷生成Li_(0.5)Nd_(0.5)TiO_3的反应都能促进BNTB0.6陶瓷的烧结。复合添加LBS玻璃和LiF-BaF2将BNTB0.6陶瓷的烧结温度降到了850℃,这是因为LiF-BaF2中的F离子取代LBS玻璃结构中的部分O离子,使LBS玻璃中的负离子团解聚,引起LBS玻璃熔体粘度降低,加快液相烧结过程。
     2.随着Bi_2O_3-TiO_2复合氧化物添加量的增加,BNTB0.2陶瓷的εr和τε增大,这是由其晶胞体积的增大和Bi离子对Nd离子的取代引起的,而其tanδ则先减小后增大。添加CBS玻璃和LBS玻璃的BNTB0.6陶瓷,随着其晶粒长大,气孔减少,致密度提高,BNTB0.6陶瓷的εr增大,tanδ减小,而当CBS玻璃和LBS玻璃过量时,又使BNTB0.6陶瓷的气孔增加,致密度降低,导致其εr减小,tanδ增大,而且BNTB0.6陶瓷中出现的一些异常长大的晶粒也会使其tanδ增大。
     3.系统研究了实验工艺对添加10.0 wt% LBS玻璃和1.0 wt% LiF-BaF2的BNTB0.6陶瓷的烧结性能、微观结构和介电性能的影响,得到其预烧温度为1000℃、球磨时间为10h、烧结温度为850℃、保温时间为2h时性能最佳。
     4.得到了三种低温烧结且性能较好的高介电常数陶瓷材料。(1)添加7.0 wt% CBS玻璃的BNTB0.6陶瓷在875℃烧结2h的介电性能为:εr=73.34,tanδ=0.003,τε=(?)17ppm/℃。(2)添加10.0 wt% LBS玻璃的BNTB0.6陶瓷在875℃烧结2h的介电性能为:εr=75.34, tanδ=0.003,τε=(?)26ppm/℃。(3)复合添加1.0 wt% LiF-BaF2和10.0 wt% LBS玻璃的BNTB0.6陶瓷在850℃烧结2h的介电性能为:εr=75.89,tanδ=0.002,τε=(?)24ppm/℃。
For the purpose to prepare middle or high permittivity LTCC ceramic materials, Ba_(6-3x)(Nd_(1-y)Bi_y)_(8+2x)Ti_(18)O_(54) (x=2/3, 0≤y≤1) (BNTB) system ceramics were selected as the research objects in this dissertation. The sintering temperature of BNTB system ceramics was reduced by adding different sintering aids. The effects of different sintering aids and experimental techniques on sintering behavior, phase composition, microstructure, dielectric properties and the low temperature sintering mechanisms were studied systematically. Research contents and results are as follows:
     1. The addition of Bi_2O_3-TiO_2 composite oxide can decrease the sintering temperature of Ba_(6-3x)(Nd_(1-y)Bi_y)_(8+2x)Ti_(18)O_(54) (x=2/3,y=0.2) (BNTB0.2) ceramic to 1160℃, which was caused by the Bi_2O_3 liquid phase and Bi_2O_3-TiO_2 eutectic liquid phase. The addition of CaO-B_2O3-SiO_2 (CBS) glass and Li2O-B_2O3-SiO_2 (LBS) glass can decrease the sintering temperature of BNTB0.6 ceramic to below 900℃. The melting point of CBS glass is about 700℃and the melting point of LBS glass is 744℃, which can form liquid phase at low temperature and promote the sintering process of BNTB0.6 ceramic. The substitution of Ba ions in BNTB0.6 by Ca ions in CBS glass and the reaction between LBS glass and BNTB0.6 ceramic to produce Li_(0.5)Nd_(0.5)TiO_3 can accelerate the sintering of ceramic. The combined addition of LBS glass and LiF-BaF2 can decrease the sintering temperature of BNTB0.6 ceramic to 850℃. The substitution of oxygen ions in LBS glass structure by F ion in LiF-BaF2 can disaggregate the anion conglomeration, which can decrease the viscosity of LBS molten glass and accelerate the liquid phase sintering process.
     2. With the increase of Bi_2O_3-TiO_2 composite oxide, theεr andτεof BNTB0.2 ceramic increase, which was caused by the increase of unit cell volume of BNTB0.2 ceramic and the substitution of Nd ions in BNTB0.2 by Bi ions in Bi_2O_3-TiO_2. The tanδof BNTB0.2 ceramic first decrease and then increase. As for BNTB0.6 ceramic doped with CBS glass and LBS glass, with the growth of grains, the decrease of pores, the increase of density, the dielectric constant of BNTB0.6 ceramic increased and the dielectric loss of BNTB0.6 ceramic decreased. The excessive CBS glass and LBS glass led to the increase of pores and the decrease of density, which caused the decrease of dielectric constant and the increase of dielectric loss. The abnormal grain growth of BNTB0.6 ceramic would also caused the increase of dielectric loss.
     3. The effects of experimental techniques on the sintering behavior, microstructure and dielectric properties of BNTB0.6 ceramic doped with 10.0 wt% LBS glass and 1.0 wt% LiF-BaF2 were studied systematically. The optical properties were achieved when presintering temperature is 1000℃, milling time is 10h, sintering temperature is 850℃and soaking time is 2h.
