用户名: 密码: 验证码:
低温圆片键合理论与工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
圆片键合是一种新兴的微电子制造技术,其特点是可将大尺寸的圆片材料一次性集成到一起,因此在材料制备、三维微结构集成和IC、MEMS器件制造及封装中应用日趋广泛。传统圆片键合技术通常需要在高温条件(>400℃)下进行,由此导致的热应力问题会造成器件工作不稳定和可靠性降低;同时过高的温度还会使圆片材料中的功能成分再度扩散,致使电学特性劣化。因此,低温,即400℃甚至300℃以下的圆片键合技术日益被重视,正逐步成为圆片级封装实用化和产业化的基础。所以,需要深入地研究低温圆片键合工艺机理,探索可行的键合手段并建立相应的抽象模型,为圆片级封装提供有效的方法和工具。
     本文立足于硅基圆片材料,对低温圆片键合的理论模型与机理、工艺、以及相应的检测技术进行了深入的研究,内容包括:
     对表面活化直接键合试验进行深入分析,研究了硅-硅直接键合的机理。通过分析各种分子原子力在键合过程中的作用,确定了低温键合模型。综合了各因素对最终键合质量的影响,提出了根据圆片表面形貌判定能否键合成功的标准。
     设计并完成了疏水性和亲水性表面活化直接键合的工艺试验,明确了各种活化配方和工艺流程对活化效果的影响。通过试验发现亲水性表面活化键合适用于低温键合,并根据试验结果提出了最佳活化配方和工艺。
     提出了一种将表面活化直接键合与激光局部键合相结合的键合技术。试验首先使用了亲水性表面活化溶液对键合片进行表面活化处理,并在室温下成功地完成了预键合。然后在不使用任何夹具施加外力辅助的情况下,利用波长1064nm的Nd:YAG连续式激光器,实现了激光局部键合,并取得了比较好的键合强度。试验结果表明,这种以表面活化预键合代替加压的激光局部键合技术克服了传统激光键合存在的激光对焦困难,压力不匀易损害键合片和玻璃盖板等缺点,同时缩短了表面活化直接键合的退火时间,提高了键合效率。
     将亲水性表面活化键合应用于图形圆片键合中,实验表明适合于裸片键合的活化工艺同样也能应用于低温图形圆片键合。
     利用低转化温度的玻璃中介材料实现了硅-硅中介键合,而且此玻璃中介材料膨胀系数与硅相接近,避免了热膨胀系数不匹配带来的热应力问题。试验结果表明键合界面均匀一致,界面两边的物质发生相互扩散,形成了牢固的连接,因此取得了较好的键合强度。
     对表现圆片键合质量的指标进行了全面的论述,并介绍了相应的检测手段及其优点和存在的问题。根据低温键合的特点,自行设计制造了红外检测系统。该系统主要用于对键合片进行红外透射无损检测,可对键合圆片进行静态和动态测试,为圆片键合的质量控制提供了高效快速的检测手段。
Wafer bonding is an emerging micromanufacture technology. By this technology, the wafers with devices or not can be integrated into an entirety. Therefore it has been employed widely in materials manufacture, 3D microstrcture integration and IC MEMS devices fabrication and package. But the high temperature process often involved in the wafer bonding technology, which will cause the unstable and unreliable performance of the devices on wafers. And the impurity doped in wafers will be diffused again under the overhigh temperature. Thus the low temperature wafer bonding which performed under the temperature lower than 400℃or even 300℃attracts more and more attention over the world and will be the basic micromachining technology of wafer level package. So it is necessary to study the low temperature bonding mechanism and to find the reasonable process.
     This dissertation concentrated on the mechanism, process, and bonding quality measurement of low temperature wafer bonding and presented relative results.
     By analyzing of bonding experiments, the mechanism of low temperature Si-Si direct bonding was studied. Based on the analysis of roles of short distance forces in bonding processing and the threshold of wafer surface morphology for bonding was presented, the bonding model was defined
     The low temperature hydrophobic and hydrophilic wafer bonding experiments were designed and performed. The results of experiments were analyzed carefully and by this means, the effect of different kinds of prescriptions and processes were discovered. It is obvious that the hydrophilic surface activated wafer bonding is much more suitable for low temperature Si-Si direct bonding than hydrophobic bonding and the RCA is the most proper activated solution for hydrophilic bonding.
