超声表面纳米化对低合金钢摩擦磨损性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
35CrMo和40Cr等中碳低合金钢是制造各种机械主要结构件(如轴承零件、齿轮等)的重要钢材,也因其优异的综合性能备受青睐。然而在实际的应用中由于严酷的工矿环境其摩擦磨损现象日益严重,由此造成的经济损失和材料部件的浪费也越来越引起人们的关注。
     本文采用TJU-UMSNT-I型超声表面纳米加工处理装置对35CrMo和40Cr两种调质低合金钢进行加工处理,并对超声加工处理前后的材料进行550℃下的2小时和10小时的气体渗氮处理。
     采用透射电子显微镜对超声表面加工后的试样进行微观结构分析表明,经超声表面滚压加工处理后,在35CrMo和40Cr两种调质钢的表层形成了100μm左右的等轴纳米结构层,最表层的纳米晶粒大约为25nm,呈弥散分布,与心部未发生变化的晶粒相比,晶粒细化了约120倍。
     用金相显微镜对35CrMo和40Cr超声表面加工和超声表面加工前后渗氮试样进行微观组织观察,超声表面滚压加工在材料表面分别形成了约140μm和150μm左右的流变层;超声表面滚压加工前气体渗氮35CrMo和40Cr渗氮扩散层的厚度按渗氮时间的延长分别为:100μm、130μm和150μm、200μm,超声表面滚压加工后气体渗氮渗氮扩散层的厚度分别为:200μm、450μm和175μm、450μm。由此可知,表面纳米化预处理后的渗氮效果明显好于未表面纳米化预处理的试样,且渗氮时间越长,效果越明显。
     采用显微硬度计测试与分析超声表面加工和超声表面纳米化渗氮复合处理试样的显微硬度沿试样表面到心部的变化,结果表明,经超声表面滚压加工处理后材料的表面显微硬度HV分别为:695和706,与心部相比提高约2.6倍和2.5倍;超声表面纳米化前后气体渗氮处理,两种材料的表面显微硬度值与心部相比得到很大程度的提高,显微硬度值随距表面距离的增大而减小,且表面纳米化渗氮复合处理的渗氮时间越长,硬度梯度区域越大。
     不同处理后的试样经摩擦磨损试验后,通过磨损前后失重量变化、稳定摩擦阶段平均摩擦系数的测定等评价材料的耐磨性,采用扫描电子显微镜和体式显微镜对不同处理试样磨损后的形貌进行观察与分析可知,经超声表面纳米化加工和渗氮处理后,两种材料在稳定摩擦阶段的平均摩擦系数均比未处理试样的低,且平均磨损量均大幅度下降,说明两种处理方法均能明显改善材料的耐磨性,且表面纳米化处理试样的耐磨性效果更为明显;按照“调质-渗氮(2h和10h)-超声表面纳米化-表面纳米化气体渗氮(2h和10h)复合处理”,磨损方式由粘着磨损为主导的磨损机制向磨粒磨损为主导的磨损机制转变。
     因此,超声表面纳米化处理能显著提高低合金钢耐摩擦磨损性能,且其是一种提高其他表面强化处理方法强化效果的有效途径。
35CrMo and 40Cr low-alloy steels are the main steels to create a variety of all kinds ofmechanical parts (such as bearing parts,and gear, etc.), and receive much concern because oftheir excellent comprehensive properties. However in the practical application, thephenomenon of their friction and wear becomes serious under the harsh mining environment,and the results of economic losses and waste of materials arouse people's more and moreattention.
     In this paper, the samples of 35CrMo tempered steel and 40Cr tempered steel wereprocessed by TJU-UMSNT-I ultrasonic surface nanocrystallization device, and nitrided at 550℃for 2 and 10 hours before and after surface nanocrystallization.
     Then observe microstructure on the treated sample by Transmission Electron Microscope,and the result showed that Equiaxed crystal nanostructured surface layers about 100μm werefabricated on 35CrMo and 40Cr tempered steel by ultrasonic processing, with grain size of25nm at the top surface and random distribution of their orientation, at the same time, thegrain was highly refined.
