加压流化床气化条件下灰熔融特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灰熔融性是煤及生物质燃烧和气化过程的一项重要性质。在流化床燃烧气化系统中,灰熔融特性对床料团聚、换热器积灰和管壁结渣等一系列现象有决定影响,并直接决定着排渣方式的选择,是影响煤及生物质燃烧和气化过程的一个重要因素。为研究灰熔融特性对加压流化床燃烧和气化系统的影响,利用自主研发的加压压差法烧结温度测量装置、加压热天平装置和灰熔点仪等装置,结合热力学软件FactSage、X射线衍射分析仪以及扫描电镜和能量色散荧光分析仪,对煤及其与生物质混合燃料的灰熔融特性开展了系统的分析研究。主要系统考察了加压燃烧气化过程中化学组分、温度、气氛和压力等因素对灰熔融特性的影响特性及灰中矿物质组分的转变特性,并利用相图理论,将不同温度和压力下的矿物质转变直观地用相图表示出来,探讨了加压流化床气化条件下的灰熔融机理。主要的研究工作及结果如下:
     (1)利用所建的加压压差法烧结温度测量装置结合X射线衍射分析仪,研究了反应气氛、压力及灰组分对煤灰烧结温度的影响特性及其机理。结果表明无论是常压还是加压条件,在还原性气氛下的煤灰烧结温度都低于氧化性气氛下煤灰的烧结温度,主要原因是在还原性气氛下,部分Fe3+转化为Fe2+后,易和灰中其他组分如含钙、钠等化合物反应生成易于发生低温共融的矿物质,如铁橄榄石与铁尖晶石等,导致烧结温度降低。压力对煤灰的烧结温度有较大的影响,压力的升高抑制硬石膏、钾云母等助融矿物质分解,与微斜长石、赤铁矿、钙长石等矿物组分共存,发生低温共融现象,从而使得烧结温度下降。燃烧和气化气氛下,在煤灰中添加CaO、Fe2O3和Na2O都会降低煤灰烧结温度,其中CaO和Na2O含量对煤灰烧结温度影响较大。其主要原因是Fe2O3、CaO和Na2O等氧化物将促使一些低温易熔矿物质或易与其他矿物质形成低温共融体的矿物质形成,如无水芒硝、钙长石、钠长石等长石类矿物质,以及铁尖晶石、铁橄榄石、铁堇青石等铁系矿物质(气化气氛下)。
     同时,利用压差法烧结温度测量装置,对加压条件下不同混合比例的煤和生物质混合灰进行了烧结特性的研究,同时还测量了山西晋城煤与麦秆/松木屑的混合灰样的烧结温度。结合SEM-EDS及XRD分析方法,分析了烧结样品的形貌特征、元素组成及其中的矿物质组成。结果表明:随着麦秆比例的增加,灰样的烧结温度也呈现降低趋势,且降低幅度较大。随着麦秆比例的添加,灰样呈现明显团聚和烧结现象,且灰样中K、Cl的含量显著增加,而麦秆灰中还有较高含量的碱金属,会生成较多的含钾、钠的低熔点的矿物质,这是导致烧结温度降低的主要原因。而在掺混同样的生物质比例时,掺混麦秆的混合灰样的烧结温度低于掺混木屑的灰样的烧结温度,这是因为麦秆灰中含有较多的K和Cl,而木屑灰中含有较多的Ca。EDS和XRD分析表明添加麦秆的灰样中含有较多的含钾矿物,而添加木屑的灰样中含有较多的含钾和钙的矿物质,含钾、钙的矿物质都能与煤中其他矿物质发生低温共融现象,从而降低混合灰样的烧结温度。但是含钙的矿物的熔点较高,因此添加麦秆的灰样的烧结温度低于添加木屑的灰样的烧结温度。随着压力升高,燃烧气氛和气化气氛下添加不同生物质比例的灰样的烧结温度呈现明显下降趋势。压力升高导致灰样更加致密,这说明压力升高导致更多的助融矿物发生熔融,从而使得熔融聚团现象更加严重。压力升高,促使添加了生物质的混合灰样中透辉石、钙黄长石向含铁矿物质斜晖石的转变,长石类矿物质钙长石的生成。而长石类矿物质和含铁矿物质及易与其他矿物质发生低温共熔现象,促使烧结温度降低。
     最后,为研究成灰过程的影响,选用山西晋城煤和澳大利亚的麦秆和松木屑为原料,采用高温直管式炉、中温马弗炉、低温氧等离子体灰化仪三种不同的灰化方法制备灰样。利用压差法烧结温度测量装置测量了混合灰样的烧结温度,并采用SEM-EDS和XRD分析仪分析了混合灰样的形貌特征及矿物转变特性。研究结果表明:同样的煤和生物质的混合比例下,直管式炉中混合灰样的烧结温度最高,低温等离子体灰化仪中混合灰样的烧结温度最低。SEM分析表明来自低温等离子体灰化仪中的灰样颗粒比较疏松且含有更多的纤维结构;而马弗炉和直管式炉中的灰样表面结构比较致密,并成规则的形状。此外,来自直管式炉的灰样中出现较多球状颗粒,表明在灰样过程中发生了熔融现象。XRD分析表明不同温度下的灰样制备方式呈现不同的矿物质,低温等离子体灰化仪中出现较低温度的矿物质如钾芒硝等,马弗炉中出现KCl和钾云母等助融矿物质,而直管式炉中出现如钙长石、莫来石等较高温度的矿物质。
     (2)利用加压热天平结合XRD分析仪及SEM-EDS分析仪,开展了加压流化床燃烧气化条件下压力、气氛、温度和灰成分影响煤灰矿物质的转变过程的实验研究。研究结果表明不同反应气氛下压力对煤灰中矿物质的转化过程具有明显不同的影响。在气化气氛下,压力的升高促使陨硫钙石向硬石膏的转变,抑制钾云母、硬石膏等助融矿物质分解,促使长石类矿物质透长石生成和铁系矿物质赤铁矿熔融;而在惰性气氛和燃烧气氛下,压力的变化促使钾云母向莫来石转变,而微斜长石向钠长石转变,而对其他矿物质影响不大。随着温度逐渐升高,在气化气氛下,生成钙长石相及铁尖晶石等矿物相,而他们会与其他矿物质发生低温共熔现象,从而降低灰熔融温度;在燃烧气氛下,随着温度升高,生成透长石等长石类矿物质和莫来石等高熔点矿物质,升高灰熔融温度。随着Fe2O3含量增加,燃烧气氛下煤灰中生成了磁铁矿、硬石膏、钾云母以及微斜长石等助融矿物质;气化气氛下生成了铁尖晶石、钠长石等易与其他矿物发生低温共融的矿物质。而随着CaO的增加,燃烧气氛下生成钾云母、硬石膏等助融矿物质及方解石和钙黄长石等易与发生低温共融的矿物质;在气化气氛下除了钾云母、钙黄长石和方解石外,还生成了钙长石等易形成低温共融体的矿物质。随着Na2O含量的增加,燃烧气氛下出现钾云母、硬石膏和赤铁矿和霞石等助融矿物质;在气化气氛下发生了铁尖晶石的熔融,并出现了霞石等助融矿物质及钙黄长石等易发生低温共融的矿物质。
     (3)利用灰熔点仪,测定了不同气氛下、不同灰成分下的灰熔融温度,并结合FactSage软件模拟计算结果分析了气氛和灰组分对灰熔融温度的影响特性,结果表明:随着Fe2O3、CaO及Na2O的增加,在燃烧和气化气氛下变形温度、软化温度、半球温度和流动温度等特征温度都呈现降低趋势;随着Fe2O3、CaO及Na2O这三种氧化物含量的增加,煤灰中的矿物质在不同气氛下发生相变反应并伴随新的矿物质的生成。随着Fe2O3含量的增加,煤灰中出现铁系矿物质,如磁铁矿、铁尖晶石和铁橄榄石等;随着CaO的增加,出现含钙的长石类矿物质钙黄长石等;随着Na2O含量的增加,促进三斜霞石等含钠的长石类矿物质等的生成。所生成的铁系矿物质、含钙及钠的长石类矿物质中,有一些是本身熔点较低,有一些是易与其他矿物质形成低温共融体,这些矿物质的存在是煤灰熔融温度降低的根本原因。
