纤维增韧自愈合碳化硅陶瓷基复合材料的高温模拟环境微结构演变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空航天事业的迅速发展迫切需要低密度、高强度、高模量、高韧性和耐高温的连续纤维增韧碳化硅陶瓷基复合材料(CMC-SiC)。然而,目前的CMC-SiC材料还不能满足高推重比航空发动机热端部件的长时间(上千小时)服役要求,必须进一步改善其抗氧化性能,发展具有自愈合功能的碳化硅陶瓷基复合材料(CMC-MS)。CMC-MS材料的抗氧化寿命主要受纤维、基体、纤维/基体界面相和涂层的成分及微结构影响,因此,必须深入研究用于CMC-MS材料的Hi-Nicalon纤维、自制含铝碳化硅纤维、自愈合基体及自愈合涂层的微结构及其随处理温度和环境的变化规律,从而指导材料设计和工艺改进。
     本文以CMC-MS材料为研究对象,通过微结构评价和表征,系统深入地研究了Hi-Nicalon纤维在高温模拟环境处理后的微结构演变及力学性能,评价了纤维的失效过程;探索了自制含铝碳化硅纤维中铝元素的存在位置和状态,明确了铝在纤维结构形成过程中的重要作用;揭示了CVD B-C陶瓷涂层及其热处理后的微结构特征;研究了CVD B-C陶瓷改性后的自愈合涂层和自愈合基体在环境处理后的微结构特征,解释了CVD B-C陶瓷的自愈合机制;评价了环境处理后改性CMC-MS材料的自愈合情况和微结构演变。为CMC-MS的材料设计与工艺改进提供了依据。主要研究内容与结果如下:
     1、对水氧耦合环境中1300℃-1600℃处理1小时的Hi-Nicalon纤维进行了残余强度测试和显微结构的表征。结果表明:纯惰性气氛中高温处理后纤维强度下降,水氧耦环境处理后,纤维残余强度先升高后降低。与惰性气氛环境相比,水氧环境使纤维发生惰性氧化,氧化后钝化层生成、气孔愈合、厚度增加、及均匀析晶对保持强度有重要作用。在纤维结构完整的情况下,晶粒粗化对强度的不利影响在各种因素的综合作用下被淹没。
     2、研究了自制掺杂Al元素的连续SiC纤维中Al的作用、状态和存在位置。结果包括:(1)利用TEM观察结合像模拟技术研究了Al-SiC纤维的晶体特征,并观察了立方SiC晶粒中的孪晶结构和析出六方结构。(2)Al作为烧结助剂,对改善纤维结构致密度,控制晶粒长大的作用十分明显。但其作用受交联时间、烧结温度、和晶粒尺寸等因素的影响。(3)含Al相以Al_2OC、Al_4SiC_4等形式存在于SiC晶粒或晶粒团之间。最终建立了Al-SiC纤维的结构模型。
     3、研究了不同工艺制备的CVD B-C陶瓷涂层微结构组成及其氧化处理后的微结构演变。结果表明:(1)B-C陶瓷涂层主要分为晶态和非晶态B-C陶瓷涂层。(2)高温处理后,非晶B-C陶瓷向晶态的B_4C相转变,且晶化程度随热处理温度升高而提高。整个晶化过程受C、B元素扩散控制,导致两B-C层界面处B_4C晶体含量最高,并沿低能面外延生长,使涂层间结合更强。(3)直接面对水氧环境时,CVD B-C层因氧化和快速挥发而失去对材料的保护。对于SiC/B-C/SiC涂层,低温时,B-C陶瓷层的氧化主要受氧化气体(O_2/H_2O)穿过表面SiC层的制备缺陷以及热处理过程中生成的裂纹控制。中温时,表层SiC层已经开始部分氧化为SiO_2,而B-C层的氧化仍受氧化气体通过缺陷氧化B-C层控制。B_2O_3和SiO_2形成硼硅酸盐玻璃(B_2O_3·χSiO_2)。高温时,表层SiC氧化反应速度加快,缺陷处B-C陶瓷层也因氧化而发生快速的体积膨胀。另外,表层SiC被大量氧化后,H_2O有机会通过SiO_2直接到达B-C层,氧化由H_2O透过SiO_2层导致B-C涂层的全面氧化所控制。解释了SiC/B-C/SiC涂层在水氧耦合环境不同温度中具有良好的抗氧化能力的微结构本质。
     4、研究了B-C陶瓷涂层自愈合改性和基体改性复合材料在氧化环境中处理后的微结构和性能演变,观察了微裂纹的扩散途径和材料缺陷的氧化愈合。结果表明:(1)多种相及相间界面的存在使得两种改性复合材料中的微裂纹皆存在多种扩展模式,复合材料纤维束间的结构在一维尺度上存在着连续的弱结合点。(2)热解碳(PyC)相和C纤维在高温热处理后趋于形成取向一致的共格结构,形成了强界面结合,有效促进了界面相内裂纹偏转。(3)涂层改性材料低温处理后基体缺少愈合组元,但高温处理后的多种微缺陷都靠SiO_2的生成和缓慢流动实现了有效的愈合。对大尺寸的制备缺陷,目前的材料还难于被流动层填封。(4)基体改性材料的B-C陶瓷层氧化后可使材料基体微缺陷有效愈合。在测试温度和时间内,低温下的愈合由B_2O_3的流动实现;中高温的愈合则有SiO_2和硼硅酸盐玻璃(B_2O_3·χSiO_2)参与。
Continuous fiber reinforced SiC-matrix composites(CMC-SiC) are considered as the most promising thermo-structural materials due to their high thermal stability,low density,high specific strength,high specific modulus,good oxidation-ablation resistance,especially improved flaw tolerance and non-catastrophic mode of failure. However,the bad oxidation resistance of CMC-SiC in high temperature,high load and oxidation environment limits their long-term application in aero-engine.Consequently CMC-SiC with self-healing function should be developed,which can be named CMC-MS(Multilayer Self-healing Ceramic Matrix Composites).Since the CMC-SiC was used at a high temperature under a complex environment containing O_2,H_2O and corrosives,the mechanical property will be controled by a series of thermo-physical chemistry reactions(such as surface oxidation,phase transformation and atomic diffusion) which occurred under the effects of temperature and environment.So,it is important to study the microstructural evolution of the CMC-SiC components annealed in the temperature/environment coupling conditions.
     In this thesis,the mechanical and structural evolution of Hi-Nicalon~(TM) SiC fiber annealed in O_2-Ar-H_2O atmospheres were investigated.Much of analysis and discussion will then reveal the factors related to the residual strength and microstructural evolution of the annealed fiber.Then,the location and chemical state of Al element in Al-SiC fiber were explored and the effect of Al during the structure formation process was discussed.Bisides,a CVD B-C ceramic coating used as a self-healing modification component of CMC-SiC was also annealed in pure Ar and O_2-Ar-H_2O atmospheres respectively to explore the crystallization and oxidation.Finally,two kinds of CMC-MSs were fabricated.The self-healing performance,oxidation resistance and mechanical properties of the two CMC-MSs were demonstrated.The main subjects and results are summarized as follow:
     1.Hi-Nicalon fibers were exposed in O_2/Ar / H_2O atmosphere for 1 hour at 1300℃, 1400℃,1500℃,1600℃,respectively.Results indicated that residual tensile strength increased with increasing temperature from 1300℃to 1500℃,then decreased after annealing in 1600℃.In conclusion,the control effects of water vapor on formation and structural evolution of the passive film were remarkble.The change of residual strength of the annealed fiber was influenced by the competition of negative and active effects. Below 1500℃,the active effects were dominated factors.Above 1600℃,the negative effects such as rapid oxidation,volatility,film-melting,and fihn/fiber reactions occurred and became dominated reactions.After these processes,fiber's structure was evidently destroyed.
     2.The role,location and chemical state of Al element in Al-SiC fiber were explored. The results and conclusions were as followed:(1)The structure and orientation of the crystals and defects in Al-SiC fiber were investigated by HRTEM and structural simulation technic.(2) Al can lower the densification temperature and restrain the grain growth of SiC crystals during the sintering process,but these effects were limited by sintering temperature,oxidative crosslinking time and grain size of the SiC crystals.(3) The Al containing compound which mainly existed as the intergranular phase between SiC crystals were Al_2O_3,Al_2OC and Al_4SiC_4.Finally,a model was built to illustrate the structure of Al-SiC fiber.
     3.Microstructure of CVD B-C coatings deposited under various parameters was examined by electron microscopy and spectroscopy.Then,structural evolution of the coating annealed in different environments was also investigated.The results and conclusions were as followed:(1) The B-C coatings produced by CVD can be divided as crystallized coatings and amorphous coatings.(2) A two-layer B-C coating was annealed in an Ar atmosphere for 2 hour at 1600℃to 2000℃.After annealing,the amorphous boron carbide had partly transformed to B_4C crystals,and the crystallization was controlled by the diffusion of C and B.TEM showed an evident grain growth with the increase of annealing temperature.The B_4C crystals produced near the layer/layer interface mainly grew epitaxially along the(012) direction.(3) The protection effect of B-C coating could be destroyed in a short time because the rapid oxidation of BC_x and volatilization of B_2O_3,so it was unsuitable to make B-C coating as an outer coating. Thus,a SiC/B-C/SiC structure was fabricated and annealed.Results showed that there were different oxidation mechanisms under different annealing temperatures:the oxidation mechanism of low temperature annealing was controlled by the diffusion of the O_2/H_2O gas through the defects in the SiC surface coating,and then controlled by the oxidation of the B-C coating;in the middle temperature district,reaction was controlled by the local oxidation of SiC surface coating,the diffusion of the O_2/H_2O gas through the surface coating defects,and then controlled by the oxidation of the B-C coating and the partial formation of B_2O_3·xSiO_2;in the high temperature district, reaction was controlled by the rapid oxidation of SiC coating,the diffusion of the O_2/H_2O gas through the surface defects and oxidation product SiO_2,the rapid oxidation of B-C and substantive formation of B_2O_3·xSiO_2,orderly.Weight-change data was also used to explain these mechanisms,all the information indicated that the SiC/B-C/SiC coating possess excellent performance after annealing in the O_2/H_2O/Ar atmosphere under different temperatures.