     4. Three kinds of dielectric ceramics which had excellent properties were acquired. (1) The BNTB0.6 ceramic doped with 7.0 wt% CBS glass sintered at 875℃for 2h had excellent dielectric properties ofεr=73.34, tanδ=0.003,τε=(?)17ppm/℃. (2) The BNTB0.6 ceramic doped with 10.0 wt% LBS glass sintered at 875℃for 2h had excellent dielectric properties ofεr=75.34, tanδ=0.003,τε=(?)26ppm/℃. (3) The BNTB0.6 ceramic doped with 1.0 wt% LiF-BaF2 and 10.0 wt% LBS glass sintered at 850℃for 2h had excellent dielectric properties ofεr=75.89, tanδ=0.002,τε=(?)24ppm/℃.
引文
[1]今中佳彦.多层低温共烧陶瓷技术.北京:科学出版社,2010.
    [2]王悦辉,周济,崔学民等.低温共烧陶瓷(LTCC)技术在材料学上的进展.无机材料学报,2006,21(2):267~276.
    [3]梁军,梁飞,吕文中.低温共烧微波介质陶瓷材料研究进展.电子元件与材料,2009,28(3):76~78.
    [4]曾志毅,王浩勤,蔚旭波.低温共烧陶瓷(LTCC)技术应用进展.磁性材料及器件,2007,38(2):7~10.
    [5]孙慧萍. (Ca,Nd)TiO3微波介质陶瓷离子置换、低温烧结及应用特性的研究.博士论文.杭州:浙江大学,2008.
    [6]邹栋.中介电常数BaO-TiO2-Nb2O5体系低温共烧微波介质陶瓷.博士论文.杭州:浙江大学,2009.
    [7]周琪.低温共烧陶瓷技术发展现状及趋势.科技经济市场,2009,4:25~26.
    [8]何中伟. LTCC工艺技术的重点发展和应用.集成电路通讯,2008,26(2):1~9.
    [9]杨邦朝,付贤民,胡永达.低温共烧陶瓷(LTCC)技术新进展.电子元件与材料,2008,27(6):1~5.
    [10]慧典市场研究报告. 2010-2015年中国LTCC(低温共烧陶瓷)市场深度评估分析及发展趋势预测报告. 2010-11-01.
    [11]杨明祺.低温共烧陶瓷(LTCC)产业. TISC研究周报. 2008-03-07.
    [12]王悦辉,杨正文,王婷等.低温共烧陶瓷(LTCC)技术新进展.电子产品世界,2006,http://www.eepw.com.cn/article/17661.htm.
    [13] Mhaisalkar S G,Lee W E,Readey D W. Processing and characterization of BaTi4O9. Journal of the American Ceramic Society,1989,72(11):2154~2158.
    [14] Hirano S, Hayashi T, Hattori A. Chemical processing and microwave characteristics of (Zr,Sn)TiO4 microwave dielectrics. Journal of the American Ceramic Society,1991,74(6):1320~1324.
    [15] Virkar A N,Chatterjee C,Paul A. Synthesis and characterization of Ba2Ti9O20. Journal of Materials Science Letters,1988,7:179~181.
    [16] Bolton R L. Temperature compensating ceramic capacitors in the system baria-rare-earth oxide-titania. PhD thesis. The University of Illinois,1968.
    [17] Mudroliubova L P,Rotenberg B A,Kartenko N F,et al. Barium lanthanoid tetratitanate. USSA Certificate of Recognition,632176,1977-02-23.
    [18] Kolar D,Stadler Z,Gaberscek S,et al. Ceramic dielectric properties of selected compositions in the BaO-TiO_2-Nd2O3 system. Ceramic Forum International,1978,55:346~348.
    [19] Kolar D,Gaberscek S,Volavsek H,et al. Synthesis and crystal chemistry of BaNd2Ti3O10,BaNd2Ti5O14,and Nd4Ti9O_24. Journal of Solid State Chemistry,1981,38:158~164.
    [20] Razgon E S,Gens A M,Varfolomeev B M,et al. The complex barium and lanthanum titanates. Russian Journal of Inorganic Chemistry,1980,25:945~947.
    [21] Gens A M,Varfolomeev M B,Kostomarov V S,et al. Crystal-chemical and electro-physical properties of complex titanates of barium and lanthanides. Russian Journal of Inorganic Chemistry,1981,26:896~898.
    [22] Polyakov S M,Gindin E I,Prokhvatilav V G,et al. Composition and structure of a barium lanthanide tetratitanate. Russian Journal of Inorganic Chemistry,1983,28:1686~1687.
    [23] Matveeva R G,Varfolomeeva M B,Il’yushenko L S. Refinement of the composition and crystal structure of Ba3.75Pr9.5Ti18O54. Russian Journal of Inorganic Chemistry,1984,29:17~19.
    [24] Jaakola T,Uusimaki A,Rautioaho R,et al. Matrix phase in ceramics with composition near BaO-Nd2O3-5TiO_2. Journal of the American Ceramic Society,1986,69:C234~C235.
