用户名: 密码: 验证码:
掺镁铌酸锂脊形光波导设计及制备工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铌酸锂光波导以其超快响应速度和超宽响应带宽,无自发辐射噪声以及非线性效应丰富等诸多优点被广泛应用于多种全光信号处理技术中,世界上已经有许多科研团队都能制作铌酸锂光波导,但目前适用于全光信号处理的铌酸锂光波导制作在国内尚属空白,制作具有自主知识产权的铌酸锂波导器件在全光通信中具有重要意义。
     本论文以掺镁铌酸锂晶体为研究对象,对直接键合铌酸锂脊形光波导,黏胶键合铌酸锂脊形光波导,退火质子交换铌酸锂脊形光波导的结构进行设计,优化波导结构参数,并实验研究直接键合,黏胶键合,研磨抛光和ICP干法刻蚀脊形结构相结合制备铌酸锂脊形波导以及退火质子交换与金刚石划片机精密切割脊形结构相结合制备铌酸锂脊形波导的制备工艺,并对所制备的铌酸锂光波导性能进行测试,得出具有较高二阶非线性转换效率的铌酸锂波长转换器件。概括全文的研究成果主要有以下几个方面:
     (1)在非耗尽近似条件下推导出二阶非线性倍频转换光输出光功率的近似解析表达式。分析影响转换光输出光功率的波导参数,如波导长度,波导光场有效作用面积,准相位匹配条件,晶体非线性系数等,得出提高转换光输出光功率的方法。并得出铌酸锂波导中中o光入射对应TE模式传输,e光入射对应TM模式传输。另外比较周期极化铌酸锂晶体与周期极化掺镁铌酸锂晶体的抗光折变性能,选取具有较高抗光折变性能的掺镁铌酸锂晶体做为铌酸锂波导的衬底。从材料选取以及波导尺寸选择方面为铌酸锂波导的设计提供理论依据。
     (2)编写有限差分法计算波导本征光场及有限差分光束传播法计算波导传输光场的Matlab程序,并对不同工艺方法制备掺镁铌酸锂脊形波导结构进行模拟设计。模拟得到直接键合掺镁铌酸锂脊形波导最佳波导尺寸,以及在最佳尺寸下1550nm基频光和775nm倍频光的基模光场分布,基模有效折射率以及传输模场分布,从而得到直接键合掺镁铌酸锂脊形波导最佳设计参数(准相位匹配周期,波导宽度,波导高度等)。模拟常用制备退火质子交换波导工艺条件下,宽度为8μm的退火质子交换掺镁铌酸锂脊形波导结构下,基频光和倍频光基模光场分布及有效折射率,从而得到退火质子掺镁铌酸锂脊形波导准相位匹配周期等设计参数。
     (3)针对直接键合掺镁铌酸锂脊形波导的不足,利用黏胶键合中间胶层折射率与波导层较大折射率差,实现了特殊结构下黏胶掺镁铌酸锂脊形波导基频光和倍频光的单模传输,同时降低波导中光场有效作用面积,增强转换光的输出光功率。
     (4)对直接键合掺镁铌酸锂脊形波导的制备工艺进行实验研究。对直接键合法和ICP干法刻蚀相结合制备掺镁铌酸锂脊形波导流程中的各项工艺,如掺镁铌酸锂晶体和钽酸锂晶体的直接键合工艺,键合晶圆片中掺镁铌酸锂波导层的减薄抛光处理工艺以及ICP干法刻蚀掺镁铌酸锂晶体工艺进行细致实验研究,通过对工艺原理和影响因素分析,优化实验参数,初步制成脊形的掺镁铌酸锂波导。并选取合适的黏合剂,实现了掺镁铌酸锂/钽酸锂晶体的黏胶键合。
     (5)对退火质子交换周期极化掺镁铌酸锂脊形波导的制备工艺进行实验研究。通过对退火质子交换法和金刚石划片机精密切割相结合制备退火质子交换周期极化掺镁铌酸锂脊形波导流程中的各项工艺进行细致实验研究,如掺镁铌酸锂晶体的周期极化工艺,掺镁铌酸锂晶体的退火质子交换工艺以及金刚石划片机精密切割周期极化掺镁铌酸锂晶体工艺,制备出具有波长转换性能的退火质子交换周期极化掺镁铌酸锂脊形波导器件。
     (6)对制备的退火质子交换周期极化掺镁铌酸锂脊形光波导性能进行测试。搭建精密光纤耦合对准平台,用截断法测试波导的传输损耗。然后用紫外点胶法将波导进行耦合封装,测试封装后波导器件的插入损耗及准相位匹配波长。基于此种退火质子交换周期极化掺镁铌酸锂脊形波导中同时级联倍频差频和级联和频差频效应实现可调谐广播式全光波长转换。
The all-optical signal processing using lithium niobate waveguides has distinctadvantages of ultra-fast response and low noise, which has been widely applied in recentyears. Fabrication of high quality lithium niobate waveguides has always been achallenging topic over the past decades, but this technology is still insane in china.Searching for excellent performances and easy processing fabrication methods for lithiumniobate waveguide devices is meaningful for all-optical signal processing.