     A new bonding technique to alleviate the high temperature adverse effect in silicon–glass bonding process is presented which combines the advantages of surface activated direct bonding and local laser bonding techniques. The hydrophilic surface activated solutions were used to make the bonding surfaces hydrophilic and the silicon-glass prebonding is accomplished at room temperature. The laser with a wavelength of 1064nm was used and its spot diameter was 500μm and the power is 70w. Without any external pressure, the prebonded pairs were bonded locally. The results of experiments shows that this bonding technique which employs surface activated prebonding to substitute pressure to maintain the intimate contact of bonding chips has overcome the disadvantages such as difficult focusing and easily breaking of bonding chips and glass cover in normal local laser bonding processing. This technique also improves the efficiency of surface activated direct bonding by shortening the annealing time.
     The hydrophilic surface activated bonding technology was used in pattern wafers bonding. The resuls of bonding experients indicted that this technology for bare wafers bonding is also fit for low temperature pattern wafers bonding.
     A low temperature Si-Si wafer bonding was realized by the aid of glass intermediate, the coefficient of thermal expansion of which is close to that of silicon. Thus the disadvantages caused by thermal stress were avoided. As shown in SEM figures, the cross section of bonding interface was smooth and the diffusion could be found around the interface. And the results of tension test indicated that the bonding strength is high enough.
     The typical manifestations of quality of wafer bonding were discussed, the relative test method was analyzed and the application environment was expounded. And for the sake of void detection, an infrared transmission inspection system was designed and built. The system can locate the void on the bonding interface and calculate the bonding rate nondestructively. And the inspection can be performed in static and dynamic mode. Thus, the system provides an effective and rapid measurement way for wafer bonding.
引文
[1] Hongjun Ji, Mingyu Li, Chunqing Wang, et al. Evolution of the bond interface during ultrasonic Al–Si wire wedge bonding process[J]. Journal of Materials Processing Technology. 2007,182:202-206
    [2] K.S. Goh, Z.W. Zhong. Development of capillaries for wire bonding of low-k ultra-fine-pitch devices[J]. Microelectronic Engineering. 2006,83:2009-2014
    [3] Z.W. Zhong, H.M. Ho, Y.C. Tan, et al. Study of factors affecting the hardness of ball bonds in copper wire bonding[J]. Microelectronic Engineering, 2006, in press
    [4]李和太,李晔辰.硅片键合技术的研究进展[J].传感器世界,2002,9:6-10
    [5] J.P. Colinge. Silico-on-Insulator Technology:materials to VLSI, Kluwer Academic, Boston,1997
    [6] K. Izumi, M. Doken, H. Ariyoshi. CMOS devices fabricated on buried SiO2 layer formed by oxygen implantation into silicon[J]. Electron Lett, 1978,14:593-598
    [7] S.Cristoloveanu, S.S. Li. Electral characterization of Silicon-On-Insulator materials and devices. Kluwer Acadmic, Boston,1995
    [8] M.Bruel, B.Aapar, A.J. Auberton-Herve. Smart-cut:A new silicon on insulator material technology based on hydrogen implantation and wafer bonding[J]. Jpn.J.Appl.Phys, 1997,36:1636-1642
    [9] E. Jalaguier, B. Aspar, S.Pocas. J.F.Michaud et al. Transfer of three-inch GaAs film on silicon substrate by proton implantation process. Electron[J]. Lett., 1998,34:408-412
    [10]储佳,路景刚,叶龙吃.一种新的SOI技术-智能切割[J],半导体技术,2001,26(l):18-21
    [11] C.Cui, M.D.Boer, J.G.E. Gardeniers, et al., Fabriation of multi-layer substrates for high aspect ratio single crystalline microstrctures[J]. Sensors and Actuatora A,1998, 70:61-66