     4.Two kinds of CMC-MSs with good properties were fabricated.One called coating-modified C_f/SiC composite,another called matrix-modified C_f/SiC composite. The antioxidation properties and self-healing funtions of each CMC-MS were examined under different temperature regions.The results and conclusion were as follows:(1) At least 4 types of the microcracks can be observed in both two composites,and the defects in CMC-MS structure had a linear distribution.(2) The PyC coating had a similar epitaxy with the carbon fiber after annealing,which indicated that the coherent structure was the key factor to form a strong bond between them.And the microcracks can hardly deflect at the fiber/PyC interface.(3) Micro-defects in the coating-modified composite could be healed by SiO_2 after high temperature oxidation.Limitted by the fluidity of SiO_2,it was difficult to heal a large-size deflect.(4) By contrast,much of the fabrication and oxidation induced deflects had been healed by the B_2O_3 fluidity in matrix-modified composite,assisted by SiO_2 and B_2O_3·xSiO_2.
引文
[1]Ohnabe H.,Masaki S.,Onozuka M.,et al.Potential applications of ceramic matrix composites to aero-engine components[J].Composites:Part A,1999,30(4):489-496.
    [2]张立同,成来飞,徐永东,新型碳化硅陶瓷基复合材料的研究进展[J].航空制造技术,2003(1):23-32.
    [3]Takashi T.,Takeshi N.,Kooun T.,Research of CMC application to tube components[J].IHI Engineering Review,2005,38(2):58-63.
    [4]刘永胜,CVD/CVI法制备B-C陶瓷的工艺基础.博士学位论文[D],西北工业大学,2008.
    [5]徐海江,陶瓷基复合材料的高温应用[J].飞航导弹,1998,6:57-61.
    [6]王永寿,陶瓷基复合材料在航空发动机上的应用研究[J].飞航导弹,2002,10:55-59.
    [7]Jones R.H.,SiC/SiC composites for advanced nuclear applications[J].Ceramic Engineering and Science Proceedings,2003,24(4):261-267.
    [8]Beyer S.,Schmidt S.,Cahuzac G.,et al.Advanced ceramic matrix composite materials for current and future propulsion system applications[R].AIAA 2004-4019.
    [9]Holmquist M.and Lundbergh R.,Development of ultra high temperature ceramic composites for gas turbine combustors[R].ASME,97-GT-413,1997.
    [10]Kimmel J.,Miriyala N.,Price J.,et al.Evaluation of CFCC liners with EBC after field testing in a gas turbine[J].Journal of the European Ceramic Society,2002,22(14-15):2769-2775.
    [11]Filsinger D.,M(u|¨)nz S.,Schulz A.,et al.Experimental assessment of fiber-reinforced ceramics for combustor walls[J].Journal of Engineering Gas Turbines Power,2001,123:271-276.
    [12]Choury J.J.,Thermostructural composite materials in aeronautics and space applications[C],Proceedings of GIFAS Aeronautical and Space Conference,Bangalore,Delhi,India,1-18,February 1989.
    [13]Zhou X.G.,Zhang C.R.,Ma J.,et al.Preparation and mechanical properties of unidirectional Hi-Nicalon fiber reinforced silicon carbide composites[J].Journal of Materials Science Letters.2001,20(3):261-263.
    [14]Singh M.and Behrendt D.R.,Reactive melt infiltration of silicon-molybdenum alloys into microporous carbon preforms[J].Materials Science and Engineering:A,1995,194(2):193-200.
    [15]Xu Y.D.,Cheng L.F.and Zhang L.T.Carbon/silicon carbide composites prepared by chemical vapor infiltration combined with silicon melt infiltration[J].Carbon,37(8):1179-1187.
    [16]Cheng L.F.,Xu Y.D.,Zhang L.T.,et al.Oxidation and defect control of CVD SiC coating on three-dimensional C/SiC composites[J].Carbon,2002,40(12):2229-2234.
    [17]Naslain R.,Pailler R.,Bourrat X.,et al.Synthesis of highly tailored ceramic matrix composites by pressure-pulsed CVI[J].Solid State Ionics,2001,141-142:541-548.
    [18]冯春祥,王应得,邹制春,等.连续SiC纤维应用概况[J].材料导报,1997,11(6):64-66.
    [19]Andersson C.H.and Warren R.,Silicon carbide fibers and.their potenial for use in composite materials[J].Composites,1984,15(1):16-24.
    [20]DeBolt H.E.,Krukonis V.J.and Wawner F.E.Jr.:Silicon Carbide-1973[M],University of South Carolina Press,Columbia,SC,1973:168-75.
    [21]Srinivasan G.V.and Venkateswaran V.,Tensile strength evaluation of polycrystalline SiC fibers[J].Ceramic Engineering and Science Proceedings,1993,14(7-8):563-572.
    [22]Srinivasan G.V.and Venkateswaran V.,"Fractographic Investigation of Flaws in Sintered SiC Fiber";pp.317-37 in Fractography of Glass and Ceramics Ⅲ.American Ceramic Society,Westerville,OH,1995.
    [23]Kowbel W.,Withers J.C.,Loutfy R.O.,et al.Silicon carbide fibers and composites from graphite precursors for fusion energy applications[J].Journal of Nuclear Materials,1995,219:15-25.
    [24]Okada K.,Kato H.and Nakajima K.,Preparation of silicon carbide fiber from activated carbon fiber and gaseous silicon monoxide[J].Journal of the American Ceramic Society,1994,77(6):1691-1693.
    [25]Yajima S.,Hayashi J.and Omori M.,Continuous silicon carbide fiber of high tensile strength[J]. Chemical Letter, 1975, 4: 931-934.
    [26] Yajima S., Hasegawa Y., Okamura K., et al. Development of high tensile strength silicon carbide fibre using an organosilicon polymer precursor[J]. Nature (London), 1976, 261:683-685.
    [27] Yajima S, Hasegawa Y, Hayashi J., et al. Synthesis of continuous silicon carbide fibre with high tensile strength and high Young's modulus[J]. Journal of Materials Science, 1978, 13: 2569-2576.
    [28] Takeda M., Saeki A., Sakamoto J., et al. Effect of hydrogen atmosphere on pyrolysis of cured polycarbosilane fibers[J]. Journal of the American Ceramic Society, 2000, 83(5): 1063-1069.
    [29] Rice R.W., Ceramics from polymer pyrolysis, opportunities and needs. A materials perspective[J] American Ceramic Society bulletin, 1983, 62 (8): 889-892.
    [30] Lipowitz J. and Freeman H., Composition and Structure of Ceramic Fibers Prepared From Polymer Precursors[J]. Advanced Ceramic Materials, 1987, 2 (2): 121-128.
    [31] Hasegawa Y, Limura M. and Yajima S., Synthesis of continuous silicon carbide fiber with high tensile strength and high Young's modulus[J]. Journal of Materials Science, 1980, 15: 720-728.
    [32] Hasegawa Y. and Okamura K., Synthesis of continuous silicon carbide fibre Part Ⅲ: pyrolysis process of polycarbosilane and structure of the products[J]. Journal of Materials Science, 1983, 18: 3633-3648.
    [33] Hasegawa Y. and Okamura K., Synthesis of continuous silicon carbide fibre. Ⅳ: The structure of polycarbosilane as the precursor[J]. Journal of Materials Science,1986,21:321-328.
    [34] Ichikawa H, Machino F., Mitsuno S., et al. synthesis of continuous silicon carbide fibre Part Ⅴ: Factors affecting stability of polycarbosilane to oxidation[J]. Journal of Materials Science, 1986, 21: 4352-4358.
    [35] Hasegawa Y, Synthesis of continuous silicon carbide fibre Part Ⅵ: pyrolysis process of cured polycarbosilane fibre and structure of SiC fibre[J]. Journal of Materials Science, 1989, 24: 1177-1190.
    [36] Yajima S., Hayashi J. and Omori M., Silicon carbide fibers having a high strength and a method for producing said fibers[P]. U. S. Patent, 4100233, July 11, 1978.
    [37] Ishikawa T., Recent developments of the SiC fiber Nicalon and its composites, including properties of the SiC fiber Hi-Nicalon for ultra-high temperature[J].Composites science and technology.1994,51(2):135-144.
    [38]Kumagawa K,Yamaoka H.,Shibuya M.,et al.Fabrication and mechanical properties of new improved Si-MC-(O) tyranno fiber[J].Ceramic Engineering and Science Proceedings,1998,19(1):65-72.
    [39]Yamamura T.,Ishikawa T.,Shibuya M.,et al.Development of a new continuous Si-Ti-C-O fibre using an organometallic polymer precursor[J].Journal of Materials Science,1988,23:2589-2594.
    [40]Kumagawa K.,Yamaoka H.,Shibuya M.,et al.Thermal stability and chemical corrosion resistance of newly developed continuous Si-Zr-CO Tyranno fibre[J].Ceramic Engineering and Science Proceedings,1997,18(3):113-118.
    [41]Ishikawa T.,Kohtoku Y.,Kumagawa K.,et al.High-strength alkali-resistant sintered SiC fibre stable to 2200℃[J].Nature,1998,391(19):773-775.
    [42]Yamamura T.,Hurushima T.,Kimoto M.,et al.Development of new continuous Si-Ti-C-O fiber with high mechanical strength and heat resistance[J].High Technol Ceram,1987:737-746.
    [43]Song Y.C.,Hasegawa Y.and Yang S.J.,Ceramic fibres from polymer precursor containing Si-O-Ti bonds[J].Journal of Materials Science,1988,23:1911-1920.
    [44]宋永才,冯春祥,等.低电阻率SiC纤维的制备方法[P].国防专利01100917.9.
    [45]黄小忠,冯春祥,一种制取磁性纤维的新方法[P].国家发明专利99116795.3.