     (4)在实验研究基础上,利用相图理论将不同温度、压力段下的矿物成分分布整理成相图,直观地呈现出不同温度带和不同压力下的矿物质,并利用三元相图理论分析了晋城煤灰的灰熔融特性。结果表明温度对矿物质转化过程影响较大,而压力对矿物转变影响相对较小。同时温度和压力的影响也与反应气氛有关。燃烧气氛下矿物物相种类变化较少,即燃烧气氛下矿物物相间发生的反应较少,而气化气氛下矿物种类变化较多,其发生物相转变较多。随着温度升高,在还原性气氛下促进Fe2+生成,煤灰中的含Fe2+的矿物质,通过与SiO2、Al2O3等化合物反应生成铁尖晶石等铁系矿物质相,在氧化气氛下硅铝酸盐则通过与碱金属化合物和碱土金属化合物反应生成长石类矿物质相,如钙长石,斜长石等。一般来说,长石类及铁系矿物质都会与其他矿物质如Na2O·2SiO2、K2O-4SiO2等发生低温共融现象,生成低温共融体如Na2O·2SiO2+SiO2+Na2O·3CaO·6SiO2等。随着压力升高,在惰性气氛、氧化性气氛下对矿物质生成种类影响不大,但压力升高促进结晶矿物质析出,对矿物质生成量有一定影响,同时受抑制分解的多种低温矿物质如钾云母、硬石膏等共存,会产生低温共融现象。在气化气氛下,压力升高促进硅铝酸盐与灰中碱金属化合物和碱土金属化合物反应,生成长石类矿物质如钙长石、透长石等,而长石类矿物质会产生低温共融现象。
The ash fusibility is an important factor in the coal and biomass combustion and gasification system. The effect of ash fusion characteristics on the bed agglomeration, deposition on gas circuits and heat exchanger tubes is significant during the combustion and gasification process. The ash fusibility determines how to remove slags and influences the combustion and gasification process of coal and biomass. In order to investigate the effect of ash fusion behavior on the pressurized fluidized bed combustion and gasification system, we used the pressurized pressure-drop measuring device, high pressure TGA and ash fusion determinator, together with thermodynamic software FactSage, X-ray diffraction analyzer (XRD) and scanning electron microscopy fitted with X-ray energy dispersive spectroscopy (SEM-EDS) and studied the ash fusion behavior of coal and biomass systematically. The effects of ash composition, temperatures, reaction atmospheres and pressures on the ash fusibility, as well as the mineral transformation characteristics, were investigated. Finally, we employed the phase theory to investigate the ash fusibility mechanism during the pressurized fluidized bed combustion and gasification, based on the experimental results. The main contents are listed as follows:
     (1) The effects of different atmospheres, pressures and ash composition on the sintering temperature were studied using the pressurized pressure-drop device, together with XRD analyzer. The results showed that the sintering temperatures under the reducing atmosphere were lower than those of oxidizing atmosphere. Under a reducing atmosphere, some Fe3+would be converted to Fe2+at higher temperature, and Fe2+reacted with other ash constituents to form fayalite, hercynite, etc., which can form the low temperature eutectics and decreased the sintering temperature. Pressure had big influences on the sintering temperatures. This was because the pressure affects the transformaions of minerals during heating and facilitates the form of fluxing minerals such as anhydrite, microcline and hematite etc. and minerals like anorthite which can react with other minerals to form low-temperature eutectics, leading to the reduction of