高质量氧化锌晶体的水热法合成及其光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究水热自发结晶的生长条件对ZnO晶体形貌和质量的影响,研制用于生长较大尺寸晶体的防腐高压釜,研究水热有籽晶生长的条件对ZnO晶体质量的影响,比较两者的生长习性和生长机理,结合ZnO晶体-c面和+c面退火前后性能的研究,探索晶体中的缺陷变化对其光电性能的影响。
     在温度350℃430℃时,自发结晶出现了粒度不同的多种晶体形态。矿化剂KOH浓度至3M,获得质量较好的长度为1.5mm的孪晶;矿化剂NaOH浓度至5M,得到长度接近1mm的双锥晶体。相对于KOH和NaOH,纯LiOH碱性太弱不适于作为矿化剂;增加矿化剂浓度,提高结晶温度,有利于提高晶体质量;碱性矿化剂复合1M KBr后,使ZnO晶体显露O~(2-)的部位生长速度大大减小。
     有籽晶生长出的晶体(0002)面X射线衍射摇摆曲线半波宽度FWHM(FullWidth at Half Maximum)达到90弧秒。相对于纯度99%的ZnO粉料,纯度99.99%的ZnO粉料作营养料适宜于生长高质量的晶体;5M KOH矿化剂复合1M LiOH后效果更好;用水热法生长出的ZnO晶体切割作为籽晶比用CVD法的晶体作为籽晶,生长出的晶体结构完整性更好;提高生长温度有助于晶体的排杂,生长出的ZnO晶体质量更高。ZnO晶体中Fe、K、Na离子是影响晶体结构完整性的因素,Fe离子对晶体颜色的影响突出。ZnO晶体(000(?))面的活化能比(0001)面的高,生长温度对(000(?))生长速率的影响比对(0001)面的影响要大,而KOH矿化剂浓度对两极面生长速率的影响是相近的;KOH矿化剂复合LiOH后,晶体两极面的活化能增大,生长速率降低。水热体系ZnO自发结晶成核可以近似采用均匀成核理论来解释,ZnO有籽晶生长成核是不均匀成核。
     水热有籽晶生长的加温控制和压力检测方式采用人造水晶工业生产中的方式。防腐高压釜采用镶嵌式衬套结构,制造釜体的材料选用镍铬钛耐热合金,防腐内衬选用贵金属银,采用爆炸法使衬套与釜体复合。反应腔尺寸为φ60×770mm,斯特伯格自紧式密封结构适于带贵金属内衬的高压釜,加热状态最高压力达到155MPa。
     ZnO晶体-c面比+c面吸收大,表明-c面中较松散的价电子更多。+c面退火和未退火室温下的光致发光紫外发光峰和绿光峰强度比值分别为4.5和0.7,表明退火充氧过程减少了由晶体中点缺陷和线缺陷引起的非本征辐射。退火使+c面的电阻率提高5个数量级,载流子迁移率降低了2个数量级,载流子浓度降低了4个数量级,使-c面的电阻率提高72%,载流子迁移率提高了75%,载流子浓度降低了35%,表明两者的载流子迁移方式不同。
     本论文首次比较了两种ZnO晶体生长方法的不同,研制了生长ZnO晶体镶嵌式衬套结构防腐高压釜,阐述了退火前后晶体中缺陷变化对晶体性能影响的规律。
In the present dissertation,the study is on fabricating high quality hydrothermal ZnO crystals,is on influences on crystal's appearances and quality under growing conditions of spontaneous crystallizations,is on manufacturing autoclave with lining for growing large size ZnO crystals,is on crystal's quality under varied growing conditions with seeds.The different growth behaviors and mechanism between spontaneous crystallizations and growing with seeds are compared.By means of test on characters of +c face and --c face of ZnO crystals with or without anneal,effect of varied defects on related crystals photoelectric performances is investigated.
     There are many forms and granularities of ZnO crystals in spontaneous crystallizations at 350℃and 430℃.1.5mm twin crystal is obtained in 3M KOH. Near 1.0mm crystals with two cones are gotten in 5M NaOH.Compared to KOH and NaOH,LiOH is too weak to be used as mineralizer for ZnO.Increasing growing temperature and mineralizer concentration,more perfect crystals can be obtained.The growing velocity of ZnO crystal faces that have more O~(2-)is greatly slowed down, when KBr is added into solution further.
     The FWHW(Full Width at Half Maximum)of X-ray rocking curve for(0002) reflection of ZnO crystals gets to 90 arc seconds.It is more suitable to use 99.99% purity ZnO powder to grow high quality ZnO crystals than 99%,so is 5M KOH and 1M LiOH as mineralizer.The crystalline structure integrality is more perfect to use cutting hydrothermal ZnO crystal as seeds than to use cutting CVD ZnO crystal as seeds.Higher growing temperature is advantage to exclude impurities so that it helps growing high quality crystals.Fe,K,and Na ions in ZnO crystals give influences to crystal integrality.Fe ion gives more prominent influence to ZnO crystal color.Active energy of ZnO(0001)face is higher than(0001)face.Growing temperature gives more influence to growing velocity of(000(?))face of ZnO crystals than(0001)face, but KOH concentrations do that of both face similarly.Aider adding LiOH into KOH solutions,active energy of both face increases,but growing velocity decrease.ZnO nucleation of crystallization without seeds can approximately be explained by uniform nucleation model.ZnO nucleation of crystallization with seeds can be explained by nonuniform nucleation model.