    [46]Choi G.J.,Toreki W.,and Batich C.D.,Improved thermomechanical stability of polymer-derived silicon carbide fibers by decaborane incorporation[J].Journal of Materials Science,2000,35:2421-2427.
    [47]Itatani K.,Hattori K.,Harima D.,et al.Mechanical and thermal properties of silicon-carbide composites fabricated with short Tyranno Si-Zr-C-O fibre[J].Journal of Materials Science,2001,36:3679-3686.
    [48]Takeda M.,Sakamoto J.,Saeki A.,et al.High performance silicon carbide fiber Ni-Nicalon for ceramic matrix composites[J].Ceramic Engineering and Science Proceedings,1995,16(4):37-44.
    [49]Takeda M.,Sakamoto J.,Saeki A.,et al.Mechanical and structural analysis of silicon carbide fiber Hi-Nicalon type S[J].Ceramic Engineering and Science Proceedings,1996,17(4):35-42.
    [50]Lipowitz J.,Barnard T.,Bujalski D.,et al.Fine-diameter polycrystalline SiC fibers[J].Composites Science and Technology,1994,51(2):167-171.
    [51]Lipowitz J.,Rabe R.A.,Zangvil A.,et al.Structure and properties of Sylramic~(TM)silicon carbide fiber-a polycrystalline,stoichiometric β-SIC composition[J].Ceramic Engineering and Science Proceedings,1997,18(3):147-157.
    [52]Baldus P.,Jansen M.and Sporn D.,Ceramic Fibers for Matrix Composites in High-Temperature Engine Applications[J].Science,1999,285:699-703.
    [53]Toreki W,Batich C.D.,Sacks M.D.,et al.Polymer-derived SiC fibers with low oxygen content and improved thermomechanical stability[J].Composites Science and Technology,1994,51:145-159.
    [54]Sacks M.D.,Morrone A.A.,Scheiffele G.W.,et al.Characterization of polymer derived silicon carbide fibers with low oxygen content near-stoichiometric composition,and improved thermomechanical stability[J].Ceramic Engineering and Science Proceedings,1995,16(4):25-35.
    [55]Zhang Z.F.,Ph.D.Processing silicon carbide fibers from organosilicon precursors[D].Thesis.The University of Michigan,1994.
    [56]王军,王应德,王娟,等.异型截面碳化硅纤维的制备及其雷达吸波特性[J].功能材料,2000,3 1(6):628-630.
    [57]陈江溪,何国梅,何旭敏,等.SiC陶瓷纤维高聚物先驱体的研究进展.功能材料,2004,6(35):679-682.
    [58]吴清良.先驱体法连续SiC纤维的力学性能表征及烧成工艺初探.硕士学位论文[D],厦门大学,2005.
    [59]Chen L.F.,Zhang L.,Cai Z.H.,et al.Effects of oxidation curing and sintering additives on the formation of polymer-derived near-stoichiometric silicon carbide fibers[J].Journal of the American Ceramic Society.2007,91(2):428 -436.
    [60]Hemida A.T.,Pailler R.and Naslain R.,Continuous SiC-based model monofilaments with a low free carbon content:Part Ⅰ:From the pyrolysis of a polycarbosilane precursor under an atmosphere of hydrogen[J].Journal of Material Science,1997,32:2359-2366.
    [61]Clark T.J.,Jaffe M.,Rabe E.J.et al.Thermal stability characterization of SiC ceramic fibers:I,Mechanical property and chemical structure effects[J].Ceramic Engineering and Science Proceedings,1986,7:901-913.
    [62]Bender B.A.,Wallace J.S.and Schrodt D.J.,Effect of thermochemical treatments on the strength and microstructure of SiC fibres[J].Journal of Material Science.1991,26:970-976.
    [63]Takeda M.,Imai Y.,Ichikawa H.,et al.Thermomechanical analysis of the low oxygen silicon carbide fibers derived from polycarbosilane[J].Ceramic Engineering and Science Proceedings,1993,14(9/10) 540-547.
    [64]Bodet R.,Jia N.and Tressler R.E.,Microstructural instability and the resultant strength of Si-C-O(Nicalon) and Si-N-C-O(HPZ) fibres[J],Journal of Europe Ceramic Society,1996,16:653- 664.
    [65]Lacroix C.,Leguillon D.and Martin E.,The influence of an interphase on the deflection of a matrix crack in a ceramic-matrix composite[J].Composites Science and Technology,2002,62:519-523.
    [66]Hinoki T.,Yang W.,Nozawa T.,et al,Improvement of mechanical properties of SiC/SiC composites by various surface treatments of fibers[J].Journal of Nuclear Materials,2001,289:23-29.
    [67]Rebillat F.,Lamon J.and Guette A.,The concept of a strong interface applied to SiC/SiC composites with a BN interphase[J].Acta Materialia,2000,48:4609-4618.
    [68]Bertrand S.,Bourrat X.,Naslain R.,et al.TEM Structure of(PyC/SiC)_n Multilayered Interphases in SiC/SiC Composites[J].Journal of the European Ceramic Socity,2000,20:1-13.
    [69]何新波,扬辉,张长瑞,等.连续纤维增强陶瓷基复合材料概述[J],材料科学与工程,2002,20(2):273-278.
    [70]Hay R.S.,Fiber-matrix interfaces for alumina fiber-YAG matrix composites[J],Ceramic Engineering and Science Proceedings,1993,14:922-930.
    [71]Bender BA.and Jessen T.L.,Hot forming of a Nicalon SiC fiber/zirconia-titania matrix composite[J].Ceramic Engineering and Science Proceedings,1993,14:736.
    [72]Wenderff J,et al.[J].Ceramic Engineering and Science Proceedings,1993,14:364.
    [73]Jamet J.and Spann J.R.,Ceramic-Fiber Composite Pressing via Polymer Filler Matrices[J].Ceramic Engineering Science Process,1984,5(7-8):677-694.
    [74]Toy C.and Scott W.D.,Ceramic-Metal Composites Produced By Melt Infiltration[J].Journal of the American Ceramic S ociety,1990,73(1):97-101.
    [75]Wesiwood M.E.and Webster J.D.,Review oxidation protection for carbon fiber composites[J].Journal of Materials Science,1996,31:389-1397.
    [76]殷小伟,3D C/SiC复合材料的环境氧化行为.博士学位论文[D],西北工业大学,2001.
    [77]Cheng L.F.,Xu Y.D.and Zhang LT.Oxidation behavior from room temperature to 1500 deg Celus of 3D-C/SiC composites with different coatings[J].Journal of the American Ceramic Society,2002,85(4):989-991.
    [78]Xu Y.D.,Zhang L.T.,Cheng L.F.,et al.Microstructure and mechanical properties of three-dimensional carbon/silicon carbide composites fabricated by chemical vapor infiltration[J].Carbon,1998,36(728):1051-1056.
    [79]Wu S.J.,Cheng L.F.,Zhang L.T.,et al.Oxidation behavior of 2D C/SiC with a multi-layer CVD SiC coating[J].Surface and Coatings Technology,2006,200(14-15):4489-4492.
    [80]Yin X.W.,Cheng L.F.,Zhang L.T.,et al.Microstructure and oxidation resistance of carbon/silicon carbide composites infiltrated with chromium silicide[J].Materials Science and Engineering A,2000,29(1-2):89-94.
    [81]栾新刚.3D C/SiC在复杂耦合环境中的损伤机理与寿命预测.博士学位论文[D],西北工业大学,2007.
    [82]Naslain R.,Guette A.,Rebillat F.,et al.Boron-bearing species in ceramic matrix composites for long-term aerospace applications[J].Journal of Solid State Chemistry,2004,177:449-456.
    [83]Laumouroux F.,Bertrand S.,Pailler R.,et al.Oxidation-resistant carbon-fiber-reinforced ceramic-matrix composites[J].Composites Science and technology,1999,59:1073-1085
    [84]Goujard S.and Vandenbulcke L.,The oxidation behaviour of two-and three-dimensional C/SiC thermostructural materials protected by chemical-vapour-depositon polylayers coatings[J].Journal of Materials Science,1994,29:6212-6220.
    [85]Labruqu(?)re S.,Blanchard H.and Naslain R.,Enhancement of the oxidation resistance of interfacial area in C/C composites[J].Part Ⅰ.Journal of the European Ceramic Society,2002,22:1001-1009.
    [86]黄启忠,杨巧勤,C-B4C-SiC复合材料抗氧化性能研究[J].硅酸盐学报,1995,23:514-517.
    [87]张伟刚,周本濂,C-SiC-B4C复合材料的非等温氧化[J],炭索技术,1998,2:6-9.
    [88]翟更太,郭全贵,炭基材料的抗氧化防护[J],炭素技术,1999,105:24-26.
    [89]James M.S.and Larry P.Z.,Performance of four ceramic matrix composite divergent flap inserts following ground testing on an F110 turbofan engine[J].Journal of the American Ceramic Society,2000,83(7):1727-1738.
    [90]Liu Y.S.,Cheng L.F.,Zhang L.T.,et al.Oxidation protection of multilayer CVD SiC/B/SiC coatings for 3D C/SiC composite[J].Materials Science and Engineering:A,2007,466(1-2):172-177.
    [91]Cameron G.C.and James E.,Oxidative and hydrolytic stability of boron nitride-a new approach to improving the oxidation resistance of carbonaceous structures[J].Carbon,1995,33(4):389-395.
    [92]Rebillat F.,Guette A.and Espitalier L.,Oxidation resistance of SiC/SiC micro and mini-composites with a highly crystallized BN interphase[J].Journal of the European Ceramic Society,1998,18:1809-1819.
    [93]Wu S.J.,Cheng L.F.,Yang W.B.,et al.Oxidation protective multilayer CVD SiC coatings modified by a graphitic B-C interlayer for 3D C/SiC composite[J].Applied Composite Materials,2006,13:397-406.
    [94]Kiyoshi S.,Hiroki M.,Osamu F.,et al.Developing interfacial Carbon-Boron-Silicon coatings for Silicon Nitride-fiber- reinforced composites for improved oxidation resistance[J].Journal of the American Ceramic Society,2002,85:1815-1822.