     In this dissertation, structures of different kinds of MgO doped lithium niobate ridgewaveguides, such as direct-bonded ridge waveguides, adhesive-bonded ridge waveguidesand annealed-proton exchange ridge waveguide, are modeled and designed. Thencorresponding fabrication processes are investigated. Through the combination of annealedproton-exchange and precise diamond blade dicing, a nonlinear wavelength conversion issuccessfully realized based on the annealed proton-annealed periodically poled MgO-dopedlithium niobate ridge waveguide. The detailed research contents can be found as follows.
     (1) The analytical solutions to second-harmonic generation is derived under thenon-depletion approximation. The waveguide parameters that influence the convertedoutput power, such as waveguide length, the effective interaction area, quasi-phase matchconditions, nonlinear coefficient are discussed. And the ways to enhance converted outputpower are obtained. We get that the ordinary light corresponds to transverse electric modeand extraordinary light corresponds to transverse magnetic mode in lithium niobatewaveguide. The MgO-doped lithium niobate is chosen as the substrate of lithium niobatewaveguide because of its high resistance to photorefractive. The design rules of lithiumniobate waveguide are obtained from material choice and waveguide sizes.
     (2) The modeling of the waveguides device with Finite-Difference Method (FDM)calculating eigen field distribution and Finite-Difference Beam Propagation Method(FD-BPM) calculating propagated field distribution are established based on MatlabProgramme. The optimized waveguide size, fundamental mode field distributions offundamental light1550nm and second-harmonic light775nm, the effective mode effectiveindex and the propagated mode field distributions of direct-bonded MgO-doped lithium niobate ridge waveguide and annealed-proton exchanged MgO-doped lithium niobate ridgewaveguide are obtained.
     (3) A new BCB-bonded MgO-doped LiNbO3-on-insulator (LNOI) rib waveguidestructure that can allow single-mode propagation at both fundamental wavelength andsecond-harmonic wavelength is designed. The calculated results indicate that hightsecond-harmonic generation efficiency can be potentially achieved based on this newlydesigned waveguide due to the waveguide layer and adhesive layer high index contrast andsmall waveguide sizes.
     (4) The fabrication processes of direct-bonded MgO-doped lithium niobate ridgewaveguide which through the combination of direct-bonded technology and InductivelyCoupled Plasma (ICP) dry etching technology, are investigated experimentally. Thefabrication parameters and optimization of the fabrication process are presented in detail. Aridge-shaped direct-bonded MgO-doped lithium niobate waveguide and adhesive-bondedMgO-doped lithium niobate waveguide are fabricated successfully.
     (5) The fabrication processes of annealed-proton exchange periodically poledMgO-doped lithium niobate ridge waveguide which through the combination ofannealed-proton exchange technology and precise diamond blade dicing technology, areresearched experimentally. Wavelength converter based on annealed-proton exchangeperiodically poled MgO-doped lithium niobate ridge waveguide is realized.
     (6) The characteristics of the fabricated annealed-proton exchange periodically poledMgO-doped lithium niobate ridge waveguide are measured. With truncation method, thepropagation loss is obtained. Then the waveguide is packaged by UV dispensing method.All optical broadcast wavelength conversion based on cascaded second-harmonic generationand difference-frequency generation and cascaded sum-and difference-frequency generationare achieved in the fabricated ridge waveguide.