     The system of heating control and pressure monitor that used in quartz crystal industry can be applied into ZnO crystal growth with seeds.TheΦ60x770mm lining structure autoclave is chosen,which main body material should be chosen as high strength and low deformation local heat-resistant steel alloy,and anticorrosive lining can be chosen as noble metal silver.Both components are constructed by using high-pressure explosive method.Shtemberg self-sealing used in autoclave is suitable for noble metal lining structure autoclave that its highest pressure can get to 155Mpa under heated condition.
     Absorption of-c face of ZnO crystals is greater than +c face,which shows that there are much more loose electrons in -c face.After annealing in air,the green peak of PL spectrum of +c face of ZnO crystals descends,the ratio of ultraviolet peak of +c face of ZnO to green peak increases from 0.7 to 4.5,which indicates decrease of nonessential emittance caused by point defects and line defects of crystals.Electrical resistivity,carrier mobility and carrier concentration of +c face increase 10~5 grade, and decrease 10~(-2)and 10~(-4)grade respectively,these of-c face increase 72%,75%,and decrease -35%respectively,which indicate that there are different carrier mobile ways between two faces of ZnO crystals.
     Two ZnO crystals growth methods are compared in this paper firstly.The lining structured autoclave to grow large size ZnO crystals is manufactured.And influence rules that varied defects of ZnO crystals with or without anneal exerted to their properties are presented.
引文
[1]宋词,杭寅,徐军,等.氧化锌晶体的研究进展.人工晶体学报,2004,33(1):81-87
    [2]汪正然,陈武编.矿物学.上海:上海科学技术出版社,1965.
    [3]王步国,仲维卓,施尔畏.ZnO晶体的极性生长与双品的形成机理.人工晶体学报,1997,26(2):102-107
    [4]仲维卓,刘光照,施尔畏,等.在热液条件下晶体的生长基元与品体形成机理.中国科学,B辑,1994,24(4):349-355
    [5]元如林,施尔畏,王步国,等.氧化锌品粒生长基元与生长形态的形成机理.中国科学,E辑,1997,27(3):229
    [6]巩锋,藏竞存,杨敏飞.半导体ZnO晶体生长及其性能研究进展.材料导报,2003,2:35-37+75
    [7]《功能材料及其应用手册》编辑组著.功能材料及其应用手册.北京:机械工业出版社,1991
    [8]Laudise R.A.,Kolb E.D.,Caporaso J..Hydrothermal Growth of Large Sound Crystals of Zinc Oxide.J.Cryst.Growth,1964,47(7):9-13
    [9]Robert Triboulet.The scope of the ZnO Growth.Proc.,SPIE,2001,4412:1-8
    [10]Fred S.Hickemell.The Piezoelectric Semiconductor and Acoustoelectronic Device development in the sixties.2003 IEEE:1012-1020
    [11]Urbieta A.,Fernandez R,Piqueras J.,et al.Scanning tunneling spectroscopy characterization of ZnO single crystals.Semiconductor Science and Technology,2001,16:589-593
    [12]Sakagami N.,Yamashita M..Variation of Electrical Properties on Growth Sectors of ZnO Single Crystals.J.Cryst.Growth,2001,229:98-103
    [13]Look D.C..Recent Advances in ZnO Materials and Devices.Materials Science and Engineering,2001,B80:383-387
    [14]Croxall D.E,Wallace R.C.C.,Kell R.C..Hydrothermal Growth and Investigation of Li-doped Zinc Oxide Crystals of High Purity and Perfection.J.Cryst.Growth,1974,22:117-124
    [15]Sekiguchi T..Hydrothermal Growth of ZnO Single Crystals and Their Optical Characterization.J.Cryst.Growth,2000,214/215:72-76
    [16]Zu P.,Tang Z.G.,Wong G K.L.,et al.Ultraviolet Spontaneous and Stimulated Emissions from ZnO Microcrystallite Thin Films at Room Temperature.Solid State Communications,1997,103(8):459-463
    [17]Dietl T.,Ohno H.,Matsukura E,et al.Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors.Science,2000,287:1019-1022
    [18] Tomasz Dietl. Dilute magnetic semiconductors: Functional ferromagnets. Nature Materials, 2003, 2(10): 646-648
    