     Examine and analyse the nitriding layers on the specimens before and afternano-treatment by metalloscope and hardness tester. And the results showed that about 140μmand 150μm flow layers were formed on two kinds of material by ultrasonic processing, andwith nitriding time different nitrided diffusion layers(35CrMo:100μm,130μm,200μm,450μmand 40Cr :150μm,200μm,175μm,450μm) were formed on the samples before and after surfacenoncrystalline processing. So, the effects of nano-nitriding samples were obviously better thannitriding with nitriding time.
     The surface hardness of 35CrMo tempered steel about 695HV and 40Cr tempered steelabout 706HV highly increased after ultrasonic surface processing and gas nitriding before and after surface nanocrystalline, compared with the center of the samples increased about 2.6times and 2.5 times. Hardness fell as the distance to the surface increases, and the range ofhardness region was prolonged with nitriding time after surface nanocrystalline.
     In the last, evaluate the abrasive resistance through measuring lost weights and averagefriction coefficient about materials after different processing, and analyze abrasion degree onthe samples treated through the different processing by Scanning Electron Microscope andasana microscope. Lost weights and average friction coefficient about materials by ultrasonicprocessing and gas nitriding treatment were obviously lower than unprocessed specimens, andsurface resistance to abrasion was enhanced.And the anti-wear performance of the samplesby ultrasonic processing were better. And wear mechanism changes from adhesive wear toabrasive wear.
     So Ultrasonic surface nanocrystallization treatment can significantly improve frictionand wear properties of low-alloy steel, and it is an effective way to improve other surfacehardening methods.
引文
[1]屈晓斌,陈建敏,周惠娣,等.材料的磨损失效及其预防研究现状与发展趋势[J].摩擦学学报.1999,19(2):187-192.
    [2]钟厉,周上祺,韩西,等.快速离子氮化渗氮层相组成和微观组织形貌研究[J].宇航材料工艺,2003,(1):53-58.
    [3]韩立影,王亚男,苗露,等.离子渗氮温度对不锈钢组织及性能的影响[J].金属热处理,2008,33(9):41-45.
    [4]杨建群,刘勇,叶铸玉,等.2Cr13钢的表面气体渗氮处理[J].金属热处理,2009,34(7):16-18.
    [5]陈玮,王蕾,周磊,等.钢气体渗氮产生的常见缺陷分析及补救措施[J].武汉科技大学学报(自然科学版),2006,19(3):225-229.
    [6]王丽莲.渗氮技术及其进展[J].热处理,2001,(2):6-9.
    [7] Tao.N.R, Sui.M.L, Lu.J, etal. Surface nanocrystallization of iron induced by ultrasonicshot peening [J]. Nanostruck Mater,1999,11(4):433-440.
    [8] Tao.N.R, Wang.Z.B,Tong.W.P, etal. An investigation of surface nanocrystallizationmechanism in Fe induced by surface mechanical attrition treatment[J].ActaMaterialia,2002,50(18):4603-4616.
    [9]雍兴平,刘刚,吕坚,等.低碳钢表面纳米化处理及结构特征[J].金属学报,2002,38(2):157-160.
    [10]张洪旺,刘刚,黑祖昆,等.表面机械研磨诱导AISI304不锈钢表层纳米化II晶粒细化机理[J].金属学报,2003,39(4):347-350.
    [11] Liu.G, Lu.J, Lu.K. Surface nanocrystallization of 316L stainless steel induced byultrasonic shot peening [J]. Materials Science and EngineeringA,2000,286(1):91-95.
    [12]佟伟平,陶乃镕,王镇波,等.纳米结构纯铁的气体渗氮[J].热处理,2007,22(2):11-15.
    [13]沈小军.利用再渗氮处理改善金属模具钢(SKD61)的热疲劳特性[J].国外金属热处理,2003,24(6):30-35.
    [14]刘刚,雍兴平,卢柯.金属材料表面纳米化的研究现状[J].中国表面工程,2001,(3):1-5.
    [15]任瑞铭.纳米粉体材料制备技术[J].大连铁道学院学报,1999,20(3):68-73.
    [16] Seung Chul Lyu, Zhang .Ye , Cheol Jin Lee.Low-Temperature Growth of ZnO NanowiresArray by a Simple Physical Vapor-Deposition Method[J].Chem,Mater.,2003,15(17):3294-3295.
    [17] Ding Yong, Xian Pu, Wang Zhonglin.Catalyst-Nanostructure Interfacial LatticeMismatch in Determining the Shape of WLS Grown Nanowires and Nonabelts:A Case ofSn/ZnO[J].JACS,2004,126(7):2066-2072.