sintering temperatures. The additives of CaO, Fe2O3and Na2O reduced the sintering temperatures under the combustion and gasification atmospheres during atmospheric and high pressure. Moreovver, the influences of CaO and Na2O on the sintering temperature were more significant than that of Fe2O3. With the increases in CaO, Fe2O3and Na2O, some fluxing minerals and low temperature eutectics were formed in the coal ash, such Na2SO4, anorthite, albite and iron-bearing minerals like hercynite and fayalite etc (in the gasification atmosphere). These minerals reacted with other minerals to form the low temperature eutectics, leading to the reduction of the sintering temperature.
     Secondly, the ash sintering behavior of the coal and biomass was studied using the pressurized pressure-drop device, together with SEM-EDS and XRD analyzer. The results showed that the sintering temperatures of ash samples decreased with the additive of biomass under the combustion and gasification atmospheres, the higher the proportion of biomass addition in the blend, the lower the ash sintering temperature. SEM-EDS results showed that agglomeration and sintering were detected in the ash samples and the content of K and Cl increased obviously with the addition of straw. High contents of alkali metal like K and Na facilitated the form of K and Na-containing minerals, which have low melting points. This is the main reason resulting in the decrease of sintering temperature. At the same blending ratio, the ash sintering temperature of the blend with the straw addition was lower than that with the sawdust addition, because the straw had a higher K and Cl content but lower Ca than the sawdust. The EDS and XRD analysis confirmed that the ash samples with straw addition contained more K-bearing minerals, while the ash samples with sawdust contained more Ca and K-bearing minerals. Both Ca and K-bearing minerals reacted with other minerals in the coal to form low temperature eutectics, leading to the reduction of sintering temperatures of the coal and biomass blends. However, the melting point of Ca-containing is higher than the K-containing minerals, therefore, the sintering temperatures of ash with straw addition were lower than those with sawdust addition. The sintering temperatures decreased with the increase in pressure. As the pressure increased, the ash with the addition of biomass showed denser in the texture. This indicated that more fluxing minerals melted with increasing the pressure, and thereby leading to the agglomeration singnificantly. XRD analysis showed that the pressure facilitated the transformations of diopside and gelhcnite into augite and anorthite. The iron-bearing mineral augite and feldspar mineral anorthite can reacted with other minerals to form the low temperature eutectics, leading to the decrease of the sintering temperature.