    [19] K. Sato, H. Katayama-Yoshida. First principles materials design for semiconductor spintronics. Semicond. Sci. Technol., 2002,17(4): 367-376
    
    [20] Sato K., Katayama-Yoshida H. Stabilization of ferromagnetic states by electron doping in Fe-, Co- or Ni-doped ZnO. Jpn. J. Appl. Phys., 2001, Part 2 40: L334-L336
    
    [21] K. Sato, H. Katayama-Yoshida. Material Design for Transparent Ferromagnets with ZnO-Based Magnetic Semiconductors. Jpn. J. Appl. Phys., 2000, Part 2 39: L555-L558
    
    [22] Sharma P., Gupta A., Rao K., et al. Ferromagnetism above room temperature in bulk and trandparent thin films of Mn-doped ZnO. Nature materials, 2003,2(11): 673-677
    
    [23] Jung, S. W., An, S. J.,Yi, G C, et al. Ferromagnetic properties of Zn_(1-x)Mn_xO epitaxial thin films [J]. Appl. Phys. Lett., 2002, 80: 4561
    
    [24] Y. Q. Chang, D. B. Wang, X. H. Luo, et al. Synthesis, optical, and magnetic properties of diluted magnetic semiconductor Zn_(1-x)Mn_xO nanowires via vapor phase growth. Appl. Phys. Lett., 2003, 83: 4020-4022
    
    [25] Roy V A L, Djuri i A B , Liu H, et al. Magnetic properties of Mn doped ZnO tetrapod structures. Appl. Phys. Lett., 2004, 84:.756
    
    [26] D. P. Norton, S.J. Pearton, A.F. Hebard, et al. Ferromagnetism in Mn-implanted ZnO:Sn single crystals. Appl. Phys. Lett., 2003, 82: 239
    
    [27] K. Ip, R. M. Frazier, Y. W. Heo, et al. Ferromagnetism in Mn- and Co-implanted ZnO nanorods. J. Vac. Sci. Technol. B, 2003,21: 1476-1481
    
    [28] W. Chen, L.F. Zhao, Y.Q. Wang, et al. Magnetism in Mn-doped ZnO bulk samples. Solid State Communication, 2005,134(12): 827-830
    
    [29] S. Kolesnik, B. Dabrowski, J. Mais. Structural and magnetic properties of transition metal substituted ZnO. J. Appl. Phys., 2004, 95: 2582-2586
    