    [18] Zhang Jun, Yu Wenying, Zhang Lide .Fabrication of semiconducting ZnO nanobeltsusing a halide source and their photoluminescence properties[J].Physics LettersA,2002,299(2-3): 276-281.
    [19] Gao P.X, Ding Ying, Wang Z.L.Crystallographic Orientation-Aligned ZnO NanorodsGrown by a Tin Catalyst[J].Nano Letters,2003,3(9):1315-1320.
    [20]牛新平,王听,马胜利,等.磁控溅射制备Ti-Si-N纳米薄膜的摩擦磨损性能[J].稀有金属材料与工程,2005,12(34):1882-1885.
    [21]丛志新,王宇.浅析表面自身纳米化及其应用进展[J].热处理技术与装备,2008,29(1):10-14.
    [22]胡兰青.金属晶粒细化及机理研究[D].太原理工大学:2005.
    [23]徐滨士,欧忠文,马世宁.纳米表面工程基本问题及其进展[J].中国表面工程,2001,14(3):6-12.
    [24]徐滨士,粱秀兵,马世宁,等.实用纳米表面技术[J].中国表面工程,200l,14(3):13-17.
    [25] Lu K, Lu J. Surface nanocrystallization (SNC) of metallic materials-presentation of theconcept behind a new approach[J].J.Mater.Sci.Technol.,1999,15(3):193-197.
    [26]何柏林,颜亮,史建平,等.金属材料表面自纳米化及其研究现状[J].材料热处理技术.2009,38(20):22-25.
    [27]张洪旺.AISI304不锈钢的表面自纳米化及混合表面纳米化研究[D].大连:大连海事大学工学:2003.
    [28]雍兴平,李建萍.表面机械研磨低碳钢的纳米表层的特征与性能[J].国外金属加工,2003,24(4):4-8.
    [29]钱苗根.我国金属材料表面纳米化技术重要进展[J].热处理,2004,19(2):36-39.
    [30] Zhu K.Y, A. Vassel, F. Brisset , etal. Nanostruture formation mechanism of a titaniumusing SMAT[J].Acta Materiatia,2004,52(14):4101-4110.
    [31]赵新奇,徐政,熊天英,等.40 Cr钢表面纳米层形成机理的研究[J].同济大学学报(自然科学版),2005,33(2):196-201.
    [32]王长顺,刘刚.低碳钢的表面纳米化组织及其性能[J].钢铁,2006,41(12):60-63.
    [33]王镇波,雍兴平,陶乃镶,等.表面纳米化对低碳钢摩擦磨损性能的影响[J].金属学报,2001,37(12):1251-1255.
    [34]吕晓仁,王胜刚,刘阳,等.纳米化纯铁在干摩擦及油润滑条件下的磨损行为研究[J].摩擦学学报,2007,27(1):20-24.
    [35]刘莉莉,揭晓华,于能,等.45钢表面增压喷丸纳米化及其耐磨性研[J].材料热处理技术,2009,38(14):124-126.
    [36]宋宁霞.超声金属表面纳米化及摩擦磨损性能研究[D].天津:天津大学:2007.
    [37]张于胜,王科,韩忠.纳米晶铜摩擦磨损性能研究[A].第八届全国摩擦学大会[C].2007.
    [38] Wang Z.B, Tao N.R,Li S, etal. Effect of surface nanocrystallization on friction and wearproperties in low carbon steel[J].Materials Science and Engineering:A,2003 ,352(1-2) :144-149.
    [39]刘阳,吕晓仁,张荣禄,等.超音速微粒轰击表面纳米化及其对耐磨性的影响[J].中国表面工程,2006,19(6):20-24.
    [40]严伟林,方亮,孙琨,等.表面纳米化对高锰钢磨料磨损性能的影响[J].西安交通大学学报,2007,41(5):611-615.
    [41]李国宾,关德林,张明星.表面纳米化中碳钢在干摩擦条件下的摩擦磨损性能研究[J].摩擦学学报,2008,28(1):39-42.
    [42]王吉孝.焊接接头表面纳米化及抗应力腐蚀性能的研究[D].贵州:贵州大学:2006.
    [43]李瑛,王福会.表面纳米化对金属材料电化学腐蚀行为的影响[J].腐蚀与防护,2003,24(1):6-8.