引文
[1] M. Yamada, N. Nada, M. Saitoh, et al. First-order quasi-phase matched LiNbO3waveguide periodically poled by applying an external field for efficient bluesecond-harmonic generation. Appl. Phys. Lett.,1993,62(5):435-436
    [2] L. E. Myers, R. Eckardt, M. M. Fejer, et al. Quasi-phase-matched optical parametricoscillators in bulk periodically poled LiNbO3. J. Opt. Soc. Am. A.,1995,12(11):2102-2116
    [3] G. G. Zhong, J. Jian, W. Z. Kang. Measurement of Optically InducedRefractive-index Damage of Lithium Niobate Doped with Different Concentrationsof MgO. J. Opt. Soc. Am.B.,1980,70(6):631-633
    [4] H. Ishizuki, I. Shoji, T. Taira. Periodical poling characteristics of congruent MgO:LiNbO3crystals at elevated temperature. Appl.Phys.Lett.,2003,82(5):4062-4063
    [5] H. Ishizuki, T. Taira. Fabrication and characterization of5-mm-thick periodicallypoled MgO: LiNbO3device. Technical Digest of CLEO’05,2005. Paper CFC7
    [6] P. G. Suchoski, T. K. Findakly, F. J. Leonberger. Stable low-loss proton-exchangedLiNbO3waveguide devices with no electro-optic degradation. Opt. Lett.,1988,13(11):1050-1052
    [7] M. L. Bortz, M. M. Fejer. Annealed proton-exchanged LiNbO3waveguides. Opt Lett.,1991,16(23):1844-1846
    [8] Y. N. Korkishko, V. A. Fedorov, T. M. Morozova, et al. Reverse proton exchange forburied waveguides in LiNbO3. J. Opt. Soc. Am. A.,1998,15(7):1838-1842
    [9] K. R. Parameswaran, R. K. Route, J. R. Kurz, et al. Highly efficient second-harmonicgeneration in buried waveguides formed by annealed and reverse proton exchange inperiodically poled lithium niobate. Opt. Lett.,2002,27(3):179-181
    [10] R. V. Schmidt, I. P. Kaminow. Metal-diffused optical waveguides in LiNbO3.Appl.Phys.Lett.,1974,25(8):458-460
    [11] D. Hofmann, G. Schreiber, C. Haase, et al. Quasi-phase-matched difference-frequencygeneration in periodically poled Ti: LiNbO3channel waveguides. Opt. Lett.,1999,24(13):896-898
    [12] W. L. Chen, R. S. Chen, J. H. Lee, et al. Lithium niobate ridge waveguides by nickeldiffusion and proton-exchanged wet etching. IEEE Photonic.Tech.L.,1995,7(11):1318-1320
    [13] W. Young, M. M. Fejer, M. J. Digonnet, et al. Fabrication, characterization and indexprofile modeling of high-damage resistance Zn-diffused waveguides in congruentand MgO: lithium niobate. J.Lightwave.Technol.,1992,10(9):1238-1246
    [14] L. Ming, C. Gawith, K. Gallo, et al. High conversion efficiency single-pass secondharmonic generation in a zinc-diffused periodically poled lithium niobate waveguide.Opt.Express.,2005,13(13):4862-4868
    [15] G. Schreiber, H. Suche, Y. Lee, et al. Efficient cascaded difference frequencyconversion in periodically poled Ti: LiNbO3waveguides using pulsed and cwpumping. Appl. Phys. B-Lasers O.,2001,73(5):501-504
    [16] Y. L. Lee, H. Suche, Y. H. Min, et al. Wavelength-and time-selective all-optical,channel dropping in periodically poled Ti: LiNbO3channel waveguides. IEEEPhotonic. Tech. L.,2003,15(7):978-980
    [17] H. Tamada, A. Yamada, M. Saitoh. LiNbO3thin-film optical waveguide grown byliquid phase epitaxy and its application to second-harmonic generation. J. Appl.Phys.,1991,70(5):2536-2541
    [18] T. Kawaguchi, T. Yoshino, J. Kondo, et al. High-power blue/violet QPM-SHG laserusing a new ridge-type waveguide. Technical Digest of CLEO’01,2001. Paper141-142
    [19] M. Asobe, H. Miyazawa, O. Tadanaga, et al. A highly damage-resistant Zn: LiNbO3ridge waveguide and its application to a polarization-independent wavelengthconverter. IEEE J. Quantum. Elect.,2003,39(10):1327-1333
    [20] C. B. E. Gawith, D. P. Shepherd, J. A. Abernethy, et al. Second-harmonic generationin a direct-bonded periodically poled LiNbO3buried waveguide. Opt. Lett.,1999,24(7):481-483
    [21] Y. Nishida, H. Miyazawa, M. Asobe, et al. Direct-bonded QPM-LN ridge waveguidewith high damage resistance at room temperature. Electron. Lett.,2003,39(7):609-611
    [22] M. Asobe, Y. Nishida, O. Tadanaga, et al. Wavelength conversion using quasi-phasematched LiNbO3waveguides. IEICE Trans. Electron.,2005, E88c(3):335-341