    [30] P. Yu, Z. K. Tang, G. K. L. Wong, et al. 23nd Int Conf on the Physics of Semiconductors[C], Singapore, World Science, 1996, 2: 1453-1456
    
    [31] Bagnall D. M., Chen Y. F., Zhu Z., et al. Optical Pumped Lazing of ZnO at Room Temperature. Appl. Phys. Lett, 1997, 70(17): 2230-2232
    
    [32] Rotert F Service. Will UV Lasers Beat the Blues. Science, 1997, 276(9): 895
    
    [33] Cho H., Zhao Y. G, Ong H. C, et al. Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films. Appl. Phys.Lett., 1998, 73(25): 3656-3658
    
    [34] Cho H., Zhao Y. G, Ho S. T. et al. Random Laser Action in Semiconductor Powder. Phys. Rev. Lett., 1999, 82(11): 2278-2282
    
    [35] Y. Matsumoto, M. Murakami, T. Shono, et al. Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide. Science, 2001, 291: 854
    [36]Y.D.Park,A.T.Hanbicki,S.C.Erwin,et al.A Group-IV Ferromagnetic Semiconductor:Mn_xGe_(1-x).Science,2002,295(25):651-654
    [37]D.Chiba,M.Yamanouchi,E Matsukura,et al.Electrical Manipulation of Magnetization Reversal in a Ferromagnetic Semiconductor.Science,2003,301:943-945
    [38]H.Ohno.Making Nonmagnetic Semiconductors Ferromagnetic.Science,1998 281(14):951-956
    [39]Michaet H.H.,Samuel M.,Henning F.,et al.Room temperature Ultraviolet Nanowire Nanolasers.Science,2001,292(8):1897-1899
    [40]Yang P.D.,Mao S..Controlled Growth of ZnO Namowires and Their Optical Properties.Advance Funct.Mateials,2002,12(5):323-331
    [41]Michaet H.H.,Samuel M.,Henning E,et al.Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport.Advance Materials,2001,13(2):113-116
    [42]J.J.Wu,S.C.Liu,C.T.Wu,et al.Heterostructures of ZnO Coaxial Nanocables and ZnO Nanotubes.Phys.Appl.Lett.,2002,81(12):1312-1314
    [43]L.F.Dong,J.Jiao,D.W.Tuggle,et al.ZnO nanowires formed on tungsten substrates and their electron field emission properties.Phys.Appl.Lett.,2003,82(7):1096-1098
    [44]J.Q.Hu,Y.Bando.Growth and optical properties of single-crystal tabular ZnO whiskers.Phys.Appl.Lett.,2003,82(9):1401-1403
    [45]郭常新,傅竹西.阴极射线激发下2nO薄膜室温紫外发光的超线性增长规律.发光学报,1998,19(3):239-241
    [46]贺洪波,姚振钰.多种基底溅射沉积ZnO薄膜的结构.功能材料与器件学报,1999,5(1):66-70
    [47]T.Aoki,T.Y.Shimizu,A.Miyake,et al.P-type ZnO Layer Formation by Excimer Laser Doping.Phys.Stat.Sol.,2002,229(2):911-914
    [48]X.L.Guo,H.Tabata,T.Kawai.P-type conduction in transparent semiconductor ZnO thin films induced by electron cyclotron resonance N_2O plasma.Optical Materials,2002,19:229-233