    [95]M(U|¨)ller A.,Gerstel P.,Butchereit E.,et al.Si/B/C/N/Al precursor-derived ceramics:systhesis,high temperature behavior and oxidation resistance[J].Journal of the European Ceramic Society,2004,24:3409-3417.
    [96]Steyer T.E.,Zok F.W.and Walls D.P.,Stress rupture of an enhanced Nicalon/silicon carbide composite at intermediate temperature[J].Journal of American Ceramic Society,1998,81:2140-2146.
    [97]Schulte-Fischedick J.,Schmidt J.,Tamme R.,et al.Oxidation behaviour of C/C-SiC coated with SiC-B_4C-SiC-cordierite oxidation protection system[J]. Materials Science and Engineering: A, 2004, 386: 428-434.
    
    [98] Taguchi T., Nazawa T. and Iagawa N., Fabrication of advanced SiC fiber/F-CVI SiC matrix composites with SiC/C multi-layer interphase[J]. Journal of Nuclear Materials, 2004, 329-333: 572-576.
    
    [99] Viricelle J.P., Goursat P. and Bahloul H.D., Oxidation behaviour of a multi-layer ceramic-matrix composite (SiC)f/C/(Si-B-C)_m[J]. Composites Science and Technology, 2001, 61: 607-614.
    
    [100] Naslain R., Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview[J]. Composites Science and Technology, 2004, 64: 155-170.
    
    [101] Christin F., A global approach to fiber nD architectures and self-sealing matrices from research to production[C]. 5th International Conference on High-Temperature Ceramic Matrix Composites, 2004: 477-483.
    
    [102] Zhao J.C. and Westbrook J.H., Ultrahigh- temperature materials for jet engines[J]. MRS Bulletin, 2003: 622-630.
    
    [103] Naslain R. and Christin F., SiC-matrix composite materials for advanced jet engines[J]. MRS Bulletin, 2003: 654-658.
    
    [104] Larry Z., George R. and Patrick S., Ceramic matrix composites for aerospace turbine engine exhaust nozzles[C]. 5~(th) International Conference on High-Temperature Ceramic Matrix Composites, 2004: 491-498.
    
    [105] Michael V, Anthony C. and Robinson R.C., Characterization of ceramic matrix composite vane sub-elements subjected to rig testing in a gas turbine environment[C]. 5~(th) International Conference on High-Temperature Ceramic Matrix Composites, 2004: 499-505.
    
    [106] Farizy G., Chermant J.L., Sangleboeu J.C, et al. SiC_f-SiBC composites: microstructural investigations of the as received material and creep tested composites under an oxidative environment[J]. Journal of Microscopy, 2003,210(2): 176-186.
    
    [107] Christin F.A., A Global Approach to Fiber nD Architectures and Self-Sealing Matrices: From Research to Production[J]. Int. J. Appl. Ceram. Technol., 2005,2(2): 97-104.
    
    [108] Vandenbulcke L., Multilayered materials by ICVI in non-oxide self-healing ceramic matrix composites for high temperature applications[C].Symposium 《Ceramic Matrix Composites 》,107th Annual Meeting & Exposition of the American Ceramic Society,Baltimore,April 10-13,2005,(?) para(?)tre:13-26.
    [109]Vandenbulcke L.,Outstanding ceramic matrix composites for high temperature applications[J].Advanced Engineering Materials,2005,7(3):137-142.
    [110]Goujard S.R.,Vandenbulcke M.L.,Rey J.,et al.Process for the manufacture of a refractory composite material protected against corrosion[P].United States Patent,1993,US5246736
    [111]S(?)verine D.,Jean-Louis C.and Jean-Christophe S.,Advantages of SiC Hi-Nicalon or NLM 202 Fibers in SiC_f-SiBC Composites[J].Journal of the American Ceramic Society,2005,88(7):1967-1972.
    [112]Viricelle J.P.,Goursat P.and Bahloul-Hourlier D.,Oxidation behaviour of a boron carbide based material in dry and wet oxygen.Journal of Thermal Analysis and Calorimetry,2001,63:507-515.
    [113]Carre're P.,and Lamon J.,Creep behaviour of a SiC/Si-B-C composite with a self-healing multilayered matrix[J].Journal of the European Ceramic Society,2003,23:1105-1114.
    [114]Quemard L.,Rebillat F.,Guette A.,et al.Self-healing mechanisms of a SiC fiber reinforced multi-layered ceramic matrix composite in high pressure steam environments[J].Journal of the European Ceramic Society,2007,27:2085-2094.
    [115]Schouler M.C.,Cheynet M.C.,Sestier K.,et al.New filamentous deposition in the boron-carbon system[J].Carbon,1997,35(7):993-1000.
    [116]Lowell C.E.,Solid solution of boron in graphite[J].Journal of the American Ceramic Society,1967,50(3):142 - 144.
    [117]李斗星.材料科学中的高分辨电子显微学-发展历史、现状与展望[J],电子显微学报,2000,19:81-103.
    [118]李斗星.透射电子显微学的新进展Ⅰ,透射电子显微镜及相关部件的发展及应用[J],电子显微学报,2004,23:269-277.
    [119]姚骏恩.电子显微镜的现状与展望[J],电子显微学报,1998,17:767-776.
    [120]吴正龙,刘洁,现代X光电子能谱(XPS)分析技术[J],现代仪器,2006,1: 50-53.
    [121] Aveston J., Cooper G.A. and Kelly A., Single and Multiple Fracture. Conference Proceedings of the National Physical Laboratory: Properties of Fibre Composites, National Physical Laboratory, UK. IPC Science and Technology Press, London, 1971: 15-26.
    [122] Aveston J. and Kelly A., Theory of multiple fracture of composite materials[J]. Journal of Materials Science. 1973, 8(3): 352-362.
    [123] Appiah K.A., Wang Z.L. and Lackey W.J., Characterization of interfaces in C fiber-reinforced laminated C-SiC matrix composites[J]. Carbon. 2000, 38(6): 831-838.
    [124] Lewis M.H. and Murthy V.S.R., Microstructural characterization of interfaces in fibre-reinforced ceramics[J]. Composites Science and Technology. 1991, 42(1-3): 221 -249
    [125] Stinton D.P., Sheldon B.W., Besmann T.M., et al. Matrix characterization of fibre-reinforced matrix composites fabricated by chemical vapour infiltration[J]. Journal of Materials Science. 1995, 30(17): 4279-4285.
    [126] Jacques S., Guette A., Naslain R., et al. Preparation and characterization of 2D SiC/SiC composites with composition-graded C(B) interphase[J]. Journal of the European Ceramic Society. 1997, 17(9): 1061-1082.
    [127] Boitier G, Vicens J. and Chermant J.L., Microstructure of C_f-SiC Composites. In: M. Fuentes, et al, eds. Ceramic and Metal Matrix Composites, CMMC96, Trans Tech Pub, Key Engineering Materials. 1996, Vols. 127-131:777-784.
    [128] Despres J.F. and Monthioux M., Mechanical Properties of C/SiC Composites as Explained from their Interfacial Features[J]. Journal of the European Ceramic Society, 1995, 15(3): 209-224.
    [129] Dugne O., Prouhet S., Naslain R., et al. Interface characterization by TEM, AES and SIMS in tough SiC (ex-PCS) fiber-SiC (CVI) matrix composites with a BN interphase[J]. Journal of Materials Science, 1993, 28(13): 3409-3422
    [130] Leparoux M., Vandenbulcke L., Serin V., et al. The Interphase and interface microstructure and chemistry of isothermal/isobaric chemical vapor infiltration SiC/BN/SiC composites: TEM and electron energy loss studies[J]. Journal of Materials Science, 1997, 32(17): 4595-4602.
    [131] Jacques S., Guette A., Bourrat X., et al. Characterization of SiC/C(B)/SiC microcomposites by transmission electron microscopy[J]. Journal of Materials Science,1997,32(11):2969-2975.
    [132]Zheng G.B.,Sano H.,Uchiyama Y.,et al.Effect of carbon fiber polycarbosilane-derived SiC of boron addition on oxidation resistance composites[J].Journal of Materials Science Letters,1998,17(24):2047-2049.
    [133]Shibayama T.,He G.W.,Takahashi H.,et al.Environmental effects of microstructural stability in SiC/SiC composites[J].Ceramic Engineering and Science Proceedings,1999,20(4):161-167.
    [134]Abbe F.,Vicens J.and Chermant J.L.,Creep behavior and microstructural charaterization of a ceramic matrix composite[J].Journal of Materials Science Letter,1989,8(9):1026-1028.
    [135]Boitier G.,Vicens J.and Chermant J.L.,Tensile creep results on a C_f-SiC composite[J].Scripta Materials.1997,37(12):1923-1929.
    [136]Boitier G.,Vicens J.and Chermant J.L.,Microstructure and creep of 2.5D C_f-SiC composite[J].Journal ofthe European Ceramic Society,1998.18(13):1835-1843
    [137]Boitier G.,Vicens J.and Chermant J.L.,Carbon fiber 'nanocreep' in creep-tested C_f-SiC composites[J].Scripta Materials,1998;38(6):937-943
    [138]Boitier G.,Chermant J.L.and Vicens J.,Bridging at the nanometric scale in 2.5D C_f-SiC composites[J].Applied Composite Materials,1999,6(5):279-287
    [139]Backhaus-Ricoult M.and Mozdzierz N.,Two-dimensional SiC-C-SiC(O) fibre composite,Part Ⅰ:microstructural evolution at high temperature in different atmospheres[J].Journal of Materials Science,1995,30(13):3487-3500.
    [140]李建章,航空发动机热端部件模拟环境下3D C/SiC的为结构演变和失效机制.博士学位论文[D],西北工业大学.2006.
    [141]Chollon G.,Pailler R.,Naslain R.,et al.,Thermal stability of a PCS-derived SiC fibre with a low oxygen content(Hi Nicalon)[J],Journal of Materials Science,1997,32:327-347.