    [25] Chen X M,Suzuki Y,Sato N. Preparation and densification of BaNd2Ti5O14 dielectric ceramics. Materials Letters,1993,16(2-3):75~78.
    [26] Chen X M,Suzuki Y,Sato N. Microstructures and microwave dielectric characteristics of ceramics with the composition BaO-Nd2O3-5TiO_2. Journal of Materials Science:Materials in Electronics,1995,6:10~16.
    [27] Guhua J P. Synthesis and characterization of barium lanthanum titanates. Journal of the American Ceramic Society,1991,74:878~880.
    [28] Takahshi J,Ikegami T,Kaghyama K. Occurrence of dielectric 1:1:4 compound in the ternary system BaO-Ln2O3-TiO_2 (Ln=La,Nd and Sm):I ,an improved coprecipitation method for preparing a single-phase powder of ternary compound in the BaO-Ln2O3-TiO_2 system. Journal of the American Ceramic Society,1991,74:1868~1872.
    [29] Takahshi J,Ikegami T,Kaghyama K. Occurrence of dielectric 1:1:4 compound in the ternary system BaO-Ln2O3-TiO_2 (Ln=La,Nd and Sm):II,reexamination of formation of isostructural ternary compounds in identical systems. Journal of the American Ceramic Society,1991,74:1873~1879.
    [30] Mailadil T S. Dielectric materials for wireless communication. Oxford:Elsevier, 2008.
    [31] Ubic R,Reaney M,Lee W E. Microwave dielectric solid-solution phase in system BaO-Ln2O3-TiO_2 (Ln=lanthanide cation). International Materials Reviews,1998,43(5):205~219.
    [32] Varfolomeev M B,Mironov A S,Kostomarov V S,et al. Synthesis and homogeneity range of phase Ba6-xLa8+2x/3Ti18O54. Russian Journal of Inorganic Chemistry,1988,33:607.
    [33] Ohsato H. Science of tungstenbronze-type like Ba6-3xR8+2xTi18O54 (R=rare earth) microwave dielectric solid solutions. Journal of the European Ceramic Society,2001,21:2703~2711.
    [34] Ohsato H,Ohhashi T,Nishigaki S,et al. Formation of solid solution of new tungsten bronze-type microwave dielectric compounds Ba6-3xR8+2xTi18O54 (R=Nd and Sm,0≤x≤1). Japanese Journal of Applied Physics,1993,32:4323~4326.
    [35] Negas T,Davies P K. Influence of chemistry and processing on the electrical properties of Ba6-3xLn8+2xTi18O54 solid solution. Ceramic Transactions,1995,53:179~196.
    [36] Cruickshank K M,Jing X,Wood G,et al. Barium neodymium titanate electro ceramics:phase equilibria studies of Ba6-3xNd8+2xTi18O54 solid solution. Journal of the American Ceramic Society,1996,79:1605~1610.
    [37] Belous A G,Ovchar O V. MW ceramic dielectrics based on the system BaO-(Nd,Sm)2O3-TiO_2. Key Engineering Materials,1997,132-136:1191~1194.
    [38] Skapin S , Kolar D , Suvorov D , et al. Phase equilibria in the BaTiO3-La2TiO5-TiO_2 system. Journal of Materials Research,1998,13:1327~1334.
    [39] Fukuda K,Kitoh R,Awai I. Microwave characteristic of BaPr2Ti4O12 and BaPr2Ti5O14 ceramics. Journal of Materials Research,1995,10:312~319.
    [40] Valant M,Suvorov D,Kolar D. X-ray investigation and determination of the dielectric properties of the compound Ba4.5Gd9Ti18O54. Japanese Journal of Applied Physics,1996,35:144~150.
    [41] Okawa T,Imaeda M,Ohsato H. Site occupancy of Bi ions and microwave dielectric properties in Ba6-xNd8+2xTi18O54 solid solutions. Materials Science and Engineering:B,2002,88:58~61.
    [42] Roth R S,Beach F,Santoro A,et al. Structure of the nonstoichiometric solid solutions Ba2RE4(BaxRE2/3-2/3x)Ti9O_27 (RE=Nd,Sm). Acta Crystallographica,1987,A43:C138~C139.
    [43] Ohsato H,Imaeda M,Takagi Y,et al. Microwave quality factor improved by ordering of Ba and rare-earth on the tungsten bronze-type Ba6-3xR8+2xTi18O54 (R=La,Nd and Sm) solid solutions. Proceedings of the Eleventh IEEE International Symposium on Applications of Ferroelectrics,Mountrex,1998:509~512.
    [44] Ohsato H,Imaeda M. The quality factor of the microwave dielectric materials based on the crystal structure-as an example:the Ba6-3xR8+2xTi18O54 (R=rare earth) solid solutions. Materials Chemistry and Physics,2003,79(2-3):208~212.
    [45] Ohsato H,Futamata Y,Sakashita H,et al. Configuration and coordination number of cation polyhedra of tungstenbronze-type-like Ba6-3xSm8+2xTi18O54 solid solutions. Journal of the European Ceramic Society,2003,23:2529~2533.
    [46] Ohsato H. Origins of high Q on microwave tungstenbronze-type like Ba6-3xR8+2xTi18O54 (R=rare earth) dielectrics based on the atomic arrangements. Journal of the European Ceramic Society,2007,27:2911~2915.