    [49]Xiang G.,Wilkinson J.,Mischuck B.,et al.Control of p- and n- type conductivity in sputter deposition of undoped ZnO.Appl.Phys.Lett.,2002,80(7):1195-1197
    [50]T.Yamamota,H.Yoshida.Rohm co.Ltd..P-type ZnO single crystal and method for producing the same.US patent.6,527,858.2000-4-20
    [51]A.Ohtomo,M.Kawasaki,T.Koida,et al.Mg_xZn_(1-x)O as an Ⅱ-Ⅵ widegap semiconductor alloy.Appl.Phys.Lett.,1998,72(19):2466-2468
    [52]Jin Y.,Zhang B.,Yang S.,et al.Room temperature UV emission of Mg_xZn_(1-x)O films.Solid State Communications,2001,119(6):409-413
    [53]Ohashi N.,Sekiguchi T.,Aoyama T.,et al.Band-edge emission of undoped and doped ZnO.J.Applied Physics,2002,91(6):3658-3662
    [54]Kim S.S.,Moon J.H.,L.Byung-Teak,et al.Heteroepitaxial growth behavior of Mn-doped ZnO thin films on Al_2 O_3(0001)by pulsed laser deposition.Appl.Phys.,2004,95:454-459
    [55]Ohta,H.;Orita,M.;Hirano,M.;Hosono,et al.Fabrication and Current Injection UV-light Emission from a Transparent p-n Herterojunction p-SrCuO2 and n-ZnO.Key Engineering Materials,2002,214-215:75-80
    [56]叶志镇,吕建国,黄靖云,等.浙江大学.ZnO基同质结发光二极管.中国专利.CN 1399356A.2003-2-26
    [57]叶志镇,黄靖云,马德伟,等.浙江大学.ZnO基发光二极管.中国专利.CN 1399357A.2003-2-26
    [58]Tom A.,Yoshinori H.,D.C.Look.ZnO diode fabricated by excimer-laser doping.Appled Physics Letters,2000,76(22):3257-3258
    [59]Y.I.Alivov,J.E.V.Nostrand,D.C.Look,et al.Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes.Appl.Phys.Lett.,2003,83:2943-2945
    [60]Ya.I.Alivov,E.V.Kalinina,A.E.Cherenkov.et al.Fabrication and characterization of n-ZnO/p-A1GaN heterojunction light-emitting diodes on 6H-SiC substrates.Appl.Phys.Lett.,2003,83:4719-4721
    [61]W.I.Park,Yi G C.Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN.Advanced Materials,2004,16(1):87-90
    [62]Y.J.Xing,Z.H.Xi,Z.Q.Xue,et al.Optical properties of the ZnO nanotubes synthesized via vapor phase growth.Appl.Phys.Lett.,2003,83:1689-1691
    [63]刘舒曼,张志华.ZnO:Tb纳米晶的协同发光现象.物理学报,2000,49(11):2307-2309
    [64]张喜田,刘益春.ZnO:Er薄膜的结构和发光特性研究.人工晶体学报,2001,30(4):389-392
    [65]Zhang X.T.,Liu Y.C.,Ma J.G,et al.Room-temperature blue luminescence from ZnO:Er thin films.Thin Solid Films,2002,413(1-2):257-261
    [66]Garces N.Y.,Wang L.,Bai L.N.Y.,et al.Role of copper in the green luminescence from ZnO crystals.Appl.Phys.Lett,2002,81(4):622-624
    [67]W.M.Jadwisienczak,H.J.Lozykowski,A.Xu,et al.Visible Emission from ZnO Doped with Rare-Earth Ions.J.of Electronic Materials,2002,31(7):776-784
    [68]修向前,张荣,徐晓峰,等.溶胶-凝胶法制备ZnO基稀释磁性半导体薄膜.高技术通信,2003,3:64-66