    [12] D.Goustouridis, P.Normand and D.Tsoukalas. Ultraminiature silicon capacitive pressure-sensing elements obtained by silicon fusion bonding[J] Sensors and Actuatora A,1998, 68:269-273
    [13] S.chatzandroulis, A.Tserepi, D.Goustouridis, et al. Fabrication of single crystal Si cantilevers using a dry release process and application in a capacitive-type humidity sensor[J]. Micoelectronic Engineering,2000:955-961
    [14]汪建军,刘金霞.太阳能电池及材料研究和发展现状[J].浙江万里学院学报,2006,19(5):73-77
    [15]郭浩,丁丽,刘向阳.太阳能电池的研究现状及发展趋势[J].许昌学院学报, 2006,25(2):38-41
    [16]孙建,俞远高,王锐.微晶硅材料高速生长及其在太阳能电池中的应用[J].半导体技术,2006,31(9):697-611
    [17] Sandra Bermejo , Pablo Ortega,Luis Castaner. Fabrication of monolithic photovoltaic arrays on crystalline silicon by wafer bonding and deep Etching Techniques[J]. Prog. Photovolt: Res. Appl. 2005, 13:617–625
    [18] Q.-Y.Tong,U.G?sele. A model of low-temperature wafer bonding and its applications[J]. J.electrochem.soc, 1996, 143(5):1773-1779
    [19] Q.Y. Tong and U. Gosele, Semiconductor Wafer Bonding[M]. New York: Wiley Interscience, 1999
    [20]肖滢滢.硅硅直接键合的理论及工艺研究[D].合肥工业大学. 2005
    [21] George Wallis, J. Pomerantz. Field assisted glass-metal sealing[J]. J. Appl. Phys, 1969, 40(10): 39-46
    [22] Babak Ziaie, Jeffrev A. Von. A hermetic glass-silicon micropackage with high-density on-chip feedthroughs for sensors and actuators[J]. J. MEMS, 1996, 5(3): 166-179
    [23] T. Rogers, J. Kowal. Selection of glass, anodic bonding conditions and material compatibility for silicon-glass capacitive sensors[J]. Sensors and Actuators, 1995, 46-47: 113-120
    [24] Zhihong Li, Yilong Hao. An SOI-MEMS technology using substrate layer and bonded glass as wafer-level package[J]. Sensors and Actuators, 2002, 96: 34-42
    [25] Farhad Sarvar, David A. Hutt David C.et al. Application of Adhesives in MEMS and MOEMS Assembly[J]. IEEE Polytronic Conference 2002, (1):22-28
    [26] Frank Niklaus, Peter Enoksson, Edvard Kalvesten et al. Low-temperature full wafer adhesive bonding[J]. J. Micromech. Microeng. 2001,11:100–107
    [27] F. Niklausa. Adhesive wafer bonding[J]. Journal of Applied Physics. 2006:99-26
    [28] Baggerman, Antal F. J.; Batenburg, Martin J. Reliability Au-Sn flip-chip bonding on flexible prints[J]. Microelectronics and Reliability. 1996,36(4): 554-560
    [29] Lord Rayleigh. Astudy of glass surface in optical contact[J]. Proc. Phys. Soc. 1936:326-335
    [30] Auberton-Herve A.J ,et al. SOI materials for ULSI applications. Semiconductor International, 1995, 18(11):97-104
    [31] Vasudev P.K ,et al. CMOS device and interconnect technology enhancements for low power/low voltage applications. Solid-State Electronics, 1996, 39(4):481-488
    [32]林成鲁,张苗.SOI-二十一世纪的微电子技术.功能材料与器件学报,1999,5(1):1-7
    [33] J.B.Lasky, F.R.Stifer, F.R.White, et al., Silicon-on-insulator by wafer bonding and etch back[A]. Proc Int Electron Device Meeting,USA,1985:684-692
    [34]任学民. SOI品片制造技术及其应用前景,半导体技术,1999,24(3):l-5
    [35]肖清华,屠海令,周旗钢等. SOI材料的制备技术,稀有金属,2002, 26(6):460-465
    [36] M. Shimbo, K.Furukawa, K. Fukuda et al. Silicon-to silicon direct bonding method. J. Appl. Phys.1986,60:2987-3005
    [37] Yu-Ting Cheng. Localized heating and bonding technique for MEMS packaging: [Ph.D dissertation]. Michigan: Univeraity of Michigan, 2000
    [38] Wataru Nakayama. Thermal Issues in Microsystems Packaging. IEEE Transactions on advanced packaging, 2000, 23(4): 602~607
    [39] Sarah A. Audet, Katrina M.E. Integrated sensors wafer-level packaging[A]. International conference on solid-state sensors and actuators. Chicago: SPIE press, 1997: 16-19
    [40] P. McCluskey. Design for reliability of micro-eletro-mechanical system(MEMS)[A]. Proc. of 52th ECTC. New Orleans: SPIE press, 2002: 760-762