    [23] Y. Nishida, H. Miyazawa, A. Asobe, et al.0-dB wavelength conversion usingdirect-bonded QPM-Zn: LiNbO3ridge waveguide. IEEE Photonic. Tech. L.,2005,17(5):1049-1051
    [24] T. Umeki, M. Asobe, Y. Nishida, et al. Highly efficient+5dB parametric gainconversion using direct-bonded PPZnLN ridge waveguide. IEEE Photonic. Tech. L.,2008,20(4):15-17
    [25] T. Umeki, O. Tadanaga, M. Asobe. High quality and efficient QPM-LiNbO3wavelength converter integrated with0.78/1.56-μm wavelength multiplexer.Technical Digest of ECOC’09,2009. Paper1-2
    [26] M. Iwai, T. Yoshino, S. Yamaguchi, et al. High-power blue generation from aperiodically poled MgO: LiNbO3ridge-type waveguide by frequency doubling of adiode end-pumped Nd: Y3Al5O12laser. Appl. Phys. Lett.,2003,83(18):3659-3661
    [27] K. Mizuuchi, T. Sugita, K. Yamamoto, et al. Efficient340-nm light generation by aridge-type waveguide in a first-order periodically poled MgO: LiNbO3. Opt. Lett.,2003,28(15):1344-1346
    [28] Y. Kato, M. Maruyama, H. Seki, et al. Fablication of periodically-poled Zn-dopedLiNbO3for adhered ridge waveguide. Technical Digest of CLEO’04,2004. PaperCThKK7
    [29] R. Kou, S. Kurimura, K. Kikuchi, et al. Uniformity of50mm long quasi-phase-matchedadhered ridge waveguide. Technical Digest of CLEO’09,2009. Paper CThD1
    [30] K. Sakai, Y. Koyata, S. Itakura, et al. High-Power, Highly Efficient Second-HarmonicGeneration in a Periodically Poled MgO:LiNbO3Planar Waveguide. J. Lightwave.Technol.,2009,27(8):590-596
    [31] T. Takaoka, M. Fujimura, T. Suhara. Fabrication of ridge waveguides in LiNbO3thinfilm crystal by proton-exchange accelerated etching. Electron.Lett.,2009,45(18):940-941
    [32] J. L. Jackel, C. E. Rice, J. J. Veselka. Proton exchange for high-index waveguides inLiNbO3. Appl. Phys. Lett.,1982,41(7):607-608
    [33] K. Eda, M. Sugimoto, Y. Tomita. Direct heterobonding of lithium niobate ontolithium tantalate. Appl.Phys.Lett.,1995,66(7):827-829
    [34] P. Rabiei, W. H. Steier. Lithium niobate ridge waveguides and modulators fabricatedusing smart guide. Appl.Phys.Lett.,2005,86(16):161113-161115
    [35] V. Bermudez, F. Caccavale, C. Sada, et al. Etching effect on periodic domainstructures of lithium niobate crystals. J Cryst Growth,1998,191(3):589-593
    [36] O. Tadanaga, T. Yanagawa, Y. Nishida, et al. Efficient3mm difference frequencygeneration using direct-bonded quasi-phase-matched LiNbO3ridge waveguides.Appl.Phys.Lett.,2006,88(6):0611011-0611013
    [37] T. Yanagawa, O. Tadanaga, K. Magari, et al. CH4monitoring in ambient air bycommunication band laser diode based difference frequency generation in aquasi-phase-matched LiNbO3waveguide. Appl.Phys.Lett.,2006,89(22):1113-1115
    [38] H. K. Nguyen, M. H. Hu, Y. Li, et al.304mW green light emission by frequencydoubling of a high-power1060-nm DBR semiconductor laser diode. Appl. Phys.Lett.,2008,24(6):68901-68906
    [39] A. Mitchell, L. Bui, A. Holland, et al. Etching of lithium niobate using standard Tiindiffusion technique. Appl. Phys. Lett.,2012,91(5):231921-231923
    [40] S. Kurimura, K. Sugiura, Y. Muranaka, et al. Waveguide parametric amplifier inquasi-phase-matched Mg:LiNbO3. Technical Digest of LSRPD’12,2012. PaperAW4A.28
    [41] J. Hopwood. Review of inductively coupled plasmas for plasma processing. Plasma.Sources. Sci. T.,1992,1(3):109-111
    [42] S. Tadigadapa, F. L rmer. Dry Etching for Micromachining Applications. Appl. Phys.Lett.,2011,54(8):403-456
    [43] H. Hu, R. Ricken, W. Sohler. Etching of lithium niobate: From ridge waveguide tophotonic crystal structures. Technical Digest of ECIO’08,2008. Paper WeD3
    [44] L. Gui, H. Hu, M. G. Granda, et al. Local periodic poling of ridges and ridgewaveguides on X-and Y-Cut LiNbO3and its application for second harmonicgeneration. Opt.Express.,2009,17(5):3923-3928
    [45] A. E. Willner, O. F. Yilmaz, J. Wang, et al. Optically efficient nonlinear signalprocessing. IEEE J.Sel.Top.Quant.,2011,17(2):320-332