    [69]K.Ando,H.Saito,Z.W.Jin,et al.Magneto-optical properties of ZnO-based diluted magnetic semiconductors.J.Appl.Phys.,2001,89:7284-7286
    [70]S-J.Han,J.W.Song,C-H.Yang,et al.A key to room-temperature ferromagnetism in Fe-doped ZnO:Cu.Appl.Phys.Lett.,2002,81:4212-4214
    [71]H-J.Lee,S-Y.Jeong.Study of diluted magnetic semiconductor:Co-doped ZnO.Appl.Phys.Lett.,2002,81:4020-4022
    [72]S.J.Pearton,C.R.Abernathy,M.E.Overberg,et al.Wide band gap ferromagnetic semiconductors and oxides.J.Appl.Phys.,2003,93:1-13
    [73]H.Saito,V.Zayets,S.Yamagata,et al.Room-Temperature Ferromagnetism in an Ⅱ-ⅥDiluted Magnetic Semiconductor Zn_(1-x)Cr_(x)Te.Phys.Rev.Lett.,2003,90:207202
    [74]P.V.Radovanovic,D.R.Gamelin.High-Temperature Ferromagnetism in Ni~(2+)-Doped ZnO Aggregates Prepared from Colloidal Diluted Magnetic Semiconductor Quantum Dots.Phys.Rev.Lett.,2003,91:157202
    [75]D.P.Norton,M.E.Overberg,S.J.Pearton,et al.Ferromagnetism in cobalt-implanted ZnO.Appl.Phys.Lett.,2003,83:5488-5490
    [76]X.M.Cheng,C.L.Chien.Magnetic properties of epitaxial Mn-doped ZnO thin films.J.Appl.Phys.,2003,93:7876-7878
    [77]J.H.Park,M.Kim,H.Jang,et al.Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films.Appl.Phys.Lett.,2004,84:1338-1340
    [78]E-C.Lee,Chang K.J.Ferromagnetic versus antiferromagnetic interaction in Co-doped ZnO.Phys.Rev.B,2004,69:085205
    [79]J-H.Choy,E-S.Jang,J-H.Won,et al.Hydrothermal route to ZnO nanocoral reefs and nonofibers.Appl.Phys.Lett.,2004,84(1):287-289
    [80]X.Y.Kong,Y.Ding,R.S.Yang,et al.Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts.Science,2004,303:1348
    [81]李汶军,施尔畏.水热法制备氧化锌粉体。无机材料学报,1998,13(1):27-32
    [82]陈代荣,焦秀玲,程刚.山东大学.一种制备氧化锌纳米粉体的方法.中国专利.CNll11138C.2003-6-21
    [83]井立强,郑莹光,徐自力,等.ZnO超微粒子的EPR特性和光催化性能.高等学校化学学报,2001,22(11):1885-1888
    [841郭敏。刁鹏,蔡生民.一种在固体基底上制备高度取向氧化锌纳米棒的新方法.化学学报,2003,61(2):1165-1168
    [85]Z.W.Pan,Z.R.Dai,Z.L.Wang,et al.Nanobelts of Semiconducting Oxides.Science,2001,291(9):1947-1049
    [86]Guo L,Ji Y L,Xu H B,et al.Regularly Shaped,Single-Crystalline ZnO Nanorods with Wurtzite Structure.J.Am.Chem.Soc.,2002,124(50):14864-14865
    [87]H.T.Ng,J.Li,M.K.Smith,et al.Growth of Epitaxial Nanowires at the Junctions of Nanowalls.Science,2003,300(23):1249
    [88]Liu B.,Zeng H.C.Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50nm.J.Am.Chem.Soc.,2003,125(15):4430-4431
    [89] J-H. Choy, E-S. Jang, J-H Won, et al. Hydrothermal route to ZnO nanocoral reefs and nanofibers. Appl. Phys. Lett., 2004, 84: 287-289
    