     Finally, blends of Jincheng coal, and a wheat straw and a pine sawdust, respectively, were subjected to three different ash preparation procedures, namely, a low temperature oxygen plasma ashing device, muffle furnace and drop tube furnace. The resulting ash samples were then subjected to the sintering temperature measurement using a pressure-drop sintering device, morphological and mineralogical characterisation using SEM-EDS and XRD, respectively. For the same coal/biomass blends but different ash preparation methods, the sintering temperatures were always the lowest for the ash samples from the plasma ashing device and the highest for the drop tube furnace, with the muffle furnace ash samples being in between. The SEM imaging showed that the texture of ash samples from plasma ashing device was irregular, loose and more fibrous but the muffle furnace and drop tube furnace ashes were denser and more uniform in shape. In addition, the drop tube furnace ash particles were mostly in spherical-shape, indicating ash melting had occurred in the drop tube furnace. The XRD analysis revealed that different minerals were present in the ash samples due to different ash preparation temperatures. The minerals of the ash from the plasma ashing device were the low-temperature minerals, like aphthitalite. The fluxing minerals, such as KCl and muscovite, were present in the Muffle furnace ash and the high temperature minerals, such as anorthite and mullite were present in the drop tube furnace ash.
     (2) A high pressure thennogravimetric analyzer, aided with X-ray diffraction (XRD) analyses and SEM-EDS analyses, were used to investigate the effects of reaction atmospheres, temperatures, pressures and ash composition on the mineralogical transformation of coal ash during pressurized fluidized bed combustion and gasification. The results showed that the pressure had obvious influences on the transformation of mineral under different reaction atmosphere. The pressure facilitated the transformations of oldhamite into anhydrite and the fusion of hematite and suppressed the decomposition of the fluxing minerals like muscovite and anhydrite under the gasification atmosphere. The influence of pressure on the mineral types was not obvious but only facilitated the transformations of the muscovite and microcline into mullite and the albite under the inertia and combustion atmospheres. The effect of temperature on the ash fusion characteristics was strongly dependent on the atmospheres. In gasification atmospheres, the iron-bearing minerals and feldspar minerals, such as hercynite and anorthite, became abundant and reacted with other minerals to form low-temperature eutectics, thus decreasing the fusion temperatures. In combustion atmospheres, more high temperature minerals such as sanidine and mullite were formed and dominate, leading to increases in the fusion temperatures. With the increase in Fe2O3, there were muscovite, magnetite and anhydrite, etc. in the combustion atmosphere, resulting in the decrease of the fusion temperature. In the gasification atmosphere, hercynite and albite were detected, which can react with other minerals to form low temperature eutectics. With increasing the CaO, there were the fluxing minerals (anhydrite, and hematite) and some feldspar minerals, such as calcite and gehlenite, easy to produce low-temperature eutectics with other minerals, and hereby declining the fusion temperature in the combustion atmosperes. In the gasification atmosphere, the anorthite was present along with anhydrite, hematite, calcite and gehlenite. With the increase in Na2O, there were fluxing minerals, such as muscovite, magnetite, anhydrite and nepheline in the combustion atmosphere; there were the fluxing minerals like nepheline and the minerals, like gehlenite, easy to produce low-temperature eutectics with other minerals, leading to the reduction of the fusion temperature.
     (3) AFTs were examined under different atmospheres and ash composition using ash fusion determinator. The effects of chemical components of ash and reaction atmospheres on the ash fusion behaviors have been analyzed under typical gasification and combustion atmospheres, aided with the FactSage software. The results indicated that with increasing the Fe2O3,CaO and Na20contents under the combustion and gasification atmospheres, the four temperatures DT, ST, HT and FT declined dramatically. With the increase in Fe2O3, CaO and Na2O contents, the generation and transformation of minerals occurred. The iron-containing minerals, such as hercynite and fayalite, were formed as increased the content of Fe2O3; the Ca-bearing feldspar minerals, like anorthite and gehlenite, were present with increasing the CaO content; and the Na-containing feldspar minerals, like carnegiete etc., were detected as the Na2O was increased. These three minerals can form low temperature eutectics, decreasing the fusion temperature.