    [47]秦霓. Ba6-3xLn8+2xTil8O54基微波介质陶瓷的改性及若干基础问题.博士论文.杭州:浙江大学,2006.
    [48] Ubic R,Reaney I M,Lee W E,et al. Properties of the microwave dielectric phase Ba6-3xNd8+2xTi18O54. Ferroelectrics,1999,228:271~282.
    [49] Futamata Y,Ohsato H,Kakimoto K,et al. Microwave dielectric properties of Ba6-3xEu8+2xTi18O54 (x =2/3) with Sm and Nd substituted for Eu. Ferroelectrics,2002,272:213~218.
    [50] Valant M,Suvorov D. Incorporation of bismuth into Ba6-3xR8+2xTi18O54 (R=Nd,Gd). Journal of Materials Science,2001,36:2991~2997.
    [51] O'Bryan JR H M,Thomson JR J,Ploured J K. A new BaO-TiO_2 compound with temperature stable high Permittivity and low microwave loss. Journal of the American Ceramic Society,1974,57(10):450~453.
    [52] O'Bryan JR H M,Thomson JR J. Phase equilibria in the TiO_2-rich region of the BaO-TiO_2 system. Journal of the American Ceramic Society,1974,57(12):522~526.
    [53] Choy J H,Han Y S,Sohn J H,et al. Microwave characteristics of BaO-TiO_2 ceramics prepared via a citrate route. Journal of the American Ceramic Society,1995,78(5):1169~1172.
    [54] Takada T,Wang S F,Yoshikawa S,et al. Effect of glass additions on BaO-TiO_2-WO3 microwave ceramics. Journal of the American Ceramic Society,1994,77(7):1909~1916.
    [55] Huang C L,Weng M H,Lion C T,et al. Low temperature sintering and microwave dielectric properties of BaTi9O_20 ceramics using glass additions. Materials Research Bulletin,2000,35:2445~2456.
    [56] Jhou M Z,Jean J H. Low-fire processing of microwave BaTi4O9 dielectric with BaO-ZnO-B2O3 glass. Journal of the American Ceramic Society,2006,89(3):786~791.
    [57] Lee Y C,Lee W H,Shieu F S. Effects of B2O3 addition on the microwave dielectric properties of Ba2Ti9O_20 ceramics. Japanese Journal of Applied Physics,2003,42:1311~1314.
    [58] Lee Y C,Lee W H,Shieu F S. Microwave dielectric properties and microstructures of Ba2Ti9O_20 based with 3ZnO-B2O3 addition. Journal of the European Ceramic Society,2005,25:3459~3468.
    [59] Lee Y C,Lee W H,Shieu F S. Low temperature sintering and microwave dielectric properties of Ba2Ti9O_20 ceramics with 3ZnO-B2O3 addition. Japanese Journal of Applied Physics,2002,41:6049~6053.
    [60] Kim D W,Lee D G,Hong K S. Low-temperature firing and microwave dielectric properties of BaTi4O9 with Zn-B-O glass system. Materials Research Bulletin,2001,36:585~595.
    [61]Huang W,Liu K S,Chu L W,et al. Microwave dielectric properties of LTCC materials consisting of glass-BaTi9O_20 composites. Journal of the European Ceramic Society,2003,23:2559~2563.
    [62] Choi Y G,Park J H,Ko W J,et al. Low temperature sintering of BaTi4O9-based middle-k dielectric composition for LTCC applications. Journal of Electroceramics,2005,14(2):157~162.
    [63] Choi J W,Kang C Y,Yoon S J,et al. Microwave dielectric properties of Ca[(Li1/3Nb2/3)1?xMx]O3-δ(M=Sn,Ti) ceramics. Journal of Materials Research,1999,14:3567~3570.
    [64] Xiong G. Influence of ZnO-B2O3-Na2O glass on microwave dielectric properties of Ca[(Li1/3Nb2/3)0.8Sn0.2]O3?δ-0.1TiO_2 ceramics. Materials Science Forum,2011,663-665:629~632.
    [65] Liu P,Kim E S,Yoon K H. Low temperature sintering and microwave dielectric properties of Ca(Li1/3Nb2/3)O3-δceramics. Japanese Journal of Applied Physics,2001,40:5769~5773.
    [66] Ha J Y,Choi J W,Yoon S J,et al. Microwave dielectric properties of Bi2O3 doped Ca[(Li1/3Nb2/3)1?xTix]O3-δceramics. Journal of the European Ceramic Society,2003,23:2413~2416.
    [67] Kim E S,Chun B S,Kim J D,et al. Low temperature sintering and microwave dielectric properties of [Ca0.6(Li0.5Nd0.5)0.4]0.45Zn0.65TiO3 ceramics. Materials Science and Engineering:B,2003,99:243~246.
    [68] Ha J Y,Choi J W,Kang C Y,et al. Microwave dielectric properties of Ca[(Li1/3Nb2/3)1?xTix]O3?δceramics with glass. Journal of Electroceramics,2005,17(2-4):399~403.
    [69] Tong J X,Zhang Q L,Yang H,et al. Low-temperature firing and microwave dielectric properties of Ca[(Li1/3Nb2/3)0.84Ti0.16]O3?δceramics for LTCC applications. Journal of the American Ceramic Society,2007,90(3):845~849.