    [90] A. Urbieta, P. Fernandez, J. Piqueras, et al. Cathodoluminescence microscopy of hydrothermal and flux grown ZnO single crystals. J. Phys. D: Appl. Phys., 2001, 34(19): 2945-2949
    
    [91] A. Urbieta, P. Fernandez, C. Hardolov, et al. Cathodoluminescence and scanning tunnelling spectroscopy of ZnO single crystals. Mat. Sci. & Eng. B, 2002,91: 345-348
    
    [92] Xiang W. H., Sun Y.. Ultraviolet Lasing from ZnO Single Crystal at Room Temperature. Chin. Phys. Lett., 2003, 20(2): 296-297
    
    [93] Oka K., Hajime S., Satoshi K.. Crystal Growth of ZnO. J. Crystal Growth, 2002, 237-239: 509-513
    
    [94] Robert Triboulet. The scope of the ZnO Growth. Proc, SPIE, 2001,4412: 1-8
    
    [95] Nielsen J. W., Dearborn E. F.. The growth of large single crystals of zinc oxide. J. Phys. Chem., 1962, 64: 1762-1764
    
    [96] Chase A. B., Judith. O. A.. Localized Cooling in Flux Method. J. Am. Ceram. Soc., 1967, 6: 325-328
    
    [97] Wanklyn B. M. The Growth of ZnO Crystals from Phosphate and Vanadate Flux. J. Cryst. Growth, 1970, 7: 107-108
    
    [98] Sharma S. D., Subhash K. C. Growth of ZnO Hollow Needles. J. Cryst. Growth, 1971, 10: 121-128
    
    [99] Ushio M., Sumiyoshi Y.. Synthesis of ZnO Single Crystal by the Flux Method. J. Mater. Sci., 1993,28:218-224
    
    [100] Shiloh M., Cutrnan S.. Growth of ZnO Single Crystals by Chemical Vapor Transport. J. Cryst. Growth, 1971, 11: 105-109
    
    [101] Piekarczyk W., Cazda S., Niemyski T.. The Growth of Zinc Oxide Crystals by Chemical Transport Method. J. Cryst. Growth, 1972, 12: 272-276
    
    [102] Matsumoto K., Konemtrra K., Shimaoka G. Crystal Growth of ZnO by Vapor Transport in a Closed Tube Using Zn and ZnCl_2 as Transport Agents. J. Cryst. Growth, 1985, 71: 99-103
    
    [103] Matsumoto K., Shimaoka G. Crystal Growth of ZnO by Chemical Transport. J. Cryst. Growth, 1988, 86: 410-414
    
    [104] Matsumoto K., Noda. Crystal Growth of ZnO by Vapor Transport Using HgCl_2 as a Transport Agent. J. Cryst. Growth, 1990, 102: 137-140
    
    [105] Ntep J. M., Gohen S. G. ZnO Growth by Chemically Assisted Sublimation. J. Cryst. Growth, 1998, 184/185: 1026-1030
    
