轻烧白云石粉料碳化法制备氧化镁
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化镁高温下具有优良的耐碱性和电绝缘性、光透过性好、导热性高、热膨胀系数大等特点,广泛用于橡胶、电子、化工、陶瓷等行业。高纯氧化镁是指纯度大于98%的氧化镁产品,它具有比普通轻质氧化镁更优异的性能,因而应用领域扩大到航空航天及高级陶瓷等领域。
     以武汉钢铁集团有限公司乌龙泉矿生产的-5mm轻烧白云石粉料为原料,采用碳化法制备氧化镁。研究了原料消化、碳化、重镁水热解和碱式碳酸镁煅烧工艺过程,分析了各过程的影响因素,得出最佳工艺条件。分析得出影响氧化镁纯度的主要因素为重镁水热解温度,并采用两种方法对重镁水热解过程进行改进制备出高纯氧化镁。
     在重镁水热解过程中加入乙醇,制备出高纯氧化镁。研究了乙醇用量、热解温度对氧化镁纯度、氧化钙含量和氧化镁回收率的影响,表明氧化镁纯度随乙醇用量的增大和热解温度的上升而降低,氧化钙含量和氧化镁回收率则上升。得出最佳工艺条件:乙醇40%(体积含量)、温度50℃,此条件下氧化镁纯度为99.78%,氧化钙含量为0.23%,氧化镁回收率为63%。
     在低压条件下热解重镁水,制备出高纯氧化镁。研究了液面压强对氧化镁纯度、氧化钙含量和氧化镁回收率的影响,表明氧化镁纯度随液面压强的上升而下降,氧化钙含量则随之增大,氧化镁回收率不变。得出最佳工艺条件:压强0.015MPa,此条件下氧化镁纯度为99.6%,氧化钙含量为0.13%,氧化镁回收率为70%。
     用乙酸溶解碱式碳酸镁得到乙酸镁溶液,经浓缩、结晶得到乙酸镁晶体。将乙酸镁晶体干燥后在500℃煅烧30min得到纳米氧化镁。XRD表征表明样品为立方晶系,衍射峰发生宽化。TEM照片表明颗粒大小约50nm,边缘较清晰。
Magnesia is wildly used in rubber,electron,chemistry and ceramic areas because of its good alkali resistance,good electricity isolation,good heat transmission and big heat expand quotiety and so on.High-purity magnesia, MGO>98%,has much more excellent characteristics than common magnesia in many cases and is used even in high-technology areas such as space and fine ceramic.Nanometer magnesia is a new functional and fine inorganic nonmetal material appeared with development of nanometer technology.
     Magnesia prepared is by dolomite carbonation from light burning dolomite powder(-5mm)produced in Wulongquan mine.The optimal conditions have been confirmed after studying four processes of dolomite carbonation,that are hydrating,carbonating,thermal decomposition and burning.The main factor that influences the purity of magnesia is the thermal decomposition temperature of carbonated liquid.Finally high-purity magnesia has been prepared by dolomite carbonation improved on thermal decomposition process by two ways,adding ethanol and declining pressure.
     Adding ethanol during carbonated liquid thermal decomposition process, high-purity magnesia has been prepared.It has been studied that the influence of ethanol quantity and temperature on the purity of magnesia,CaO content and rate of MgO product yield.The result shows the purity of magnesia declines with increasing of ethanol quantity and temperature,but CaO content and the rate of MgO product yield increase.At last the optimal conditions, ethanol:40%and 50℃have been confirmed.The purity of magnesia prepared under the optimal conditions is 99.78%,CaO is 0.23%,product yield of MgO is 63%.
     Thermal decomposing carbonated liquid under low pressure can prepare high-purity magnesia.It has been studied that influence of pressure on purity of magnesia,CaO content and rate of MgO product yield.The conclusion indicates the purity of magnesia declines with increasing of pressure,CaO content increases too,but the rate of MgO product yield is invariable.At last the optimal condition is at pressure of 0.015MPa.The purity of MgO sample prepared under optimal conditions is 99.6%,CaO content is 0.13%,product yield of MgO is 70%.
     Preparation of nanometer magnesia is based on the characteristic of magnesium acetate vaporizing and decomposing to MgO at 323℃.Precursor Mg(acac)_2 has been prepared by reaction of acetic acid and magnesium hydroxyl carbonate.Then nanometer MgO has been obtained through making the dry precursor decompose at 500℃for 30min.XRD shows MgO is cubic structure crystal and peaks have obviously broadened.TEM pictures shows particle size of nanometer MgO is about 50nm,and boundaries between MgO
引文
[1]胡庆福,胡晓湘,宋丽英.中国专用氧化镁开发现状及发展建议[J].化工进展,2005,24(1):30-32.
    [2]邓绍雄.海水高纯氧化镁的生产历史回顾与展望[J].海洋科学,1994,4:20-21.
    [3]约翰.梅罗著,马盂超,等译.海洋矿物资源[M].地质出版社,1988,21-45.