    [70] Pang L X,Wang H,Zhou D,et al. Low-temperature firing and microwave dielectric properties of Ca[(Li1/3Nb2/3)0.8Ti0.2]O3?δceramics with ZnB2O4 glass addition. International Journal of Applied Ceramic Technology,2008,5(4):341~346.
    [71] Liu D,Liu Y,Huang S Q,et al. Phase structure and dielectric properties of Bi2O3-ZnO-Nb2O5 based dielectric ceramics. Journal of the American Ceramic Society,1993,76:2129~2132.
    [72] Wang X L,Wang H,Yao X. Structures,phase transformations,and dielectric properties of pyrochlores containing bismuth. Journal of the American Ceramic Society,1997,80(10):2745~2748.
    [73] Choi G K,Kim D W,Cho S Y,et al. Influence of V2O5 substitutions to Bi2(Zn1/3Nb2/3)2O7 pyrochlore on sintering temperature and dielectric properties. Ceramics International,2004,30(7):1187~1190.
    [74] Nenesheva E A,Kartenko N F. Low sintering ceramic materials based on Bi2O3-ZnO-Nb2O5 compounds. Journal of the European Ceramic Society,2006,26:1929~1922.
    [75] Chen S Y,Lin Y J. Effect of CuO-based oxide additives on Bi2O3-ZnO-Nb2O5 microwave ceramics. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review papers,2001,40(5A):3305~3310.
    [76] Cann D P,Randall C A,Shrout T R. Investigation of the dielectric properties bismuth pyrochlores. Solid State Communications,1996,100:529~534.
    [77] Youn H J,Randall C A,Chen A,et al. Dielectric relaxation and microwave dielectric properties of Bi2O3-ZnO-Ta2O5 ceramics. Journal of Materials Research,2002,17:1502~1506.
    [78] Shen B,Yao X,Kang L P,D S Peng. Effect of CuO or/and V2O5 oxide additives on Bi2O3-ZnO-Ta2O5 based ceramics. Ceramics International,2004,30(7):1203~1206.
    [79] Hong H B, Kim D W,Hong K S. Microwave dielectric properties of Bi2(Zn1/3Ta2/3)2O7 polymorphs. Japanese Journal of Applied Physics Part l-Regular Papers Short Notes & Review Papers,2003,42(8):5172~5175.
    [80] Ohsato H. Research and development of microwave dielectric ceramics for wireless Communications. Journal of the Ceramic Society of Japan,2005,113:703~711.
    [81] Cheng C C,Hsieh T E,Lin I N. The effect of composition on Ba-Nd-Sm-Ti-O microwave dielectric materials for LTCC application. Materials Chemistry and Physics,2003,79(2-3):119~123.
    [82] Cheng C C,Hsieh T,Lin I N. Effects of composition on low temperature sinterable Ba-Nd-Sm-Ti-O microwave dielectric materials. Journal of the European Ceramic Society,2004,24:1787~1790.
    [83] Cheng C C,Hsieh T,Lin I N. Microwave dielectric properties of glass-ceramic composites for low temperature co-firable ceramics. Journal of the European Ceramic Society,2003,23(14):2553~2558.
    [84] Dernovsek O,Eberstein M,Schiller W A,et al. LTCC glass-ceramic composites for microwave application. Journal of the European Ceramic Society,2001,21:1693~1697.
    [85] Park J H,Choi Y J,Park J H. Low fire dielectric compositions with permittivity 20-60 for LTCC applications. Materials Chemistry and Physics,2004,88:308~312.
    [86]陈尚坤,杨辉,王家邦等. Ba4(Nd0.85Bi0.15)28/3Ti18O54陶瓷低温化研究.材料科学与工程学报,2005,23(1):84~87.
    [87] Cho I S,Kim D W,Kim J R,et al. Low temperature sintering and microwave dielectric properties of BaO·(Nd1-xBix)2O3·4TiO_2 by the glass additions. Ceramics International,2004,30:1181~1185.
    [88] Jung B H,Hwang S J,Kim H S. Glass-ceramic for low temperature co-fired dielectric ceramic materials based on La2O3-B2O3-TiO_2 glass with BNT ceramics. Journal of the European Ceramic Society,2005,25(13):3187~3193.
    [89] Kakimoto O Y, Ohsato K I , Okawa T. Low temperature sintering of Ba6-3xSm8+2xTi18O54 microwave dielectric ceramics by B2O3 and GeO_2 addition. Journal of the European Ceramic Society,2004,24(6):1755~1760.
    [90] Cho K H , Lim J B , Nahm S , et al. Low temperature sintering of BaO-Sm2O3-4TiO_2 ceramics. Journal of the European Ceramic Society,2006,27(2-3):1053~1058.
    [91] Lim J B,Cho K H,Nahm S,et al. Effect of BaCu(B2O5) on the sintering temperature and microwave dielectric properties of BaO-Ln2O3-TiO_2 (Ln=Sm,Nd) ceramics. Materials Research Bulletin,2006,41:1868~1874.