    [46] V. Petruzzelli, F. Prudenzano. Propagation modes in periodically poled lithium niobatewaveguides exploiting cascaded second order nonlinearity. Fiber. Integrated. Opt.,2001,20(4):347-365
    [47] E. Saitoh, Y. Kawaguchi, K. Saitoh, et al. A design method of lithium niobate oninsulator ridge waveguides without leakage loss. Opt.Express.,2011,19(17):15833-15842
    [48] H. Furukawa, A. Nirmalathas, N. Wada, et al. Tunable all-optical wavelengthconversion of160-Gb/s RZ optical signals by cascaded SFG-DFG generation inPPLN waveguide. IEEE Photonic. Tech. L.,2007,19(6):384-386
    [49] H. Furukawa, A. Nirmalathas, N. Wada, et al. All Optical Tunable WavelengthConversion at160Gb/s. Technical Digest of OFC’07,2007. Paper OTuI1
    [50] B. Huettl, A. G. Coca, H. Suche, et al.320Gbit/s DQPSK all-optical wavelengthconversion using periodically poled LiNbO3. Technical Digest of CLEO’07,2007.Paper CThF1
    [51] B. Hüttl, R. Elschner, H. Suche, et al. All-optical wavelength converter concepts forhigh data rate D(Q)PSK transmission. Technical Digest of APOC’07,2007. Paper678323
    [52] G. Kanter, P. Kumar, K. Parameswaran, et al. Wavelength-selective pulsed all-opticalswitching based on cascaded second-order nonlinearity in a periodically poledlithium-niobate waveguide. IEEE Photonic. Tech. L.,2001,13(4):341-343
    [53] A.Bogoni, X. Wu, Z. Bakhtiari, et al.640Gbits/s photonic logic gates. Opt. Lett.,2010,35(23):3955-3957
    [54] K. J. Lee, S. Liu, F. Parmigiani, et al. OTDM to WDM format conversion based onquadratic cascading in a periodically poled lithium niobate waveguide. Opt. Express.,2010,18(10):10282-10288
    [55] J. Wang, J. Q. Sun, C. H. Luo, et al. Experimental demonstration of wavelengthconversion between ps-pulses based on cascaded sum and difference frequencygeneration (SFG+DFG) in LiNbO3waveguides. Opt. Express.,2005,13(19):7405-7414
    [56] J. Wang, J.Q. Sun, C.H. Luo, et al. Flexible all-optical wavelength conversions of1.57-ps pulses exploiting cascaded sum-and difference frequency generation(cSFG/DFG) in a PPLN waveguide. Appl. Phys. B-Lasers O.,2006,83(4):543-548
    [57] H. Wang, J. W. Sun, X. L. Zhang, et al. Experimental observation of tunablewavelength down-and up-conversions of ultra-short pulses in a periodically poledLiNbO3waveguide. Opt.Commun.,2007,269(1):179-187
    [58] J. Wang, J. Q. Sun, Q. Z. Sun. Proposal for all-optical switchable OR/XOR logicgates using sum-frequency generation. IEEE Photonic. Tech. L.,2007,19(8):541-543
    [59] J. Wang, J.Q. Sun, Q.Z. Sun, et al. Dual-channel-output all-optical logic AND gate at20Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide. Electron.Lett.,2007,43(17):940-942
    [60] J. Wang, J. Q. Sun, Q. Z. Sun. Single-PPLN-based simultaneous half-adder,half-subtracter, and OR logic gate: proposal and simulation. Opt.Express.,2007,15(4):1690-1699
    [61] J. Wang, J. Q. Sun, Q. Z. Sun, et al. PPLN-based flexible optical logic AND gate.IEEE Photonic. Tech. L.,2008,20(4):211-213
    [62] J. Wang, J. Q. Sun, Q. Z. Sun, et al. All-optical dual-direction half-subtracter basedon sum-frequency generation. Opt.Commun.,2008,281(4):788-792
    [63] J. Wang, J. Q. Sun, X. L. Zhang, et al. PPLN-based all-optical three-input20/40Gb/sAND gate for NRZ/RZ signals and XOR gate for NRZ-DPSK/RZ-DPSK signals.Technical Digest of OFC’08,2008. Paper1620-1622
    [64] J. Wang, J. Q. Sun, X. L. Zhang, et al. Proposal for PPLN-based all-optical NRZ toCSRZ, RZ to CSRZ, NRZ-DPSK to CSRZ-DPSK, and RZ-DPSK to CSRZ-DPSKformat Conversions. IEEE Photonic. Tech. L.,2008,20(12):1039-1041
    [65] J. Wang, J. Q. Sun, X. L. Zhang, et al. Proposal and simulation for all-optical formatconversion between differential phase-shift keying signals based on cascadedsecond-order nonlinearities. Opt.Commun.,2008,281(19):5019-5024
    [66] J. Wang, J. Q. Sun, X. L. Zhang, et al. All-Optical Format Conversions UsingPeriodically Poled Lithium Niobate Waveguides. IEEE J. Quantum Electron.,2009,45(2):195-205