    [41] F. T. Hartley. Reliability roadmap for microstructures and micrometrical system. in: Proc. of Sensors Expo., Chicago, USA. 1998. 80~91
    [42] A.Hartzell, D.Woodilla, Reliability methodlogy for prediction of micromachined accelerometer stiction. in: Proc. 37th Ann. Int. Reliability Physics Symposium, San Diego, USA. 1999. 202-205
    [43] Tai-ran Hsu. Packaging design of Microsystems and meso-scale devices. IEEE trans. Adv. Packaging, 2000, 23(4): 596-601
    [44] Q.Y. Tong, U. Gosele. A model of Low-temperature wafer bonding and its applications[J]. J. Electronchem. 1996,143,(5):1773-1779
    [45] U. G?sele, H. Stenzel, T. Martini, et al. Self-propagating room-temperature silicon wafer bonding in ultrahigh vacuum[J]. App. Phys. Let, 1995, 67(24):3614-3617
    [46] H.Yu and Z.Suo. A model of wafer bonding by elastic accommodation[J]. J.Mech.Phys.Solids, 1998, 46(5):829-836
    [47]徐芝伦.弹性力学下册[M].北京:高等教育出版社,1992
    [48] A.Mehra, A. Ayon, I. Waitz, et al. Microfabrication of high-temperature silicon devices using wafer bonding and deep reactive ion etching[J]. J. Microelectromech. Syst, 1999, 8(2):152-160
    [49]韩伟华,余金中.硅片发生室温键合所需的平整度条件[J].半导体学报,2002,22(12):1516-1518
    [50] C.Gui, M.Elwenspoek, N.Tas, et al. The effect of surface roughness on direct wafer bonding[J]. J.Appl.Phys, 1999, 85(10):7448-7453
    [51] B.V.Deryagin, V.M.Muller, and Yu.P.Toporov. Effect of contact deformations on the adhesion of particles[J]. J.Colloid Interface Sci, 1975, 53(2):314-319
    [52] Andreas Plobl, Gertrud Krauter. Wafer direct bonding: tailoring adhesion between brittle materials. Materials Science and Engineering[J], 1999, R25 1-88
    [53] K.L.Johnson, K.Kendall and A.D.Roberts. Surface Energy and the Contact of Elastic Solids[J]. Proc.Royal.Soc.London.Ser.A, 1971, 324(1558):301-306
    [54] D.Maugis. Adhesion of spheres: the JKR-DMT transition using Dugdale model[J]. J.Colloid Interface Sci, 1992, 150(11):243-249
    [55] Greenwood. A. and Tripp. J. the Contact of Two Nominally Flat Rough Surfacesp[J]. Proc. Inst. Mech. Eng, 1970–1971, 185(48):625-630
    [56] W. B. Yu, C. M. Tan, J. Wei, et al. Influence of plasma treatment and cleaning on vacuum wafer bonding. in: Proc. of 5th EPTC. Singapore, 2003. 294-297
    [57] T. Suga, T. H. Kim, M. R. Howlader. Combined Process for Wafer Direct Bonding by Means of the Surface Activation Method. in: 2004 Electronic Components and Technology Conference, 2004. 484~490
    [58]关荣峰. MEMS器件设计、封装工艺及应用研究[D].武汉,华中科技大学,2005
    [59] Gong Li. Fusion bonding. PPT file from Suss Microelectronic. 2003
    [60] Q.-Y. Tong, S. Hsia, U. Gosele et al. A flexible built-in gettering layer prepared by hydrophobic Si wafer bonding[J]. Materials Chemistry and Physics, 1996,(45):223-227
    [61] Q.-Y. Tong, Q. Gan, G. Fountain,et al. Fluorine-enhanced low-temperature wafer bonding of native-oxide covered Si wafers[J]. Applied Physics letters, 2004,85(17):3731-3733
    [62] Niclas Keskitalo, Stefan Tiensuu, Anders Hallen. Characterization of hydrophobic bonded silicon wafers[J]. Nuclear Instruments and Methods in Physics Research B. 2002,186:66–70
    [63] F. Niklaus, H. Andersson, P. Enoksson et al. Low temperature full wafer adhesive bonding of structured wafers. Sensors and Actuators A. 2001, 92:235-241
    [64] K.E.Petersen, et al. Silicon as a mechanical material. Proc.IEEE, 1982, 70(5):420-424
    [65]吴登峰,邬玉亭,褚家如.阳极键合工艺进展及其在微传感器中的应用.传感器技术,2002,21(11):4-7
    [66] L.J.Spangler, et al. A technology for high-performance single crystal silicon-on-insulators. IEEE Electron Device letter, 1987, 8(4):137-141
    [67] M. R. Dokmeci, J. Von Arx, K. Najafi. Accelerated Testing Of Anodically Bonded Glass-Silicon Packages In Salt Water[A]. Proceedings, 9th Int. Conf. on Solid State Sensors & Actuators, Chicago, 1997:283-86