    [92] Nakano M,Suzuki K,Miura T,et al. Low temperature fireable dielectric material Pb(Fe2/3W1/3)O3-(PbCa)(Fe1/2Nb1/2)O3 for microwave use. Japanese Journal of Applied Physics,1993,32:4314~4318.
    [93] Kato J,Kagata H,Nishimoto K. Dielectric properties of (Pb,Ca)(MeNb)O3 at microwave frequencies. Japanese Journal of Applied Physics,1992,31:3144~3147.
    [94] Kucheiko S,Choi J W,Kim H J,et al. Microwave characteristics of (Pb,Ca)(Fe,Nb,Sn)O3 dielectric materials. Journal of the American Ceramic Society,1997,80:2937~2940.
    [95] Ha J Y,Choi J W,Kim H J,et al. The effect of sintering aid CuO-Bi2O3 on microwave dielectric properties of (Pb0.45Ca0.55)[(Fe0.5Nb0.5)0.9Sn0.1]O3 ceramics. Materials Chemistry and Physics,2003,79:261~265.
    [96] Yang Q H,Kim E S,Kim Y J,et al. Effect of PbO-B2O3-V2O5 glass on the microwave dielectric properties of (Pb,Ca,La)(Fe,Nb)O3 ceramics. Materials Chemistry and Physics,2003,79:236~238.
    [97] Zhe H M,Xiang Z D,Shuang G H,et al. Influence of Bi2O3 and MnO_2 doping on microwave properties of [(Pb,Ca)La](Fe,Nb)O3 dielectric ceramics. Materials Science and Engineering:B,2005,117:199~204.
    [98]李瀚如.电介质物理导论.成都:成都科技大学出版社,1990.
    [99]孙目珍.电介质物理基础.广州:华南理工大学出版社,2000.
    [100]殷之文.电介质物理学.第二版.北京:科学出版社,2006.
    [101]李标荣.王筱珍,张绪礼.无机电介质.武汉:华中理工大学出版社,1995.
    [102] Konishi Y. Novel dielectric waveguide components-microwave applications of new ceramic materials. Proceedings of the IEEE,1991,79(6):726~740.
    [103] Takahashi J, Kageyama K,Kodaira K. Microwave dielectric properties of lanthanide titanate ceramics. Japanese Journal of Applied Physics,1993,32:4327~4331.
    [104] Templeton A,Wang X R,Penn S J,et al. Microwave dielectric Loss of titanium oxide. Journal of the American Ceramic Society,2000,83(1):95~100.
    [105]朱建华,梁飞,汪小红等.微波介质陶瓷材料介电性能间的制约关系.电子元件与材料,2005,24(3):32~35.
    [106]朱建华.钙钛矿添加剂对钨青铜型陶瓷微波介电性能的固溶调控.博士论文.武汉:华中科技大学,2007.
    [107] Nomura S , Toyama K , Kaneta K. Ba(Mg1/3Ta2/3)O3 ceramics with temperature-stable high dielectric constant and low microwave Loss. Japanese Journal of Applied Physics,1982,21:L624~L626.
    [108]饶东生主编.硅酸盐物理化学.北京:冶金工业出版社,1980.
    [109]贺可音主编.硅酸盐物理化学.武汉:武汉工业大学出版社,1995.
    [110]郭庚辰主编.液相烧结冶金材料.北京:化学工业工业出版社,2003.
    [111]童建喜.中介电常数低温共烧微波介质陶瓷及其器件研究.博士论文.杭州:浙江大学,2006.
    [112] Lu W Z,Zhu J H,Kipkoech E R. Microwave dielectric properties of Ba4.2(Nd0.5,Sm0.5)9.2Ti18O54 ceramics doped with Al2O3 and SiO_2. Japanese Journal of Applied Physics,2005,44:6674~6677.
    [113] Zheng H,Reaney I M,Muir D,et al. Composite dielectric ceramics based on BaO-Ln2O3-TiO_2 (Ln=Nd,La). Japanese Journal of Applied Physics,2005,44:3087~3090.
    [114] Sreemoolanathan H,Sebastian M T,Mohanan P. Microwave dielectric resonators in the BaO-Ln2O3-TiO_2 system. Ferroelectrics,1996,189:43~46.
    [115] Yu Z,Sun K,Li L Z,et al. Influences of Bi2O3 on microstructure and magnetic properties of MnZn ferrite. Journal of Magnetism and Magnetic Materials,2008,320(6):919~923.
    [116] Wu S H,Wei X S,Wang X Y,et al. Effect of Bi2O3 additive on the microstructure and dielectric properties of BaTiO3-based ceramics sintered at lower temperature. Journal of Materials Science & Technology,2010,26(5):472~476.
    [117]李媛.高介微波陶瓷材料的研究.硕士论文.天津:天津大学,2007.
    [118]刘俊峰.低温共烧(LTCC) BNT系统陶瓷材料研究.硕士论文.天津:天津大学,2007.
    [119] Levin E M,Roth R S. Polymorphism of bismuth sesquioxide II:effect of oxide additions on the polymorphism of Bi2O3. Journal of Research of the National Bureau of Standards:Section A,1964,68A(2):197~210.
    [120] Bruton T M. Study of the liquidus in the system Bi2O3-TiO_2. Journal of Solid State Chemistry,1974,9(2):173~175.