    [142]Sha J.J.,Nozawa T.,Park J.S.,et al.Effect of heat treatment on the tensile strength and creep resistance of advanced SiC fibers[J].Journal of Nuclear Materials,2004,329-333:592-596.
    [143]Ichikawa H.,Recent advances in Nicalon ceramic fibres including Hi-Nicalon type S[J],Annales de Chimie-Science Des Materiaux,2000,25(7):523-528.
    [144]Serizawa H.,Lewinsohn C.A.,Youngblood G.E.,et al.High-temperature properties of newly developed advanced SiC fibers[J].Key Engineering Materials,1999,164-1:287-290.
    [145]He G.W.,Shibayama T.and Takahashi H.,Microstructural evolution of Hi-Nicalon~(TM) SiC fibers annealed and crept in various oxygen partial pressure atmospheres[J].Journal of Materials Science,2000,35:1153-1164.
    [146]Sha J.J.,Park J.S.,Hinoki T.,et al.Tensile properties and creep behavior of SiC-based fibers under various oxygen partial pressures[J],Material Science Forum,2005,1-5:475-479.
    [147]Shimoo T.,Okamura K.and Takeuchi H.,Effect of reduced pressure on oxidation and thermal stability of polycarbosilane-derived SiC fibers[J].Journal of Materials Science,2003,38(24):4973-4979.
    [148]Shimoo T.,Okamura K.and Morisada Y.,Active-to-passive oxidation transition for polycarbosilane-derived silicon carbide fibers heated in Ar-O_2 gas mixtures[J],Journal of Materials Science,2002,37(9):1793-1800.
    [149]Shimoo Y.,Takeuchi H.,Takeda M.,et al.Oxidation kinetics and mechanical property of stoichiometric SiC fibers(Hi-Nicalon-S)[J],Journal of the Ceramic Society of Japan,2000,108(12):1096-1102.
    [150]Shimoo T.,Morisada Y.and Okamura K.,Suppression of active oxidation of polycarbosilane-derived silicon carbide fibers by preoxidation at high oxygen pressure[J].Journal of the American Ceramic Society,2003,86(5):838-845.
    [151]Takeda M.,Urano A.,Sakamoto J.,et al.Microstructure and oxidation behavior of silicon carbide fibers derived from polycarbosilane[J].Journal of the American Ceramic Society,2000,83(5):1171-1176.
    [152]王应德,邹治春,宋永才,等.连续碳化硅纤维性能研究[J].中国陶瓷,1997,33(3):11-13.
    [153]余煜玺,李效东,陈国明,等.含铝碳化硅纤维耐高温性能[J].硅酸盐学报.2004,32(7):812-815.
    [154]Chawla K.K.,Coffin C.and Xu Z.R.,Interface engineering in oxide fibre/oxide matrix composites[J].International Materials Reviews,2000,45:165-189.
    [155]Kerans R.J.,Hay R.S.,Parthasarathy T.A.,et al.Interface design for oxidation -resistant ceramic composites[J].Jouranl of the American Ceramic Society,2002,85(11):2599-2632.
    [156]Evans A.G.and Marshall D.B.,The mechanical behavior of ceramic matrix composites[J].Acta Metallurgica,1989,37(10):2567-2583.
    [157]Evans A.G.and Zok F.W.,The physics and mechanics of fibre-reinforced brittle matrix composites[J].Journal of Materials Science,1994,29:3857-3869.
    [158]Cox B.N.and Zok F.W.,Advances in ceramic composites reinforced by continuous fibers[J].Current Opinion in Solid State Materials Science,1996,1:666-673.
    [159]Pasquier S.,Lamon J.and Naslain R.,Tensile static fatigue of 2D SiC/SiC composites with multilayered(PyC-SiC)n interphases at high temperatures in oxidizing atmosphere[J].Composites:Part A,1998,29(9-10):1157-1164.
    [160]Carr(?)re N.,Martin E.and Lamon J.,The influence of the interphase and associated interfaces on the deflection of matrix cracks in ceramic matrix composites[J],Composites:Part A,2000,31:1179-1190.
    [161]王俊杰.C/SiC复合材料界面相区域高温后处理的动力学模拟与力学性能分析[D].西北工业大学,2002.
    [162]Jacques S,Marure A.L.,Vincent C.,et al.SiC/SiC minicomposites with structure-graded BN interphases[J].Journal of the European Ceramic Society,2000,20:1929-1938.
    [163]Rebillat F.,Guette A.and Brosse C.R.,Chemical and mechanical alterations of SiC Nicalon fiber properties during CVD/CVI process of boron nitride[J].Acta Materialia,1999,47:1685-1696.
    [164]Guo S.and Kagawa Y.,Tensile fracture behavior of continuous SiC fiber-reinforced SiC matrix composites at elevated temperatures and correlation to in situ constituent properties[J].Journal of the European Ceramic Society,2002,22:2349-2356.
    [165]Morscher G.N.and Cawley J.D.Intermediate temperature strength degradation in SiC/SiC composites[J],Journal of the European Ceramic Society,2002,22:2777-2787.
    [166]Byung J.C.and Dair Y.K.,Growth of silicon carbide by chemical vapor deposition[J].Journal of materials science letters,1991,10:860-862.
    [167]Besmann T.M.and Sheldon B.W.,Temperature and concentration dependence of SiC deposition on nicalon fibers[J].Surface and coatings technology,1990,43/44:167-175.
    [168]Ching Y.T.,Kinetic study of silicon carbide depositedfrom methyltrichlorosilane precursor[J].Journal of materials research,1994,9(1):104-111.
    [169]Xu Y.D.,Cheng L.F.,Zhang L.T.,et al.Morphology and growth mechanism of silicon carbide chemical vapor deposited at low temperatures and normal atmosphere[J].Journal of Materials Science,1999,34:551-555.
    [170]张长瑞,刘荣军,曹英斌,沉积温度对CVD SiC涂层显微结构的影响[J],无机材料学报,2007,1(22):154-158.
    [171]吴守军,成来飞,张立同,等.CVD SiC涂层对3D C/SiC氧化行为的影响[J],无机材料学报,2005,1(20):251-256.
    [172]Van Der Drift A.,Evolutionary selection,a principle governing growth orientation in vapor-deposited layers[J].Philips Research Reports,1967,22:267-288.
    [173]Dammers A.J.and Radelaar S.,2-Dimensional computer modeling of polycrystalline film growth[J].Textures and Microstructures,1991,14:757-762.
    [174]Thijssen J.M.,Knops H.J.F.and Dammers A.J.,Dynamic scaling in polycrystalline growth[J].Physical Review B,1992,45(15):8650-8656.
    [175]Thijssen J.M.,Simulations of polycrystalline growth in 2+1 dimensions[J].Physical Review B,1995,51:1985-1988.
    [176]Barrat S.,Pigeat P.and Grosse E.B.,Three-dimensional simulation of CVD diamond film growth[J].Diamond and related materials,1996,5:276-280.
    [177]Paritosh D.J.,Srolovitz D.J.,Bataille C.C.,et al.Simulation of faceted film growth in 2D:Microstructure,morphology and texture[J].Acta Materialia,1999,47:2269-2281.
    [178]Yun J.and Dandy D.S.,Model of morphology evolution in the growth of polycrystalline β-SiC films[J].Diamond and Related Materials,2000,9:439-445.
    [179]Grujicic M.and Lai S.G.,Grain-Scale modeling of CVD of polycrystalline diamond films[J].Journal of Materials Synthesis and Processing,2000,8:73 -85.
    [180]Smereka P.,Li X.,Russo G.,et al.Simulation of faceted film growth in three dimensions:microstructure,morphology and texture[J].Acta Materialia,2005,53:1191-1204.
    [181] Seo Y.H., Nahm K.S., Suh E.K., et al. Growth mechanism of 3C-SiC(111) films on Si using tetramethylsilane by rapid thermal chemical vapor deposition[J]. Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films, 1997, 15: 2226-2233.
    [182] Krausslich J., Fissel A., Kaiser U., et al. X-ray, transmission electron microscopy and atomic force microscopy characterization of SiC thin films on Si(111)[J]. Journal of Physics D: Applied Physics, 1995: 28, 759-763.
    [183] Radmilovic V., Dahmen U., Gao D., et al. Formation of <111> fiber texture in P-SiC films deposited on Si(100) substrates[J]. Diamond and Related Materials, 2007, 16: 74-80.
    [184] Spiecker E., Radmilovic V. and Dahmen U., Quantitative TEM analysis of 3-D grain structure in CVD-grown SiC films using double-wedge geometry[J]. Acta Materialia, 2007, 55: 3521-3530.
    [185] Bouchacourt M. and Thevenot F., The melting of boron carbide and the homogeneity range of the boron carbide phase[J]. Journal of the Less-common Metals, 1979,67:327-331.
    [186] Beauvy M., Stoichiometric limits of carbon-rich boron carbide phases[J]. Journal of the Less-common Metals. 1983, 90: 169-175.
    [187] Schwetz K.A. and Karduck P., Investigations in the boron-carbon system with the aid of electron probe microanalysis[J]. Journal of the Less-common Metals, 1991,175: 1-11.
    [188] Jansson M. and Carlsson J.O., Initial stages of growth during boron carbide chemical vapor deposition[J] Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films, 1987, 5: 2823-2828.
    [189] Ploog K., Composition and structure of boron carbides prepared by CVD[J]. Journal of Crystal Growth, 1974, 25: 197-204.
    [190] Jasson U. and Carlsson J.O., Chemical vapor deposition of boron carbides in the temperature range 1300-1500K and at a reduced pressure[J]. Thin Solid Films,1985, 124: 101-107.
    
    [191] Kevill D.N., Rissmann T.J., Brewe D., et al. Growth of crystals of several boron-carbon compositions by chemical vapor deposition[J]. Journal of Crystal Growth, 1986,74:210-216.
    
    [192] Vandenbulcke L., Herbin R., Basutcu M., et al. Experimental study of the chemical vapour deposition of boron carbide from BCl_3-CH_4-H_2 mixtures[J]. Journal of the Less-common Metals, 1981, 80: 7-22.