    [4]郭如新.日本氧化镁氢氧化镁生产应用与研发动向[J].苏盐科技,2003,2:8-9.
    [5]郭如新.美国氧化镁氢氧化镁生产现状及研发动向[J].苏盐科技,2005,1:8-10.
    [6]胡庆福.镁化合物生产与应用[M].化学工业出版社,2004,1-2.
    [7]高洁,狄小亮,李昱昀.氧化镁的发展趋势及其生产方法[J].化工生产与技术,2005,12(5):36-37.
    [8]向兰,刘峰,金永成,等.试论我国西部盐湖镁资源的高度利用对策[J].海湖盐与化工,2002,31(4):24-27.
    [9]胡庆福,刘景泽,胡晓湘,等.中国镁质化工材料生产与发展[J].中国非金属矿工业导刊,2006,4:8.
    [10]孙国清,白锦会,邓绍雄.高纯氧化镁的生产[J].湖北化工,1994,2:37-38.
    [11]郭光远.盐湖水氯镁石制取高纯氧化镁工艺研究[J].海湖盐与化工,2005,34(3):12-13.
    [12]胡庆福.我国碱式碳酸镁、轻质氧化镁生产现状及其发展[J].化工科技市场,2001,24(6)19-22.
    [13]胡庆福,赵风清,刘宝树,等.白云石碳化法生产两镁一钙经济规模[J].无机盐工业,1999,11.31(6):21.
    [14]章柯宁,张一敏,王昌安,等.从低品级菱镁矿中提取高纯氧化镁的研究[J].武汉科技大学学报(自然科学版),2006,29(6):558-560.
    [15]喻新平,陈献桃.副产盐酸分解白云石制轻质氧化镁和氯化钙研究[J].河南化工,2001(5):14-15.
    [16]宗俊,宗巍,项蓉,等.菱苦士-硫酸铵发制备氧化镁工艺探索[J].无机盐工业,1991(3):7-10.
    [17]施民梅,周相廷.四水合碳酸镁铵的合成及晶体结构[J].无机盐工业,2004,(5):26-27.
    [18]胡章文,王自友,杨保俊,等.高纯氧化镁制备工艺研究[J].安徽工程科技学院学报,2004,19(4):17-18.
    [19]Kiyoshi Itatani,Masayuki Nomura,Akira Kishioka,et al.Sinterability of various high-purify magnesium oxide powders[J].MaterSci,1986,21:1429-1430.
    [20]Maria A A,Victoriano B,Cesar J,et al.Influence of the preparation method on the structural and suiface properties of various magnesium oxides and their catalytic activity in the Meerwein-Ponndorf-Verley reaction[J].Appl Catal A:General,2003,244:207-215.
    [21]Stark J V,Klabunde K J.Nanoscale metal oxide particles,clusters as chemical reagents:unique surface chemistry on magnesium oxide as shown by enhanced adsorption of acid gases[J].Chem Mater,1996,8(8):1904-1912.
    [22]林育炼.最近高纯镁砂生产技术的进步[J].耐火材料,1990,(1):43-48.
    [23]徐徽,苏元智,李新海,等.盐湖水氯镁石制取轻质氧化镁的工艺[J].中国有色金属学报,2004,10(14):1776-1782.
    [24]徐徽,蔡勇,石西昌,等.水镁石制取高纯氧化镁的研究[J].湖南师范大学自然科学学报,2006,29(1):52-53.
    [25]Alvarado E,Torres-Martinez L M,Fuentes A F,et al.Preparation and characterization of MgO powders obtained from different magnesium salt and the mineral dolomite[J].Polyhedron,2000,19:2345-2351.
    [26]Lucas E M,Klabunde K J.Nanocrystals as destructive adsoubents for mimics of chemical warfare agents[J].Nanostructured Materisls,1999,12:179-182.
    [27]Ryan Richards,Ravichandra S Mulukutla,IIya Mishakov,et al.Nanocrystalline ultra-high surface area magnesium oxide as a selective base catalyst[J].Scripat Mater,2001,44:1663-1666.
    [28]符晓荣,武光明,宋志棠,等.新型溶胶-凝胶法制备纳米MgO薄膜的研究[J].无机材料学报,1999,14(6):828-832.
    [29]Watari Takanori,Nakayoshi Kazumi,Kato Akio.Preparation of submicron magnesium oxide powders by vapor-phase reaction of magnesium and oxygen[J].Journal of the Chemical Society of Japan,1984,(6):1057-1076.
    [30]张伟,王宝和.纳米氧化镁粉体制备技术的研究进展[J].中国粉体技术,2004,2:40-44.
    [31]王志奎,杨荣榛.超细粉体氧化镁的合成[J].功能材料,1999,30(5):557-558.
    [32]Hu J F,Qin H W,Sui Z G,et al.Characteristic of mechanically milled TiO2 powders[J].Materials Letters,2002,53:421-424.
    [33]Yin S,Yamaki H,Zhang Q W,et al.Mechanochemical synthesis of nitrogen-doped titania and its visible light induced NOx destruction ability[J].Solid State Ionics,2004,172(1-4):205-209.