    [121]张斌. CaO-Li2O-Sm2O3-TiO_2微波介质陶瓷低温烧结及其微波介电性能研究.硕士论文.景德镇:景德镇陶瓷学院,2009.
    [122] Bosman A J,Havinga E E. Temperature dependence of dielectric constants of cubic ionic compounds. Physical Review,1963,129(4):1593~1600.
    [123] Shannon R D. Dielectric polarizabilities of ions in oxides and fluorides. Journal of Apply Physics,1993,73(1):348~366.
    [124] Havinga E E,Bosman A J. Temperature dependence of dielectric constants of crystals with NaCl and CsCl structure. Physical Review,1965,140(1A):A292~A303.
    [125] Colla E L,Reaney I M,Setter N. Effect of structural changes in complex perovskites on the temperature coefficient of the relative permittivity. Journal of Applied Physics,1993,74(5):3414~3425.
    [126]张迎春.铌钽酸盐微波介质陶瓷材料.北京:科学出版社,2005.
    [127] Yoon S O,Shim S H,Kim K S,et al. Low-temperature preparation and microwave dielectric properties of ZBS glass-Al2O3 composites. Ceramics International,2009,35(3):1271~1275.
    [128] Kim J H,Hwang S J,Sung W Y,et al. Effect of anorthite and diopside on dielectric properties of Al2O3/glass composite based on high strength of LTCC substrate. Journal of Materials Science,2008,43(12):4009~4015.
    [129] Choi Y J,Park J H,Ko W J,et al. Co-firing and shrinkage matching in low and middle-permittivity dielectric compositions for a low-temperature co-fired ceramics system. Journal of the American Ceramic Society,2006,89:562~567.
    [130] Lim M H,Park J H,Kim H G,et al. Fabrication and characterization of glass-ceramic+Al2O3 composition for LTCC (low temperature cofired ceramic). Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials,2003,2:757~760.
    [131] Kim H T,Kim S H,Nahm S,et al. Low temperature sintering and microwave dielectric properties of zinc metatitanate-rutile mixtures using boron. Journal of the American Ceramic Society,1999,82:3043~3048.
    [132] Zhang Q L,Yang H,Zou J L,et al. Sintering and microwave dielectric properties of LTCC zinc titanate multilayer. Materials Letters,2005,59:880~884.
    [133] Chai Y L,Chang Y S,Hsiao Y J,et al. Effects of borosilicate glass addition on the structure and dielectric properties of ZnTiO3 ceramics. Materials Research Bulletin,2008,43:257~263.
    [134] Lee Y C,Lee W H,Shiao F T. Microwave dielectric properties of Zn0.95Mg0.05TiO3+0.25TiO_2 ceramics with 3ZnO-B2O3 addition. Japanese Journal of Applied Physics,2004,43:7596~7599.
    [135] Mori N,Sugimoto Y,Harada J,et al. Dielectric properties of new glass-ceramics of LTCC applied to microwave or millimeter wave frequencies. Journal of the European Ceramic Society,2006,26:1925~1928.
    [136] Mori N,Sugimoto Y,Harada J,et al. Dielectric properties of new glass-ceramics for LTCC applied to microwave or millimeter wave frequencies. Journal of the Ceramic Society of Japan Supplement,2004,112(1):S1563~S1566.
    [137] Thomas S,Sebastian M T. Effect of B2O3-Bi2O3-SiO_2-ZnO glass on the sintering and microwave dielectric properties of 0.83ZnAl2O4-0.17TiO_2. Materials Research Bulletin,2008,43:843~851.
    [138] Zhang Q L,Yang H,Tong J X. Low temperature firing and microwave dielectric properties of MgTiO3 ceramics with Bi2O3-V2O5. Materials Letters,2006,60:1188~1191.
    [139] Jantunen H,Rautioaho R,Uusumaki A,et al. Preparing low loss low temperature cofired ceramic material without glass addition. Journal of the American Ceramic Society,2000,83:2855~2857.
    [140] Jantunen H,Uusumaki A,Rautioaho R,et al. Compositions of MgTiO3-CaTiO3 ceramic with two borosilicate glasses for LTCC technology. Journal of the European Ceramic Society,2000,20:2331~2336.
    [141] Rautioaho T H,Jantunen R H,Leppavuori S,et al. Optimization of MgTiO3-CaTiO3 based LTCC tapes containing B2O3 for use in microwave applications. Ceramics International,2005,31:85~93.
    [142] Wu S H,Wei X S,Wang S,et al. Effect of ZnO-B2O3 glass addition on the microwave dielectric properties of BaO-Nd2O3-TiO_2-Bi2O3 system. Journal of Wuhan University of Technology-Materials Science Edition,2010,25(5):730~733.
    [143] Chiang C C,Wang S F,Wang Y R,et al. Characterizations of CaO-B2O3-SiO_2 glass-ceramics:thermal and electrical properties. Journal of Alloys and Compounds,2008,461(1-2):612~616.
    [144] Yang C F. The Microwave characteristics of glass-BaTi4O9 ceramics. Japanese Journal of Applied Physics,1999,38(6A):3576~3579.