    [193] Vandenbulcke L., Theoretical and experimental studies on the chemical vapor deposition of boron carbide[J]. Industrial and Engineering Chemistry: Product Research and Development. 1985, 24: 568-575.
    [194] Dilek S.N., Ozbelge H.O., Sezgi N.A., et al. Kinetic studies for boron carbide formation in a dual impinging-jet reactor[J]. Industrial and Engineering Chemistry Research, 2001,40: 751-755.
    [195] Jansson U, Carlsson JO, Stridh B, et al. Chemical vapor deposition of boron carbides I: phase and chemical composition. Thin Solid Films, 1989, 172: 81-93.
    [196] Moss T.S., Lackey W.J. and More K.L., Chemical vapor deposition of B_(13)C_2 from BCl_3-CH_4-H_2-Argon mixtures[J]. Journal of the American Ceramic Society, 1998, 81:3077-3086.
    [197] Vincent H., Vincent C, Berthet M.P., et al. Boron carbide formation from BCl_3-CH_4-H_2 mixtures on carbon substrates and in a carbon-fiber reinforced Al composite[J]. Carbon 1996, 34: 1041-1055.
    [198] Olsson M., Soederberg S., Stridh B., et al. Chemical vapor deposition of boron carbides Ⅱ: morphology and microstructure[J]. Thin Solid Films, 1989, 172:95-109.
    [199] Cermignani W., Paulson T.E., Onneby C, et al. Synthesis and characterization of boron-doped carbons[J]. Carbon, 1995, 33: 367-374.
    [200] Shirasaki T., Derre A., Ménétrier M., et al. Synthesis and characterization of boron-substituted carbons[J]. Carbon, 2000, 38: 1461-1467.
    [201] Berjonneau J., Chollon G. and Langlais F., Deposition process of amorphous boron carbide from CH_4/BCl_3/H_2 precursor[J]. Journal of The ElectrochemicalSociety, 2006, 153(12): 795-800.
    [202] Fan Z.J., Song Y.Z. and Li J.G., Oxidation behavior of fine-grained SiC-B_4C/C composites up tol400℃[J]. Carbon, 2003, 41: 429-436.
    [203] Kawano T., Kawaguchi M. and Okamoto Y., Preparation of layered B/C/N thin films on nickel single crystal by LPCVD[J]. Solid State Sciences, 2002, 4: 1521-1527.
    [204] Charles T., Hach A., Linda E., et al. An investigation of vapor deposited boron rich carbon-a novel graphite-like material. I. The structure of BC sub x (C sub 6 B) thin films[J]. Carbon, 1999, 37:221-230.
    [205]郭全贵,宋进仁,刘明,等.B_4C-C复合材料抗氧化研究[J],耐火材料,1997,31(5):268-271.
    [206]Guo Q.G.,Song J.R.,Liu L.,et al.Relationship between oxidation resistance and structure of B_4C-SiC/C composites with self-healing properties[J].Carbon,1999,37:33-40.
    [207]Quemard L.,Rebillat F.,Guette A.,et al.Degradation mechanisms of a SiC fiber reinforced self-sealing matrix composite in simulated combustor environments[J].Journal of the European Ceramic Society,2007,27,377-388.
    [208]李舵,含硼CVD SiC复合涂层的氧化行为与机理,硕士学位论文[D],西北工业大学,2006.
    [1]Opila E.J.,Oxidation kinetics of chemical vapor deposited silion carbide in wet oxygen[J].J.Am.Ceram.Soc.,1994,77(3):730-736.
    [2]Schlichting J.,Oxygen transport through silica surface layers on silicon-containing ceramic materials[J].High Temp.High Press.,1982,14:717-724.
    [3]孟广耀.,化学气相淀积与无机新材料[M].北京:科学出版社,1984,4:12.
    [4]吴守军,3D SiC/SiC复合材料热化学坏境行为[D].西北工业大学博士学位论文,2006.
    [5]Mogilevsky P.,Preparation of thin ceramic monofilaments for characterization by TEM[J].Ultramicroscopy,2002,92:159-164.
    [6]Michael K.C.,John R.W.and Randall S.H.,Preparation of thin sections of coated fibers for characterization by Transmission Electron Microscopy[J].J.Am.Ceram.Soc.,1996,79:2881-2884.
    [7]ASTM D 3379-75:Standard Test Method for Tensile Strength and Young's Modulus for High-Modulus Single-Filament Materials.
    [1]Ogbuji L.U.J.T.,Degradation of a SiC/SiC composite in the burner rig investigation by fractography[J].Mater.High Temp.,2000,17:369-372.
    [2]Filsinger D.,M(u|¨)nz S.,Schulz A.,et al.Experimental assessment of fiber-reinforced ceramics for combustor walls[J].J.Eng.Gas Turbines Power,2001,123:271-276.
    [3]Yin X.W.,Cheng L.F.,Zhang L.T.,et al.Oxidation behaviors of C/SiC in the oxidizing environments containing water vapor[J].Mater.Sci.Eng.A,2003,348:47-53.
    [4]殷小玮,3D C/SiC复合材料的环境氧化行为[D].西北工业大学博士学位论文,2001.
    [5]Kleykamp H.,Schauer V.and Skokan A.,Oxidation behavior of SiC fiber-reinforced SiC[J].J.Nucl.Mater.,1995,227:130-137.
    [6]Cheng L.F.,Xu Y.D.,Zhang L.T.,et al.Oxidation behavior of three-dimensional SiC/SiC composites in air and combustion environment[J].Composites:Part A,2000,31:1015-1020.
    [7]Youngblood G.E.,Lewinsohn C.,Jones R.H.,et al.Fabrication and properties of SiC composites and other ceramics:Tensile strength and fracture surface characterization of Hi-Nicalon~(TM) SiC fibers[J].J.Nucl.Mater.,2001,289:1-9.
    [8]Kister G.and Harris B.,Tensile properties of heat-treated Nicalon and Hi-Nicalon fibres[J].Compos.Pt.A-Appl.Sci.Manuf.,2002,33:435-438.
    [9]Chollon G.,Pailler R.,Naslain R.,et al.Thermal stability of a PCS-derived SiC fibre with a low oxygen content(Hi-Nicalon)[J].J.Mater.Sci.,1997,32:327-347.
    [10]Shimoo T.,Okamura K.and Morisada Y.,Active-to-passive oxidation transition for polycarbosilane-derived silicon carbide fibers heated in Ar-O_2 gas mixtures[J].J.Mater.Sci.,2002,37:1793-1800.
    [11]He G.W.,Shibayama T.and Takahashi H.,Microstructural evolution of Hi-Nicalon TM SiC fibers annealed and crept in various oxygen partial pressure atmospheres[J].J.Mater.Sci.,2000,35:1153-1164.
    [12]Takeda M.,Urano A.,Sakamoto J.,et al.Microstructure and oxidative degradation behavior of silicon carbide fiber Hi-Nicalon type S[J].J.Nucl.Mater.,1998,263:1594-1599.
    [13]ASTM D 3379-75..Standard Test Method for Tensile Strength and Young's Modulus For High-Modulus Single-Filament Materials.
    [14]Yajima S.,Hasegawa Y.and Hayashi J.,Synthesis of continuous silicon carbide fiber with high tensile strength and high Young's modulus,part Ⅰ..synthesis of polycarbosilane as precursor[J].J.Mater.Sci.,1978,13:2569-2576.
    [15]Hasegawa Y.,Iimura M.and Yajima S.,Synthesis of continuous silicon carbide fiber,part Ⅱ conversion of polycarbosilane fiber into silicon carbide fibers[J].J.Mater.Sci.,1980,15:720-728.
    [16]宋永才,王岭,冯春祥,聚碳硅烷的分子量分布与可纺性研究[J].高技术通讯,1996,1:6-8.
    [17]宋永才,王岭,冯春祥,聚碳硅烷的合成与特性研究[J].高分子材料科学与工程,1997,4:30-33.
    [18]薛金根,王应德,宋永才,等.高分子量聚碳硅烷合成研究[J].高分子学报,2007.3:219-222.
    [19]程祥珍,谢征芳,宋永才,等.聚碳硅烷的高温高压生成机理研究[J].高分子学报,2007,1:1-7.
    [20]楚增勇,方志薇,宋永才,聚碳硅烷纤维电子束辐射交联的统计分析[J].电力科学与技术学报,2000,1:91-93.
    [21]Walpole R.E.and Myers R.H.,Probability and Statistics for Engineers and Scientists[M].New York:Macmillan,1985:544-546.
    [22]Chan Y.and Walmsley R.P.,Learning and understanding the Kruskal-Wallis one-way analysis-of-variance-by-ranks test for differences among three or more independent groups[J].Phys.Ther.,1997,12:1755-1761.
    [23]Kruskal W.H.and Wallis W.A.,Use of ranks in one-criterion variance analysis[J].J.Amer.Statist.Assoc.,1952,47:583-621.
    [24]邰淑彩,孙韫玉,何娟娟,应用数理统计[M].第二版.武汉:武汉大学出版社,2005:81-87.
    [25]王艳艳,连续碳化硅纤维的超微结构、断裂模式及力学性能的环境因素分析[D].厦门大学硕士学位论文.2005.
    [26]Li S.W.,Feng Z.D.,Mei H.,et al.Mechanical and microstructural evolution of Hi-Nicalon Trade Mark SiC fibers annealed in O_2-H_2O-Ar atmospheres.Materials Science and Engineering:A,2008,487:424-430.
    [27]West J.K.,Mecholsky J.J.and Hench L.L.,The application of fractal and quantum geometry to brittle fracture[J].J.Non-Cryst.Solids,1999,260:99-108.
    [28]Honjo K.,Fracture toughness of PAN-based carbon fibers estimated from strength-mirror size relation,Carbon,2003,41:979-984.
    [29]Semjonov S.L.and Kurkjian C.R.,Strength of silica optical fibers with micron size flaws,J Non-Cryst Solids,2001,283:220-224.