     (4) Based on the experimental results, the mineral distributions under different temperatures and pressures were displayed using the phase theory. The mechanism of ash fusion was analyzed using the phase theory. The effect of temperature on the mineral transformations was significant while the effect of pressure was not obvious. Meanwhile the atmospheres which the minerals were in were related to the effects of temperature and pressure. The transformations of minerals under gasification atmosphere were more than under the combustion atmosphere.
     This indicated that more phase transformations occurred under the gasification atmosphere than the combustion atmosphere. With increasing the temperature, the Fe2+-bearing minerals, like hercynite, reacted with SiO2, Al2O3in ash to form iron-containing minerals like hercynite and fayalite etc. under the reducing atmosphere. The feldspar minerals, such as anorthite and microcline, were formed by the reactions between the alkali and alkali earth oxides and the SiO2Al2O3in the oxidizing atmosphere. In general, the feldspar minerals and the iron-bearing minerals can react with other minerals, such as Na2O·2SiO2、K2O·4SiO2, to form low temperature eutectics like Na2O·2SiO2+SiO2+Na2O·3CaO·6SiO2. With the increase in pressure, the mineral transformations are not obvious in the oxidizing and inert atmospheres, however, the pressure affects the crystallization of minerals. Moreover, the fluxing minerals like muscovite and anhydrite coexisted and produced low temperature melting. Pressure facilitated the form of the feldspar minerals, like anorthite, sanidine etc. in the gasification atmosphere. The feldspar minerals can form the low temperature eutectics.
引文
[1]International Energy Outlook. www.eia.doe.gov/eabs/China/Full.htm.2008.
    [2]崔君鸣,常毅军.中国能源保障与煤炭新格局的形成[M].2010,北京:煤炭工业版社.
    [3]王辅臣,于广锁,龚欣等.多喷嘴对置煤气化技术的研究与工业示范[J].应用化工,2006,10(35):119-132.
    [4]Longwell J P, Rubint E S, Wilson J. COAL:ENERGY FOR THE FUTURE[J]. Prog. Energy Combust. Sci.,1995.21:269-360.
    [5]张东亮.中国煤气化工艺(技术)的现状和发展[J].煤化工,2004,2:1-5.
    [6]倪维斗.煤现代化利用的跨越式技术路线是大势所趋[J].化工技术经济,2005,23.
    [7]中国统计年鉴2011.http://www.stats.gov.cn/tjsj/ndsj/2011/indexch.htm.
    [8]廖春良.十二五”时期中国能源结构的演变[J].Shanghai Economy.2010.12.
    [9]中国信息报.我国煤炭占一次能源消费比重2015年将降至63%.http://finance.stockstar.com/JL2010072200001051.shtml.2010.
    [10]“十五”国家高技术发展计划能源技术领域专家委员会.能源发展战略研究.化学工业出版社.ISBN 7-5025-6027-0.
    [11]邓可蕴,贺亮.我国农村地区中长期能源需求预测[J].中国工程科学,2000,2(7):16-21.
    [12]Wei X L, Lopez C, Puttkamer T, et al. Assessment of Chlorine-Alkali-Mineral Interactions during Co-Combustion of Coal and Straw[J]. Energy & Fuels,2002,16: 1095-1108.
    [13]Lin W G, Dam-Johansen K, Frandsen F. Agglomeration in bio-fuel fired fluidized bed combustors[J]. Chemical Engineering Journal,2003,96:171-185.
    [14]黄宝圣.我国植物生物质能源开发展望[J].太阳能,2003,1:112-119.
    [15]Kazagic A, Smajevic I. The research here presented therefore represents a precondition for the adoption of clean coal technologies[J]. Energy,2007,32:2006-2016.
    [16]Khan A A, Jong W, Jansens P J, et al. Biomass combustion in fluidized bed boilers: Potential problems and remedies[J]. FUEL PROCESSING TECHNOLOGY,2009,90: 21-50.
    [17]中国新能源网.生物质能源基础及技术发展.http://www.newenergy.org.cn/html/0105/5121032478.html
    [18]唐宏青,煤化工工艺技术评述与展望Ⅰ.煤气化技术[J].燃料化学学报,2001,29(1):1-5.