    [68] S. Sassen, W. Kupke, K. Bauer. Anodic bonding of evaporated glass structured with lift-off technology for hermetical sealing[J]. Sensors and Actuators, 2000, 83: 150-155
    [69] Jun Wei, Sharon M. L. Nai, C. K. Low Temperature Glass-to-Glass Wafer Bonding. IEEE Transactions on advanced packaging[J], 2003, 26(3): 289-294
    [70] A. Cozma, B Pures. Characterization of the eletrostatic bonding of silicon and Pyrex glass[J], J. Micromech. Microeng, 1995, (5): 98-102
    [71] T. M. Lee, I. M. Hsing and C. Y. Liaw. An improved anodic bonding process using pulsed voltage technique. J. Microelectromech. Syst, 2000, 9: 469-473
    [72] M. Despont, H. Gross. Fabrication of a silicon-pyrex-siliocn stack by a.c. anodic bonding. Sensors and Actuators, 1996, 55: 219-224
    [73] Jung-Tang Huang, Hsueh-An Yang. Improvement of bonding time and quality of anodic bonding using the spiral arrangement of multiple point electrodes. Sensors and Actuators A, 2002, 102: 1-5
    [74] S. Shoji, H. Kikuchi, H. Torigoe. Low-temperature anodic bonding using lithium aluminosilicate-quartz glass ceramic. Sensors and Actuators A, 1998, 64(1): 95-100
    [75]吴登峰.阳极键合工艺与设备的研究[D].中国科学技术大学,2003
    [76] MuChiao. MEMS Packaging by Rapid Thermal Processing[D]. Berkeley: University of California, Berkeley,2000
    [77] Hosoda, N.; Suga, T.; Yang, L.,et al. Room Temperature GaAs一Si and InP一Si Wafer Direct Bonding by The Surface Activated Bonding Method[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 1997(121):203-206
    [78] Resnik D. Study of Low- Temperature Direct Bonding of (111)and (100) Silicon Wafers Under Various Ambient and Surface Conditions[J]. Sensors and Actuators, 2000(80):68-76
    [79] Qing Gan. Surface activation enhanced low temperature silicon wafer bonding[D]. Durham: Department of Mechanical Engineering and Materials Science, Duke University, 2000.
    [80] Zhixiong Xiao, Guoying Wu, Zhihong Li, etc. Silicon–glass wafer bonding with silicon hydrophilic fusion bonding technology. Sensors and Actuators A:Physical,1999,72(1): 46-48
    [81] Mescheder U M, Alavi M, Hiltmann K. Local laser bonding for temperature budget. Sensors and Actuators A, 2002, 97-98:422-427
    [82] M.J. Wild, A. Gillner, R. Poprawe. Locally selective bonding of silicon and glass with laser. Sens. Actuators A, 2001, 93 (1):63-69
    [83] Liwei Lin. MEMS Post-Packaging by Localized Heating and Bonding. IEEE Transaction on adv. Packaging, 2000, 23(4): 608-616
    [84] Y. T. Cheng, Liwei Lin. Localized Silicon Fusion and Eutectic Bonding for MEMS Fabrication and Packaging. J. MEMS, 2000, 9(1): 3-8
    [85] Jongbaeg Kim, Mu Chiao, Liwei Lin. Ulreasonic bonding of In/Au and Al/Al for hermetic sealing of MEMS packaging. in: Proc. of IEEE, 2002. 415-418
    [86] Hsueh-An Yang, Mingching Wu, Weileun fang. Localized induction heating solder bonding for wafer level MEMS packaging. J. Micromech. Microeng., 2005, 15: 394-399
    [87] Jason Clendenin, Steven tung, Nasser budra, et al.. Microwave bonding of silicon dies with thin metal films for MEMS applications. In: Proc. of IEEE-ECTC, 2003. 18-23
    [88] Lu Jing-Shu, Yan Ping, Gong Ma-Li et al. Thermal bonding and its application in laser system[J]. Optical Technology, 2002, 28(4): 355-359
    [89] Zhou Hong, Lai Jian-Jun, Deng Qian et al. Finite Element Analysis of Temperature Field of Localized Laser Heating[J]. Infrared Technology, 2003,25(6):82~83
    [90] Wang Jiachun. Development and expectation of laser welding technology, Laser Technololgy, 2000,27(5):486-489
    [91] Cheng Luo, Liwei Lin. The application of nanosecond-pulsed laser welding technology in mems package in with a shadow mask. Sensors and Actuators A: Physical, 2002, 97-98(1):398-404.