    [67] J. Wang, J. Q. Sun, Q. Z. Sun. All-optical ultrawideband monocycle and doubletgeneration using cascaded PPLN waveguides. Technical Digest of SPIE'07,2007.78230-78230
    [68] J. Wang, S. Nuccio, X. Wu, et al.40Gbit/s optical data exchange betweenwavelength-division-multiplexed channels using a periodically poled lithium niobatewaveguide. Opt. Lett.,2010,35(7):1067-1069
    [69] J. Wang, S. R. Nuccio, J. Y. Yang, et al. High speed addition subtraction complementdoubling of quaternary numbers using optical nonlinearities and DQPSK signals. Opt.Lett.,2012,37(7):1139-1141
    [70] M. Bortz, S. Field, M.M. Fejer, et al. Noncritical quasi-phase-matched secondharmonic generation in an annealed proton-exchanged LiNbO3waveguide. IEEE J.Quantum. Elect.,1994,30(12):2953-2960
    [71] J. Kurz, X. Xie, M. M. Fejer. Odd waveguide mode quasi-phase matching withangled and staggered gratings. Opt. Lett.,2002,27(16):1445-1447
    [72] H. Hu, R. Ricken, and Sohler a W. Etching of lithium niobate:micro-and nanometerstructres for integrated optics. Technical Digest of PMEDC’09,2009. Paper587-591
    [73] H. Hu, R. Ricken, W. Sohler. High refractive index contrast ridge waveguides inLiNbO3thin films. Technical Digest of CLEO’09,2009. Paper CE6
    [74] N. Courjal, B. Guichardaz, G. Ulliac, et al. High aspect ratio lithium niobate ridgewaveguides fabricated by optical grade dicing. J. Phys. D: Appl. Phys.,2011,44(7):305101
    [75] J. Sun, Y. Gan, C.Q. Xu. Efficient green-light generation by proton-exchangedperiodically poled MgO: LiNbO3ridge waveguide. Opt. Lett.,2011,36(4):549-551
    [76] J. Sun, C.Q. Xu.466mW green light generation using annealed proton-exchangedperiodically poled MgO: LiNbO3ridge waveguides. Opt. Lett.,2012,37(11):2028-2030
    [77] E. Mochizuki, Y. Muranaka, S. Kurimura, et al. Lithium niobate membrane on siliconplatform for waveguide sensor. Technical Digest of MOC’11,2011. Paper H51
    [78] K. Sugiura, K. Kikuchi, K. Tanizawa, et al. Wide-band Tunable SFG-DFGWavelength Conversion in Efficient LN-QPM Adhered Ridge Waveguide. TechnicalDigest of CLEO’11,2011. Paper CTuL
    [79] M. Asobe, T. Umeki, O. Tadanaga, et al. QPM Wavelength Conversion UsingEngineered LiNbO3Waveguides. Technical Digest of CLEO’10,2010. Paper CMG1
    [80] T. Umeki, O. Tadanaga, M. Asobe. Highly Efficient Wavelength Converter UsingDirect-Bonded PPZnLN Ridge Waveguide. IEEE J. Quantum. Elect.,2010,46(8):1206-1213
    [81] G. D. Miller. Periodically poled lithium niobate: modeling, fabrication, andnonlinear-optical performance:[Ph.D paper]. Stanford University: Stanford UniversityLibrary,1998
    [82] M. H. Chou. Optical frequency mixers using three-wave mixing for optical fibercommunications:[Ph.D paper]. Stanford University: Stanford University Library,1999
    [83] J. R. Kurz. Integrated optical-frequency mixers:[Ph.D paper]. Stanford University:Stanford University Library,2003
    [84]王健.基于铌酸锂光波导的高速全光信号处理技术研究:[博士学位论文].武汉:华中科技大学,2008
    [85] R. V. Roussev. Optical-frequency mixers in periodically poled lithium niobate:materials, modeling and characterization:[Ph.D paper]. Stanford University: StanfordUniversity Library,2006
    [86] D. A. Bryan. Increased optical damage resistance in lithium niobate. App. Phys.,1984,44(6):847-851
    [87]刘思敏.光折变非线性光学及其应用.天津:科学出版社,2004.25-29
    [88]孔勇发.多功能光电材料-铌酸锂晶体,天津:科学出版社,2005.54-87
    [89] A. M. Glass, D. Linde, T. J. Negran. High-voltage bulk photovoltaic effect and thephotorefractive process in LiNbO3. App. Phys.,1974,25(7):233-241
    [90]吴仲康,王韦,王华馥.掺镁铌酸锂(LiNbO3:Mg)的抗光损伤增强.硅酸盐学报,1987,15(2):175-178
    [91]马春生,刘式墉.光波导模式理论.吉林:吉林大学出版社,2006.27-57
    [92] M. Stern. Semivectorial polarised finite difference method for optical waveguideswith arbitrary index profiles. Technical Digest of CLEO’88,1988. Paper56-63
    [93] K. Kawano, T. Kitoh. Introduction to Optical Waveguide Analysis: Solving Maxwell'sEquations and the Schr dinger Equation. New York, USA: John Wiley&Sons, Inc.,2002.119-163