    [106] G. Agarwal, Nause J. E., Hill D. N.. A new approach to growth of bulk ZnO crystals for wide bandgap applications. Mat. Res. Soc. Symp. Proc, 1998, 512: 41-46
    [107]L.N.Demianets,D.V.Kostomarov,I.P.Kuz'mina,et al.Mechanism of Growth of ZnO Single Crystals from Hydrothermal Alkali Solutions.Crystallogr.Rep.,2002,47:S86-S98
    [108]M.Suscavage,Harris M.,Yip P.,et al.High Quality Hydrothermal ZnO Crystals.MRS Internet J.Nitride Semicond.Res.,1999,4S1,G3.40:537-543
    [109]E.Ohshima,H.Ogino,I.Niikura,et al.Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method.Journal of Crystal Growth,2004,260(1):166-170
    [110]上海硅酸盐所氧化锌组.氧化锌单晶的热液生长.物理,1976,5(1):6-10
    [111]董国义,韦志仁,林岩,等.水热法合成氧化锌晶体.人工晶体学报,2003,32(2):130-133
    [112]S-J.Han,T-H.Jang,Y.B.Kim,et al.Magnetism in Mn-doped ZnO bulk samples prepared by solid state reaction.Appl.Phys.Lett.,2003,83:920-922
    [113]B.G.Wang,E.W.Shi,W.Z.Zhong.Twinning Morphologies and Mechanisms of ZnO Crystallites under Hydrothermal Conditions.Crystal Research and Technology,1998,33(6):937-941
    [114]朱主芳,高亢之,王本仁,等编.有色金属的耐腐蚀及其应用.北京:化学工业出版社,1995.
    [115]仲维卓著.《中日文化交流丛书》第五辑人工水晶(第二版).北京:科学出版社,1994.
    [116]杨德壬编.无机化学(上册).北京:高等教育出版社,1989.
    [117]张克丛,张乐惠编.晶体生长科学与技术(第二版).北京:科学出版社,1997.
    [118]V.K.Lamer,R.H.Dinegar.Theory,Production and Formation of Monodispersed Hydrosols.J.Am.Chem.Soc.,1950,72:4847-4854
    [119]叶瑞伦,方永汉,陆佩文编.无机材料物理化学.北京:中国建筑工业出版社,1986.
    [120]北京工业大学材料科学与工程学院编.晶体生长.北京:内部教材,1998.
    [121]A.A.Chernov.Modern Crystallography Ⅲ.Spring-Verlag,288
    [122]G.W.Scherer.Dring GelsModern.J.Non-Crystalline Solids,1986,87:199-255
    [123]韦志仁,董国义,王立明,等.矿化剂浓度和温度对水热法合成氧化锌晶体形态的影响.发光学报,2003,24(4):353-357
    [124]李汶军,施尔畏,仲维卓,等.负离子配位多面体生长基元的理论模型与晶粒形貌.人工晶体学报,1999,28(2):117-125
    [125]施尔畏,陈之战,元如林,等著.水热结晶学.北京:科学出版社,2004.
    [126]经和贞,刘承钧著.人造石英晶体技术.北京:科学出版社,1992.
    [127]克伦多而夫著.化工高压技术.北京:化学工业出版社,1958.
    [128]T Z布拉齐恩斯基著.爆炸焊接、成形和压制.北京:机械工业出版社,1988.
    [129]贾绍义,柴诚敬编.化工传质与分离过程.北京:化学工业出版社,2001.
    [130]陈泽民主编.近代物理与高新技术物理基础.北京:清华大学出版社,2001.
    [131]Look D.C.,Hemsky J.W.,Sizelove J.R..Residual Native Shallow Donor in ZnO.Phys.Revi.Lett.,1999,82(12):2552-2555
    [132]Vigue F.,Vennegues P.,Vezian S.,et al.Defect characterization in ZnO layers grown by plasma-enhanced molecular-beam epitaxy on(0001)sapphire substrates.Appl.Phys.Lett.,2001,79(2):194-196.
    [133]Zhang C.Y.,Li X.M.,Gao X..D.,et al.The grain-boundary-related optical and electrical properties in polycrystalline p-type ZnO films.Chemical Physics Letters,2006,420:448-452
    [134]Koida T.,Chichibu S.F,Uedono,A.,et al.Correlation between the photoluminescence lifetime and defect density in bulk and epitaxial ZnO.Applied Physics Letters,2003,82(4):532-534
    [135]Rosner S.J.,Carr E.C.,Ludowise M.J.,et al.Correlation of cathodoluminescence inhomogeneity with microstructural defects in epitaxial GaN grown by metalorganic chemicalvapor deposition.Appl.Phys.Lett.,1997,70(4):420-422
    [136]王卿璞.ZnO薄膜的制备及发光特性的研究[博士学位论文].济南:山东大学,2001.
    [137]孙玉明.ZnO及其缺陷电子结构的FP-LMTO研究[博士学位论文].合肥:中国科学技术大学,2000.
    [138]Abrarov S.M.;Yuldashev S.U.;Lee S.B.,et al.Green Photoluminescence Suppression in ZnO Embedded in Porous Opal.Jpn.J.Appl.Phys.Part 1.2004.43(9A):6101-6103
    [139]王卿璞,张德恒,薛忠营,等,射频磁控溅射法制备ZnO薄膜的发光特性.发光学报,2003 24(1):69
    [140]K.Vanheusden,C.H.Seager,W.L.Warren,et al.Correlation between photoluminescence and oxygen vacancies in ZnO phosphors.Appl.Phys.Lett,1996,68(3):403-405
    [141]M.Liu,A.H.Kitai,P.Mascher.Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese.J.Lumin.1992,54:35-38
    [142]D.C.Reynolds,D.C.Look,B.Jogai.Fine structure on the green band in ZnO.J.Appl.Phys.2001,89:6189-6190
    [143]Z.Q.Chen,S.Yamamoto,M.Maekawa,et al.Postgrowth annealing of defects in ZnO studied by positron annihilation,x-ray diffraction,Rutherford backscattering,cathodoluminescence,and Hall measurements.Appl.Phys.,2003,94:4807-4812

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700