    [34]李建林,曹广益,周勇,等.高能球磨制备TiB2/TiC纳米复合粉体[J].无机材料学报,2001,16(4):709-714.
    [35]酒金婷,李立平,葛钥,等.固相法合成纳米氧化镁[J].无机化学学报,2002,17(3):361-365.
    [36]周盍明,忻新泉.低温固相合成化学[J].无机化学学报,1999,15(3):273-292.
    [37]廖莉玲,刘吉平.固相法合成纳米氧化镁[J].精细化工,2001,18(12):696-698.
    [38]许建峰,都有为.高频感应加热法制备Zn超细颗粒及分析[J].粉体技术,1996,2(2):18-22.
    [39]邝世源,杜华唐,于凤仁,等.高频等离子体加热法制取钛白的半工业试验[J].广东有色金属学报,1999,9(2):116-121.
    [40]Chhor K.Bocquet J F,Pommier C.Syntheses of submicron magnesium oxide powders[J].Mater Chem Phys,1995,40:63-68.
    [41]Suzuki M,Kagawa M,Syono Y,et al.Synthesis of ultrafine singlecomponent oxide particles by the spray-ICP technique[J].Mgter Sci,1992,27(3):679-684.
    [42]王结良,梁国正.纳米制备新技术研究进展[J].河南化工,2003,10:7-10.
    [43]Kiyoshi Italani,Kiyotaka Koizumi,Scoot Howell F,et al.Agglomeration of magnesium oxide particles formed by the decomposition of magnesium hydroxide[J].MaterSci,1988,23:3405-3412.
    [44]张登松,施利毅.纳米材料制备的若干新进展[J].化学工业与工程技术,2003,24(5):32-36.
    [45]Elliiott J C.Studies in Inorganic Chemistry,vol 18[M].Amsterdam:Elsevier,1994,111-190.
    [46]李春虎,赵九生,王大祥.纳米MgO和MgAl_2O_4尖晶石的制备与表征[J].无机材料学报,1996,11(3):557-560.
    [47]江国忠,程素芳,何国良,等.纳米级MgO粉体的合成[J].合成化学,1996,4(4):300-302.
    [48]张近.纳米氧化镁合成工艺的研究[J].无机盐工业,1999,31(2):3-5.
    [49]Wang J A,Novara O,Bokhimi X,et al.Characterizations of the thermal decomposition of brucite prepared by sol-gel technique for synthesis of nanocrystalline MgO[J].Materials Letters,1998,35:317-323.
    [50]Haul,R.A.W,Heyeted H.On the Heat Decomposition of Dolomite[J].Am.Mineralogist,1952,35:166-172.
    [51]C.A.Sottell,C.R.Atmstrong.Reaction and equilibrias in magnesium oxychloride cements[J]. J.Am.Caram.Soc,1976,59:51-54.
    [52]马保国,崔崇,崔可浩,等.白云石的分解过程及影响因素[J].武汉工业大学学报,1994(2):56-62.
    [53]冯小平,张正文,谢峻林.轻烧白云石的煅烧工艺对活性度的影响[J].矿产综合利用,2007,(1):14-15.
    [54]Hashimoto H.Partial decomposition of dolomite in carbon dioxide[J].J.Solid State Chem,1980,33(1):181-183.
    [55]Otsuka R.Recent studies on the decomposition of dolomite group by thermal analysis[J].Therm.Acta,1986,(10):69-71.
    [56]曾令芳.白云石活化烧结的研究[D].北京:中国建筑材料科学研究院,1990.
    [57]黄文熙,钱光人,沈得勋.不同煅烧条件下CaO活性研究[J].硅酸盐学报,1991,19(6):506-508.
    [58]张旭.白云石加压碳化法制取轻质镁盐[J].河北化工,2004(1):42-43.
    [59]Bensons W.The foundation of chemical kinetics[M].New York:McGraw Hill Book Company,1960,499.
    [60]周相廷.MgO·CO_2·H_2O体系研究[D].石家庄:河北师范大学化学系,1989.
    [61]李环,苏莉,于景坤.利用菱镁矿制备高活性氧化镁[J].耐火材料,2006,40(4):295.
    [62]顾长光.碳酸盐矿物热分解机理的研究[J].矿物学报,1990,10(3):266-267.
    [63]王濮,潘兆槽,翁玲宝等.系统矿物学(下).地质出版社,1987,344-378.
    [64]刘治国,池顺都,朱建东.白云石矿系列产品开发及应用[J].矿产综合利用,2003,(2):28-32.
    [65]谢英惠,何予基,高长虹.以白云石为原料制备球状碳酸镁的研究[J].化学工程师,2001,87(6):16.
    [66]刘宝树,乔满辉,胡庆福,等.白云石灰浆碳化反应动力学研究[J].河北科技大学学报,2005,26(2):121-122.
    [67]周春山.化学分离富集方法及应用[M].中南工业大学出版社,1997:15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700