    [44]王天生,于金库,董冰峰,等.1Cr18Ni9Ti不锈钢的喷丸表面纳米化及其对耐蚀性的影响[J].机械工程学报,2005,41(9):51-54.
    [45]李雪莉,李瑛,王福会,等.USSP表面纳米化Fe-20Cr合金的腐蚀性能及机制研究[J].中国腐蚀与防护学报,2002,22(6):326-329.
    [46]李东,陈怀宁,刘刚等.SS400钢对接接头表面纳米化及其对疲劳强度的影响[J].焊接学报,2002,23( 2):18-22 .
    [47]闫秀侠.高能喷丸表面纳米化对TC4合金疲劳性能的影响[D].大连:大连交通大学:2009.
    [48]马靳河.纯铁与3 5C r Mo钢表面纳米化及相关问题研究[D].太原:太原理工大学:2007.
    [49]樊新民,黄洁雯,朱琳.表面纳米化对低碳钢氮离子注入的影响[A].膜材料与材料表面改性[C].2004年中国材料研讨会:2004年.
    [50]陈玮,王蕾,周磊,等.钢的快速渗氮技术研究现状[J].武汉科技大学学报(自然科学版),2006,29(3):225-229.
    [51] Lin Yimin, Lu Jian, Wang Liping, etal. Surface nanocrystallization by surface mechanicalattrition treatment and its effect on structure and properties of plasma nitrided AISI 321stainless steel [J].Acta Materialia, 2006, 54(20): 5599-5605.
    [52] Tong W.P, Han Z, Wang L.M, etal. Low-temperature nitriding of 38CrMoAl steel with ananostructured surface layer induced by surface mechanical attrition treatment [J].Surfaceand Coatings Technology, 2008, 202(20): 4957-4963.
    [53]高玉魁.表面形变处理对32Cr3MoVA钢渗氮层组织和性能的影响[J].材料热处理学报,2005,26(1):74-77.
    [54]张国松.钢铁表面纳米化处理与低温气体渗氮研究[D].青岛:山东科技大学:2006.
    [55]葛利玲,路彩虹,井晓天,等.40Cr钢表面纳米化对气体渗氮行为的影响[J].材料热处理学报,2008,29(5):155-159.
    [56]卑多慧,吕坚,顾剑锋,等.表面纳米化预处理对低碳钢气体渗氮行为的影响[J].材料热处理学报,2002,23(1):19-24.
    [57] Tong Weiping, Tao Nairong,WangZhenbo, Nitriding Iron and 38CrMoAl Steel with aNanostructured Surface Layer[J].Journal of the Graduate School of the Chinese Academyof Science,2005,22(2):230-238.
    [58]路彩虹.中低碳钢表面纳米化对低温气体渗氮行为的影响[D].西安:西安理工大学:2008.
    [59]王婷,超声表面滚压加工改善40Cr钢综合性能研究[D].天津:天津大学,2008.
    [60]王东坡,宋宁霞,王婷,等.纳米化处理超声金属表面[J].天津大学学报,2007,40(2):228-233.
    [61]王红.中间相碳合金的结构表征及高温摩擦学性能研究[D].河北:燕山大学,2006.
    [62]陈春焕,任瑞铭,宋明晖,等.表面纳米化材料横截面透射电镜试样的制备[J].理化检验—物理分册,2009,45(11):680-683.
    [63]石德珂.材料科学基础[M].北京:机械工业出版社,2000,236-240.
    [64]张俊宝,刘志文,宋洪伟,等.高能机械加工表面纳米化40Cr钢组织结构与力学性能[J].航空材料学报,2004,24(6):11-15.
    [65]王吉会,房大然,张琨.38CrMoAlA、40Cr钢经不同渗氮工艺处理后的性能研究[J].金属热处理,2003,28(7):20-23.
    [66]覃奇贤,刘淑兰.浅谈摩擦与磨损[J],电镀与精饰,2009,31(5):33-36.
    [67]林高用,冯迪,郑小燕,等.基于Archard理论的挤压次数对模具磨损量的影响分析[J].中南大学学报(自然科学版),2009,40(5):1245-1251.
    [68]徐滨士,刘世参.中国材料工程大典材料表面工程上[M].北京:化学工业出版社,16:42-67.
    [69]陈跃.颗粒增强铝基复合材料干滑动摩擦磨损特性研究[D].西安:西安交通大学,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700