    [30]范天佑,断裂理论基础[M].北京:科学出版社,2003:16-18.
    [31]Zhu Y.T.,Taylor S.T.,Stout M.G.,et al.Characterization of Nicalon fibres with varying diameters Part Ⅱ:Modified Weibull distribution,J.Mater.Sci.,1998,33:1475-1480.
    [32]Shimoo T.,Tsukada I.,Narisawa M.,et al.Change in properties of polycarbosilane-derived SiC fibers at high-temperatures,J.Ceram.Soc.Japan,1997,105(7):559-563.
    [33]Sha J.J.,Nozawa T.,Park J.S.,et al.Effect of heat treatment on the tensile strength and creep resistance of advanced SiC fibers[J].J.Nucl.Mater.,2004,329:592-596.
    [34]傅晓伟,杨王月,张来启,等.原位合成MOSi_2/SiC复合材料的组织缺陷[J],北京科技大学学报.2001,23:249-252.
    [35]Deal B.E.and Grove A.S.,General relationship for the thermal oxidation of Silicon[J].J.Appl.Phys.,1965,36:3770-3778.
    [36]Rarnberg C.E.,Cruciani G.,Spear K.E.,et al.Passive-oxidation kinetics of high-purity silicon carbide from 800℃ to 1100℃[J].J.Am.Ceram.Soc.,1996,79:2897-2911.
    [37]Vix-Guterl C.,Grotzinger C.,Dentzer J.,et al.Reactivity of a C/SiC composite in water vapour[J].J.Eur.Ceram.Soc.,2001,21:315-323.
    [38]Moulson A.J.and Roberts J.P.,Water in silica glass[J].Trans.Faraday Soc.,1961,57:1208-1216.
    [39]Opila E.J.,Variation of the oxidation rate of silicon carbide with water-vapor pressure[J].J.Am.Ceram.Sot.,1999,82:625-636.
    [40]Maeda M.,Nakamura K.and Ohkubo T.,Oxidation of silicon carbide in a wet atmosphere[J].J.Mater.Sci.,1988,23:3933-3938.
    [41]Jacobson N.S.,Corrosion of silicon-based ceramics in combustion environments[J].J.Am.Ceram.Soc.,1993,76:3-28.
    [42]Costello J.A.and Tressler R.E.,Oxidation kinetics of silicon carbide crystals and ceramics:I,in dry oxygen[J].J.Am.Ceram.Soc.,1986,69:674-681.
    [43]Opila E.J.,Oxidation kinetics of chemically vapor deposited silicon carbide in wet oxygen[J].J.Am.Ceram.Soc.,1994,77:730-736.
    [44]Tedmon C.S.Jr.,The effect of oxide volatilization on the oxidation kinetics of Cr and Fe-Cr alloys[J].J.Electrochem.Soc.,1966,113:766-768.
    [45]Schiroky G.H.,Oxidation behaviour of chemically vapor deposited silicon carbide[J].Adv.Ceram.Mater.,1987,2:137-141.
    [46]Kingery W.D.,Bowen H.K.,Uhlmann D.R.,(1976 by John Wiley & Sons,Inc.)著,庄炳群校.陶瓷导论[M].北京:中国建筑工业出版社,1982:846-848.
    [47]Opila E.J.,Smialek J.L.,Robinson R.C.,et al.SiC recession caused by SiO_2 scale volatility under combustion conditions:Ⅱ,Thermodynamics and gaseous-diffusion model[J].J.Am.Ceram.Soc.,1999,82:1826-1834.
    [48]天津大学无机化学教研室编.无机化学[M].北京:高等教育出版社,1998:23-32.
    [49]Haslam A.J.,Moldovan D.,Yamakov V.,et al.Stress-enhanced grain growth in a nanocrystalline material by molecular-dynamics simulation[J].Acta Materialia,2003,51:2097-2112.
    [50]Nabarro F.R.N.,Stress-driven grain growth[J].Scripta Materialia,1998,39:1681-1683.
    [51]Berger M.-H.,Hochet N.and Bunsell A.R.,Microstructure and high temperature mechanical behavior of new polymer derived SiC based fibres[J].Ceram.Eng.Sci.Proc.,1998,19:39-46.
    [52]Berger M.-H.,Fine ceramic fibers:From microstructure to high temperature mechanical behavior[M].Advances in Ceramic Matrix Composites Ⅸ,2003,153:3-26.
    [53]冯祖德,姚荣迁,陈立富,一种气体分压测量装置[P],公开号:CN101187667.
    [54]冯祖德,姚荣迁,陈立富,用于陶瓷纤维高温变形的原位测量装置[P],公开号:CN1963442.
    [1]Yamamura T.,Hurushima T.,Hurushima T.,et al.Development of new continuous Si-Ti-C-O fiber with high mechanical strength and heat-resistance[J].High Technol.Ceram.,1987:737-746.
    [2]Yamamura T.,Ishikawa Y.,Shibuya M.,et al.Development of a new continuous Si-Ti-C-O fibre using an organometallic polymer precursor[J].J.Mater.Sci.,1988,23:2589-2594.
    [3]Song Y.C.,Hasegawa Y.,Yang S.J.,Ceramic fibres from polymer precursor containing Si-O-Ti bonds[J].J.Mater.Sci.,1988,23:1911-1920.
    [4]Kakimoto K.,Shimoo T.,Okamura K.,The oxidation behavior of a Si-Ti-C-O fiber with a low oxygen content[J].J.Ceram.Soc.Jpn.,1995,103:557-562.
    [5]Chollon G.,Aldacourrou B.,Capes L.,et al.Thermal behaviour of a polytitanocarbosilane derived fibre with a low oxygen content:the Tyranno Lox-E fibre[J].J.Mater.Sci.,1998,33:901-911.
    [6]Hochet N.,Berger M.H.,Bunsell A.R.,Microstructural evolution of the latest generation of small-diameter SiC-based fibres tested at high temperatures[J].J.Microsc.,1997,185:243-258.
    [7]Atwell W.H.,Bujalski D.R.,Joffre E.J.,et al.Preparation of substantially polycrystalline silicon carbide fibers from polyorganosiloxanes[P].Eur.Patent Appl.,0435065A1.,1991-07-03.
    [8]Deleeuw D.C.,Lipowitz J.,Preparation of substantially polycrystalline silicon carbide fibers from polycarbosilane[P].US Patent,5071600.1991-12-10.
    [9]LipowitzI J.,Rabe J.A.,Zangvil A.,et al.Structure and properties of Sylramic~(TM)silicon carbide fiber-a polycrystalline[J].Ceram.Eng.Sci.Proc.,1997,18:147-157.
    [10]Richard E.J.,Petrak D.,Rabe J.,et al.Sylramic~(TM) SiC fibers for CMC reinforcement[J].J.Nucl.Mater.,2000,287:556-559.
    [11]Kumagawa K.,Yamaoka Y.,Shibuya M.,et al.Thermal stability and chemical corrosion resistance of newly developed continuous Si-Zr-C-O Tyranno fibre[J].Ceram.Eng.Sci.Proc.,1997,18:113-118.
    [12]Ishikawa T.,Kouhtok U.,Kumagawa K.,Production mechanism of polyzirconocarbosilane using zirconium(Ⅳ) acety lacetonate and its conversion of the polymer into inorganic materials[J].J.Mater.Sci.,1998,33:161-166.
    [13]Yamaoka H.,Ishikawa T.,Kumagawa K.,Excellent heat resistance of Si-Zr-C-O fibre[J].J.Mater.Sci.,1999,34:1333-1339.
    [14]Itatani K.,Hattori K.,Harima D,et al.Mechanical and thermal properties of silicon-carbide composites fabricated with short Tyranno Si-Zr-C-O fibre[J].J.Mater.Sci.,2001,36:3679-3686.
    [15]Ishikawa T.,Kouhtok U.,Kumagawa K.,et al.High strength alkali resistant sintered SiC fibre stable to 2200℃[J].Nature,1998,391:773-774.
    [16]Ishikawa T.,Kajii S.,Hisayuki T,et al.New type of SiC sintered fiber and its composite material[J].Ceram.Eng.Sci.Proc.,1998,19:283-290.
    [17]Tanaka H.,Yoshimura H.N.,Otani S.,et al.Influence of silica and aluminum contents on sintering and grain growth in 6H-SiC powders[J].J.Am.Ceram.Soc.,2000,83:226-228.
    [18]Williams R.M.,Juterbock B.N.,Shinozaki S.S.,et al.Effects of sintering temperatures on the physical and crystallographic properties of β-SiC[J].Am.Ceram.Soc.Bull.,1985,64:1385-1389.
    [19]Zhou Y,Tanaka H,Otani S,et al.J.Low-temperature pressureless sintering of alpha-SiC with Al_4C_3-B_4C-C Additions[J].Am.Ceram.Soc.,1999,82:1959-1964.
    [20]Scherzer O.,The theoretical resolution limit of electron microscope[J].J.Appl.Phys.,1949,20:20-29.
    [21]Phillipp F.,H(o|¨)schen R.,Osaki M.,et al.New high-voltage atomic resolution microscope approaching 1(?) point resolution installed in Stuttgart[J].Ultramicroscopy,1994,56:1-3.
    [22]Haider M.,Uhlemann S.,Schwan E.,et al.Electron microscopy image enhanced[J].Nature,1998,392:768-769.
    [23]Nelist P.D.and Pennycook S.J.,Subangstrom resolution by underfocused incoherent transmission electron microscopy[J].Phys.Rev.Lett.,1998,81:4156-4159.
    [24]Schiske P.,Zur Frage der Bildrekonstruktion Durch Fokusreihen[C].In:Proceedings of the 4th European Conference on Electron Microscopy,Rome.1968:145-146.
    [25]Van Dyck D.,Lichte H.,Van der Mast D.,Sub-(?)ngstr(o|¨)m structure characterisation:the Brite-Euram route towards one angstrom[J].Ultramicroscopy,1996,64:1-15.