    [92] A.W.Y Tan, F.E.H. Tay. Localized laser assisted eutectic bonding of quartz and silicon by Nd:YAG pulsed-laser. Sensors and Actuators A: Physical, 2005,(120):550-561
    [93] Ando D., Oishi K.,Nakamura T. et al. Glass direct bonding technology for hermetic seal package[A]. IEEE MEMS '97 Proceedings Tenth Annual International Workshop[C]. 1997:186~190
    [94]韩郑生等译.半导体制造技术[M].电子工业出版社,2005
    [95]黄庆安.硅微机械加工技术[M].北京:科学出版社,1996,229-256
    [96] M. X. Chen, X. J. Yi, Z. Y. Gan, Reliability of anodically bonded silicon-glass packages[J]. Sensors and Actuators A: Physical, 2005, (120):291-295
    [97] C-T Pan, H Yang, S-CShen. A low-temperature wafer bonding technique using patternable materials[J]. J. Micromech. Microeng., 2002, 12: 611-615
    [98]王翔,张大成.压阻加速度计的Au—Si共晶键合[J].半导体学报. 2003,24(3).3-336
    [99] Wolffenbuttel, R.F. Low-temperature intermediate Au-Si wafer bonding; eutectic or silicide bond[J]. Sensors and Actuators A: Physical, 1997,62(1-3):680-686
    [100] Tiensuu, A.L,;Schweitz, J.A., Johansson. In Situ Investigation of Precise High Strength Micro Assembly Using Au-Si Eutectic Bonding[A]. The 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX. 1995:236-239
    [101] Baggerman, Antal F. J. Batenburg, Martin J. Reliability Au-Sn flip-chip bonding on flexible prints[J]. Microelectronics and Reliability. 1996, 36(4): 554-558
    [102] Woonbae Kim, Qian Wang, Kyudong Jung et al. Application of Au-Sn Eutectic Bonding in Hermetic RF MEMS Wafer Level Packaging. 9th Int’l Symposium on Advanced Packaging Materials :215-219
    [103]单辉祖.材料力学[M].高等教育出版社. 1999.9
    [104] Akinobu, Satoh. Water glass bonding[J] Sensors and Actuators A. 1999,72:160-168.
    [105] Pl??l Andreas, Kr?uter Gertrud. Wafer direct bonding: tailoring adhesion between brittle materials[J]. Materials Science and Engineering. 1999,25:1-88
    [106] B.R. Lawn, Fracture of Brittle Solids[M], Cambridge Solid State Science Series, 2nd ed., Cambridge University Press,Cambridge, 1993.
    [107] J. Bagdahn, M. Petzold E. Sommer. Lifetime Investigations of Directly wafer-bonded Samples under static and cyclic Loading[EB/OL]. Http://www.iwmh.fhg.de/lb/lb31/micromat2000_lifetime_paper.doc. /2005.1.20
    [108] J. Bagdahn, A. Pl??l, M. Wiemer et al. Measurement of the Local Strength Distribution of Directly Bonded Silicon Wafers Using the Micro-Chevron-Test. [C]. 5th Int. Sytm. on Semicond. Wafer Bonding, Hawaii,1999,22.
    [109] M. Petzold, J. Bagdahn, D. Katzer. Quality and mechanical reliability assessment of wafer-bonded micromechanical components[J]. Microelectronics and Reliability,1999,39:1103-1108.
    [110] K. Mitani, D. Feijoo, G. Cha, et al. A new evaluation method of silicon wafer bonding interfaces and bonding strength by KOH etching[J]. Jpn. J. Appl. Phys. 1992,31:969-973
    [111]王海军钱照明刘宏岩叶挺秀红外热像法无损分析硅片直接键合界面的键合强度[J]半导体技术, 1996,4(2)
    [112]马如兵孙慧姝陈斌,冷光源检测圆片键合质量的实现[J],半导体技术2005,4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700