    [94] J. C. Strikwerda. Finite difference schemes and partial differential equations.Madison,Wisconsin,USA: Society for Industrial Mathematics,2004.37-61
    [95] M. Adams. An introduction to optical waveguides. New York, USA: John Wiley&Sons, Inc.,1981.183-208
    [96] L. Thylen. The beam propagation method: an analysis of its applicability. Opt. Quant.Electron.,1983,15(5):433-439
    [97] W. Huang, Xu C. Simulation of three-dimensional optical waveguides by afull-vector beam propagation method. IEEE J. Quantum. Elect.,1993,29(10):2639-2649
    [98] H. Dieter. Temperature-dependent Sellmeier equation for the index of refraction neincongruent lithium niobate. Opt. Lett.,1997,22(14):1553-1556
    [99] D. E. Zelmon, D. L. Small, D. Jundt. Infrared corrected Sellmeier coefficients forcongruently grown lithium niobate and5mol%magnesium oxide doped lithiumniobate. J. Opt. Soc.Am.B.,1997,14(12):3319-3322
    [100] K. S. Abedin, H. Ito. Temperature dependent dispersion relation of ferroelectriclithium tantalate. J. Appl. Phys.,1996,80(11):6561-6563
    [101] A. Bruner, D. Eger, M. B. Oron, et al. Temperature-dependent Sellmeier equation forthe refractive index of stoichiometric lithium tantalate. Opt. Lett.,2003,28(3):194-196
    [102] D. Eger, A. Bruner, M. B. Oron, et al. Temperature-dependent Sellmeier equation forthe refractive index of lithium niobate. Opt. Lett.,2002,25(4):304-306
    [103] X. Xie. High gain parametric processes in quasi-phase-matching proton-exchangelithium niobate waveguides:[Ph.D paper]. Stanford University: Stanford UniversityLibrary,2006
    [104] R. Reif, A. Fan, K. N. Chen, et al. Fabrication technologies for three-dimensionalintegrated circuits. Technical Digest of ISQED’02,2002. Paper33-36
    [105] R. A. Soref, J. Schmidtchen, K. Petermann. Large single-mode rib waveguides inGeSi-Si and Si-on-SiO2. IEEE J. Quantum. Elect.,1991,27(8):1971-1974
    [106] S. P. Pogossian, L. Vescan, A. Vonsovici. The single-mode condition for semiconductorrib waveguides with large cross section. J. Lightwave. Technol.,1998,16(10):1851-1853
    [107] O. Powell. Single-mode condition for silicon rib waveguides. J.Lightwave.Technol.,2002,20(10):1851-1855
    [108] J. Lousteau, D. Furniss, A. Seddon, et al. The single-mode condition for silicon-on-insulatoroptical rib waveguides with large cross section. J. Lightwave. Technol.,2004,22(8):1923-1929
    [109] J. Crank. The mathematics of diffusion. Oxford: Clarendon press Oxford,1979.127-189
    [110] S. T. Vohra, A. R. Mickelson, S. E. Asher. Diffusion characteristics and waveguidingproperties of proton-exchanged and annealed LiNbO3channel waveguides. J. Appl.Phys.,1989,66(11):5161-5174
    [111] D. Clark, A. Nutt, K. Wong, et al. Characterization of proton exchange slab opticalwaveguides in z-cut LiNbO3. J. Appl. Phys.,1983,54(11):6218-6220
    [112] J. Nikolopoulos, G. L. Yip. Theoretical modeling and characterization of annealedproton-exchanged planar waveguides in z-cut LiNbO3. IEEE Photonic.Tech.L.,1991,9(7):864-870
    [113] W. Charczenko, I. Januar, A. Mickelson. Modeling of proton-exchanged andannealed channel waveguides and directional couplers. J. Appl. Phys.,1993,73(7):3139-3148
    [114] H. Jan. Direct bonding: retrospect and outlook. Philips Journal of Research,1995,49(2):171-177
    [115] J. Haisma,G. A. Spierings, T. M. Michielsen. Frameworks for direct bonding. PhilipsJournal of Research,1995,49(2):11-21
    [116]何国荣,陈松岩,谢生. Si-Si直接键合的研究及其应用.半导体光电,2003,8(3):149-171
    [117] C. B. E. Gawith. Novel active waveguide devices in direct-bonded structures:[Ph.Dpaper]. Southampton University: Southampton University Library,2000
    [118] J. Haisma, G. A. Spierings, T. M. Michielsen, et al. Surface preparation andphenomenological aspects of direct bonding. Philips Journal of Research,1995,49(2):23-46
    [119]聂磊.低温圆片键合理论与工艺研究:[博士学位论文].武汉:华中科技大学,2007
    [120] F. Niklaus, G. Stemme, J. Q. Lu, et al. Adhesive wafer bonding. J. Appl. Phys.,2006,99(3):28-30