    [26]Li F.H.and Fan H.F.,Image deconvolution in high resolution electron microscopy by making use of Sayre equation[J].Acta Phys.Sinica,1979,28:267-278.
    [27]He W.Z.,Li F.H.,Chen H.,et al.Image deconvolution for defected crystals in field-emission high-resolution electron microscopy[J].Ultramicroscopy,1997,70:1-11.
    [28]Li F.H.and Tang D.,Pseudo-weak-phase-object approximation in high resolution electron microscopy[J].Acta Cryst.A,1985,41:376-382.
    [29]Tang D.and Li F.H.,A method of image restoration for pseudo-weak phase objects[J].Ultramicroscopy,1988,25:61-68.
    [30]Cowley J.M.and Moodie A.F.,The scattering of electrons by atoms and crystals.I.A new theoretical approach[J].Acta Cryst.1957,10:609-619.
    [31]李方华,汤栋.高分辨电子显微学中赝弱相位物体近似[J].物理学报,1984,8:1196-1197.
    [32]Cutler I.B.,Miller RD.,Rafaniello W.,et al.New materials in the Si-C-Al-O-N and related systems[J].Nature,1978,275:434-435.
    [33]余煜玺,李效东,曹峰,等.先驱体转化法制备的含铝SiC纤维的组成和结构研究[J],无机材料学报.2006,21:94-102.
    [34]Yu Y.X.,Tang X.Y.and Li X.D.,Characterization and microstructural evolution of SiC(OAl) fibers to SiC(Al) fibers derived from aluminum-containing polycarbosilane[J].Compos.Sci.Technol.,2008,doi:10.1016/j.compscitech.2008.02.010.
    [35]Wagner C.D.,Riggs W.M.,Davis L.E.,et al.Handbook of X-ray Photoelectron Spectroscopy[M].Minnesota:Perkin-Elmer,1979:76-80.
    [36]Inoue K.and Yamaguchi A.,Synthesis of Al_4SiC_4[J].J.Am.Ceram.Soc.,2003,86(6):1028-1030.
    [37]Zhang X.F.,Yang Q.and De Jonghe L.C.,Microstructure development in hot-pressed silicon carbide:effects of aluminum,boron,and carbon additives[J].Acta Materialia,2003,51:3849-3860.
    [1]Halbig M.C.and Eckel A.J.,Oxidation of continuous carbon fibers wit hin a silicon carbide matrix under st ressed and unstressed conditions[R].NASA,TM 2000.210224.Ohio:NASA,2000.
    [2]Strife J.R.and Sheehan J.E.,Ceramic coatings for carbon carbon composites[J].Am.Ceram.Soc.Bull.,1988,67(27):369-374.
    [3]吴守军,成来飞,张立同,徐永东,沈季雄.化学气相沉积碳化硅涂层缺陷形成的机制及控制[J].硅酸盐学报.2005,33:443-446.
    [4]Lazzari R.,Vast N.,Besson J.M.,et al.Atomic structure and vibrational properties of icosahedral B_4C boron carbide[J].Phys.Rev.Lett.,1999,83(16):3230-3233.
    [5]Shirai K.and Emura S.,Lattice vibrations of boron carbide[J].J.Solid State Chem.,1997,133(1):93-96.
    [6]Vast N.,Baroni S.,Zerah G.,et al.Lattice dynamics of icosahedral α-boron under pressure[J].Phys.Rev.Lett.,1997,78(4):693-696.
    [7]Aselage T.L.,Tallant D.R.,Emin D.,Isotope dependencies of Raman spectra of B_(12)As_2,B_(12)P_2,B_(12)O_2,and B_(12+x)C_(3-x):Bonding of intericosahedral chains[J].Phys.Rev.B,1997,56(6):3122-3129.
    [8]Yah X.Q.,Li W.J.,Goto T.,et al.Raman spectroscopy of pressure-induced amorphous boron carbide[J].Phys.Rev.Lett.,2006,88(13):131905.1-131905.3.
    [9]Werheit H.,Rotter H.W.,Meyer F.D.,et al.FT-Raman spectra of isotope-enriched boron carbide[J].J.Solid State Chem.,2004,177(2):569-574.
    [10]韩荣江,王继扬,徐现刚等.显微激光拉曼光谱法鉴别SiC晶体的多型体结构[J].人工晶体学报,2004,33(6):877-881.
    [11]刘永胜.CVD/CVI法制备B-C陶瓷的工艺基础.博士学位论文[D],西北工业大学,2008.
    [12]Hach C.T.,Jones L.E.,Crossland C.,et al.An investigation of vapor deposited boron rich carbon-a novel graphite-like material - part Ⅰ:the structure of BC_x (C_6B) thin films[J].Carbon,1999,37:221-230.
    [13]Yarbrough W.A.,Vapor Phase Deposited Diamond - Problems and Potential[J].J.Am.Ceram.Soc.1992,75:3179-3200.
    [14]Jacobsohn L.G.,Schulze R.K.,Maia da Costa M.E.H.,et al.X-ray photoelectron spectroscopy investigation of boron carbide films deposited by sputtering[J]. Surf.Sci.2004,572:418-424.
    [15]Jacques S.,Guette A.,Bourrat X.,et al.LPCVD and characterization of boron-containing pyrocarbon materials[J].Carbon,1996,34:1135-1143.
    [16]Moulder J.F.,Stickle W.F.,Sobol P.E.,et al.Handbook of X-ray Photoelectron Spectroscopy[M],Perkin-Elmer Corp.Eden Prairie.USA 1992.
    [17]Kunzli H.,Gantenbein P.,Steiner R.,et al.Influence of B_2H_6/CH_4 and B(CH_3)_3as process gas on boron carbide coatings:an in situ photoelectron spectroscopy study[J].J.Nucl.Mater.,1992,196-8:622-626.
    [18]Ronning C.,Schwen D.,Eyhusen S.,et al.Ion beamsynthesis of boron carbide thin films[J].Surf.Coat.Technol.,2002,158-9:382-387.
    [19]Martin X.,Rebillat F.,and Guette A.,Oxidation behavior of a multilayered (Si-B-C) ceramic in a complex atmosphere N_2/O_2/H_2O[J].High Temp.Corros.Mater.Chem.,in press.
    [20]Rebillat F.,Martin X.and Guette A.,Kinetic oxidation laws of boron carbide in dry and wet environments.In Proceedings of High Temperature Ceramic Matrix Composites 5(HTCMC5),ed.M.Singh,R.Kerans,E.Lara-Curzio and R.Naslain.American Ceramic Society,Westerville,OH,USA,2004,pp:321-326.
    [21]Qu'emard L.,Martin X.,Rebillat,F.et al.Thermodynamic study of B_2O_3reactivity in H_2O(g)N_2(g)/O_2(g) atmospheres at high pressure and high temperature.In Proceedings of High Temperature Ceramic Matrix Composites 5(HTCMC5),ed.M.Singh,R.Kerans,E.Lara-Curzio and R.Naslain.American Ceramic Society,Westerville,OH,USA,2004,pp:327-332.
    [22]Viricelle J.P.,Oxidation behaviour of a multi-layered ceramic matrix composite (SiC)_f/C/(SiBC)_m[J].Compos.Sci.Technol.,2001,61:607-614.
    [23]Jacobson N.,Farmer S.,Moore A.et al.High temperature oxidation of boron nitride.I.Monolithic boron nitride[J].J.Am.Ceram.Soc.,1999,82(2):393-398.
    [24]Jacobson N.,Farmer S.,Moore A.et al.High temperature oxidation of boron nitride.Ⅱ.Boron nitride layers in composites[J].J.Am.Ceram.Soc.,1999,82(6):1473-1482.
    [25]吴守军,3D SiC/SiC复合材料热化学环境行为[D].西北工业大学博士学位论文,2006.
    [1]Cheng L.F.,Xu Y.D.,Zhang L.T.,et al.Oxidation and defect control of CVD SiC coating on three-dimensional C/SiC composites[J].Carbon,2002,40(12):2229-2234.
    [2]Xu YD,Zhang LT,Cheng LF,et al.Microstructure and mechanical properties of three-dimensional carbon/silicon carbide composites fabricated by chemical vapor infiltration[J].Carbon,1998,36(728):1051-1056.
    [3]Wu S.J.,Cheng L.F.,Zhang L.T.,et al.Oxidation behavior of 2D C/SiC with a multi-layer CVD SiC coating[J].Surface and Coatings Technology,2006,200(14-15):4489-4492.
    [4]Yin X.W.,Cheng L.F.,Zhang L.T.,et al.Microstructure and oxidation resistance of carbon/silicon carbide composites infiltrated with chromium silicide[J].Materials Science and Engineering A,2000,29(1-2):89-94.
    [5]殷小伟.3D C/SiC复合材料的环境氧化行为.博士学位论文[D],西北工业大学,2001.
    [6]栾新刚.3D C/SiC在复杂耦合环境中的损伤机理与寿命预测.博士学位论文[D],西北工业大学,2007.
    [7]Naslain R.,Guette A.,Rebillat E,et al.Boron-beating species in ceramic matrix composites for long-term aerospace applications[J].Journal of Solid State Chemistry,2004,177:449-456.
    [8]Laumouroux F.,Bertrand S.,Pailler R.,et al.Oxidation-resistant carbon-fiber-reinforced ceramic-matrix composites[J].Composites Science and technology,1999,59:1073-1085.
    [9]刘永胜.CVD/CVI法制备B-C陶瓷的工艺基础.博士学位论文[D],西北工业大学,2008.
    [10]Cook J.and Gordon J.E.A mechanism for the control of crack propagation in all brittle systems[J].Proceedings of the Royal Society of London A,1964,282:508-520.
    [11]Boitier G..,Chermant J.L.,Vicens J.,Bridging at the Nanometric Scale in 2.5D C_f-SiC Composites[J].Applied Composite Materials.1999:279-287
    [12]李建章,张立同,成来飞等.纤维增韧陶瓷基复合材料的界面区研究[J].稀有金属材料与工程,2007,36:1539-1544.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700