    [145] Chiang C C,Wang S F,Wang Y R,et al. Densification and microwave dielectric properties of CaO-B2O3-SiO_2 system glass-ceramics. Ceramics International,2008,34(3):599~604.
    [146] Sagala D A,Nambu S. Microscopic calculation of dielectric loss at microwave frequencies for complex perovskite Ba(Zn1/3Ta2/3)O3. Journal of the American Ceramic Society,1992,75:2573~2575.
    [147] Kim W,Kim T,Kim E,et al. Microwave dielectric properties and far infrared reflectivity spectra of the (Zr0.8Sn0.2)TiO4 ceramics with additives. Japanese Journal of Applied Physics,1998,37(9B):5367~5371.
    [148] Sivasubramanian V,Murthy V R K,Viswanathan B. Microwave dielectric properties of certain simple alkaline earth perovskite compounds as a function of tolerance factor. Japanese Journal of Applied Physics,1997,36(1):194~197.
    [149] Ferro electronic material system. Ferro A6-S High Frequency LTCC system. Ferro,www.ferro.com/non-cms/EMS/EPM/LTCC/A6-S-LTCC-System.pdf.
    [150] Sastry B S R,Hummel F A. Studies in lithium oxide systems:VII,Li2O-B2O_2-SiO_2. Journal of the American Ceramic Society,1960,43(1):23~33.
    [151] Sastry B S R,Hummel F A. Studies in lithium oxide systems:III,liquid immiscibility in the system Li2O-B2O3-SiO_2. Journal of the American Ceramic Society,1959,42(2):81~88.
    [152] Sastry B S R,Hummel F A. System Li2O-B2O3-SiO_2,phase relationships,L=Li2O,B=B2O3,S=SiO_2. Journal of the American Ceramic Society,1960,43:23~33.
    [153] Shin H K,Shin H, Cho S Y,et al. Phase evolution and dielectric properties of MgTiO3-CaTiO3-based ceramic sintered with lithium borosilicate glass for application to low temperature co-fired ceramics. Journal of the American Ceramic Society,2005,88(9):2461~2465.
    [154]童建喜,张启龙,杨辉等.掺Li2O-B2O3-SiO_2玻璃低温烧结MgTiO3-CaTiO3陶瓷及其微波介电性能.硅酸盐学报,2006,34(11):1335~1340.
    [155] Zhang Q L , Yang H , Zou J L. Low-temperature sintering of (Zn0.8Mg0.2)2SiO4-TiO_2 ceramics. Materials Letters,2008,62(23):3872~3874.
    [156] Shina H,Shin H K,Jungc H S,et al. Phase evolution and dielectric properties of MgTi2O5 ceramic sintered with lithium borosilicate glass. Materials Research Bulletin,2005,40(11):2021~2028.
    [157] Chaouchi A,D'Astorg S,Marinel S,et al. ZnTiO3 ceramic sintered at low temperature with glass phase addition for LTCC applications. Materials Chemistry and Physics,2007,103:106~111.
    [158] Wu Y J,Chen X M. Structures and microwave dielectric properties of Ba6?3x(Nd,Biy)8+2xTi18O54 (x=2/3) solid solution. Journal of Materials Research,2001,16:1734~1738.
    [159] Yan K,Shiichi N,Karaki T,et al. Microwave dielectric properties of Ca0.8Sr0.2TiO3-Li0.5Sm0.5TiO3 ceramics with near-zero temperature coefficient of resonant frequency. Japanese Journal of Applied Physics,2008,47:7721~7724.
    [160] Chaouchi A,Aliouat M,Marinel S,et al. Effects of additives on the sintering temperature and dielectric properties of ZnTiO3 based ceramic. Ceramics International,2007,33(2):245~248.
    [161] Benziada L,Ravez J. Ferroelectric BaTiO3 ceramics sintered at low temperature with the aid of a mixture of CaF2 and LiF. Journal of Fluorine Chemistry,1995,73(1):69~71.
    [162] Tong J X,Zhang Q L,Yang H,et al. Low-temperature firing and microwave dielectric properties of Ca[(Li0.33Nb0.67)0.9Ti0.1]O3?δceramics with LiF addition. Materials Letters,2005,59(26):3252~3255.
    [163] Pollet M,Marinel S. Low temperature sintering of CaZrO3 using lithium fluoride addition. Journal of the European Ceramic Society,2003,23(11):1925~1933.
    [164] Abell J S,Harris I R,Cockayne B,et al. A DTA study of zone-refined LiRF4 (R=Y,Er). Journal of Materials Science,1976,11(10):1807~1816.
    [165] Bukhalova G A,Yagub'yan E S. Izv Akad Nauk SSSR Neorg Mater,1967,3:1096~1098.
    [166]王国庆. BaO-TiO_2-ZnO系介质陶瓷及微波测试技术研究.博士论文.天津,天津大学,2005.
    [167] WakAino K,Minai K,Tamura H. Microwave characteristics of (Zr,Sn)TiO4 and BaO-PbO-Nd2O3-TiO_2 dielectric resonators. Journal of the American Ceramic Society,1984,67(4):278~281.
    [168]黄刚,吴顺华,张宝林等.低温烧结BaO-TiO_2-ZnO系陶瓷的研究.电子元件与材料,2010,29(12):52~55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700