    [121] F. Awaja, M. Gilbert, G. Kelly, et al. Adhesion of polymers. Prog. Polym. Sci.,2009,34(9):948-968
    [122] A. J. Danielson. Adhesive bonding method and product. USA, US Patents:3331729,1967.1-8
    [123] C. V. Cagle. Adhesive bonding: techniques and applications. New York, USA:McGraw-Hill,1968.108-152
    [124] P. B. Zantye, A. Kumar, A. Sikder. Chemical mechanical planarization formicroelectronics applications. Mat.Sci.Eng.R.,2004,45(3):89-220
    [125] F. Malik, M. Hasan. Manufacturability of the CMP process. Thin Solid Films,1995,270(1):612-615
    [126] H. C. Cho, S. H. Jeong, J. H. Park, et al. Experimental Analysis in Lithium NiobateCMP for Room Temperature Bonding. Materials Science Forum,2008.569(29):129-132
    [127]刘立新,张学建,张莹等.铌酸锂晶体的抛光机理及精密加工工艺.硅酸盐学报,2008,7(11):1609-1614
    [128] S. G. Meikle. Method of chemical mechanical polishing for dielectric layers. USA,US Patents:5795495,1998.1-9
    [129] J. L. Jackel, R. E. Howard, E. L. Hu, et al. Reactive ion etching of LiNbO3. Appl.Phys. Lett.,1981,38(11):907-909
    [130]应再生,黄涛.铌酸锂的反应离子刻蚀.微细加工技术,1992,1(2):35-38
    [131] S. Winnall. Lithium niobate reactive ion etching. Technical Digest of DTIC’00,2000.Paper42-46
    [132] M. Tamura, S. Yoshikado. Etching characteristics of LiNbO3crystal by fluorine gasplasma reactive ion etching. Sci.Technol.Adv.Mat.,2001,2(3):563-569
    [133] T. Fujii, S. Yoshikado. Surface Evaluation of LiNbO3, LiTaO3Crystals Etched UsingFluorine System Gas Plasma RIE. IEEJ Transactions on Fundament.,2003,12(3):731-737
    [134] W. S. Yang, H. Y. Lee, W. K. Kim, et al. Asymmetry ridge structure fabrication andreactive ion etching of LiNbO3. Opt. Mater.,2005,27(10):1642-1646
    [135] W. Park, W. Yang, W. Kim, et al. Ridge structure etching of LiNbO3crystal foroptical waveguide applications. Opt.Mater.,2006,28(3):216-220
    [136] W. Park, S. Yoon, D. Yoon, et al. Effects of Process Parameter for LiNbO3OpticalWaveguide Prepared by Neutral Loop Discharge Plasma Etching. Journal of KoreanPhysical Society,2006,49(5):1951-1954
    [137] S. Mailis, Y. J. Ying, C. L. Sones, et al. Ultra-smooth lithium niobate single crystalphotonic micro-structures. Technical Digest of CLEO’09,2009. Paper CMQQ7
    [138] J. Deng, G. Si, A. J. Danner. Dry etching of LiNbO3using inductively coupledplasma. Technical Digest of PGC’10,2010. Paper1-5
    [139] G. Ulliac, B. Guichardaz, J. Y. Rauch, et al. Ultra-smooth LiNbO3micro and nanostructures for photonic applications. Microelectron.Eng.,2011,88(8):2417-2419
    [140] D. Jun, J. Wei, C. Peng, et al. Deep anisotropic LiNbO3etching with SF6/Arinductively coupled plasmas. J.Vac.Sci.Technol.B.,2012,30(1):1206-1208
    [141] S. Matsumoto, E. Lim, H. Hertz, et al. Quasiphase-matched second harmonicgeneration of blue light in electrically periodically-poled lithium tantalatewaveguides. Electron.Lett.,1991,27(22):2040-2042
    [142] G. D. Miller, R. G. Batchko, M. M. Fejer, et al. Visible quasi-phase-matchedharmonic generation by electric-field-poled lithium niobate. Electron. Lett.,1996,24(20):1540-1542
    [143] J. Sun. Annealed Proton-Exchanged LiNbO3Ridge Waveguides--Simulation,Fabrication and Characterization:[Master paper]. Macmaster University: MacmasterUniversity Library,2003
    [144] S. Imamura. Method for dicing a semiconductor wafer. USA, US Patents:4610079,1994.1-8
    [145] J. N. Boucher, D. E. Bajune. Semiconductor wafer dicing saw. USA, US Patents:5934973,1999.1-9
    [146] S. Takyu, T. Kurosawa, N. Shimizu, et al. Novel wafer dicing and chip thinningtechnologies realizing high chip strength. Microelectron.Eng.,2006,58(7):717-719
    [147] G. Levinson. Principle of dicing. Ceramic Industry,1992,138(6):27-29
    [148] M. Bertolotti. Integrated Optics: Theory and Technology. J. Mod. Optic.,1987,34(1):457-460
    [149] S. H. Hwang, D. D. Seo, J. Y. An, et al. Parallel optical transmitter module using angledfibers and a V-grooved silicon optical bench for VCSEL array. IEEE T.Adv.Packaging.,2006,29(3):457-462

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700