    [19]张玉柱,吴春米.不同床层煤炭气化方法的比较及气化工艺的选择[J].西北煤炭,2006,4(3).
    [20]徐春霞,徐振刚,步学朋,董卫果,戢绪国,杨宗仁.生物质气化及生物质与煤共气化技术的研发与应用[J].洁净煤技,2008,14(2):37-40.
    [21]许世森,张东亮,任永强.大规模气化技术[M].化学工业出版社.2006.
    [22]陈家仁.流化床气化的过去现在与将来[J].洁净煤技术,1998,4(1):8-15.
    [23]杜始南.三种煤气化技术的比较及相互促进[J].中氮肥,2005,5:4-7.
    [24]屈利娟.流化床煤气化技术的研究进展.煤炭转化,2007,30(2):81-85.
    [25]徐京磐,鲍礼堂.流化床和气流床气化技术综述(上)[J].小氮肥技术设计,2002,23(1):11-22.
    [26]王乐意.关于灰熔聚流化床粉煤气化技术的调查[J].山西化工,2002,22(3):1-7.
    [27]陈峰,煤气化技术现状及发展趋势.合作经济与科技,2012(455):p.125-126.
    [28]Zheng L, Furinsky E. Comparison of Shell, Texaeo, BGL and KRW gasifiers as part of IGCC plant computer simulation[J]. Energy Conversion and Management,2005, 46(11-12):1767-1779.
    [29]李鹏,王维新,吴杰,李霞,杨斌.生物质气化及气化炉的研究进展[J].新疆农机化,2007,(3):46-48.
    [30]刘作龙,孙培勤,孙绍晖,陈俊武.生物质气化技术和气化炉研究进展[J].河南化工,2011,28:21-25.
    [31]张科达,梁大明,王鹏,步学朋,董卫果,戢绪国.生物质气流床气化技术的研究进展[J].洁净煤技术,2009,15(1):51-54.
    [32]郭冠龙,滑怀田.浅析煤炭气化技术及发展趋势[J].陕西煤炭,2010,4:115-116.
    [33]刘志强.生物质与煤流化床共气化的试验研究[D].华北电力大学硕士论文.2009.
    [34]宋新朝,王芙蓉,赵宵鹏,张永奇,毕继诚.生物质与煤共气化特性研究[J].煤炭转化,2009,32(4):44-46.
    [35]杨毅栎.煤与生物质共气化的特性研究[D].2008,华北电力大学.
    [36]吴加奇.高温下渣/灰熔融与矿物质行为对煤焦气化反应特性的影响[D].华东理工大学,硕士学位论文.2011.
    [37]Al-Otoom A Y, Elliott L K, Moghtaderi B, et al. The sintering temperature of ash, agglomeration, and defluidisation in a bench scale PFBC[J]. Fuel,2005,84:109-114.
    [38]Ishom F, Harada T, Aoyagi T, et al. Problem in PFBC boiler (1):characterization of agglomerate recovered in commercial PFBC boiler[J]. Fuel,2002,81:1146-1148.
    [39]焦发存,李慧,邓蜀平,董众兵.配煤对煤灰熔融特性影响的实验研究[J].煤炭转化,2006,29(1):11-18.
    [40]于戈文,许志琴,邓蜀平,气化条件下煤灰熔融性研究[J].煤化工,2005,5:27-31.
    [41]康虹,吴国光,李建亮,煤灰熔融性的研究进展[J].能源技术与管理,2008,2:75-77.
    [42]池作和,周昊,蒋啸,岑可法,锅炉结渣机理及防结渣技术措施研究[J].热力发电,1999,4:26-30.
    [43]Al-Otoom A. Y, Elliott L K, Wall T F, et al. Measurement of the Sintering Kinetics of Coal Ash[J]. Energy & Fuels,2000,14:994-1001.
    [44]Nowok J W, Benson S A, Jones M L, et al. Kalmanovitch. Sintering behaviour and strength development in various coal ashes[J]. Fuel,1990,69:1020-1028.
    [45]Jungt B J, Schobert H H. Viscous Sintering of Coal Ashes.1. Relationships of Sinter Point and Sinter Strength to Particle Size and Composition[J]. Energy & Fuels,1991,5(4):555-561.
    [46]Jung B. SINTERING CHARACTERISTICS OF LOW-RANK COAL ASHES[J]. Korean J. of Chem. Eng.,1996,13(6):633-639.
    [47]宋鸿伟,郭民臣,王欣.生物质燃烧过程中的积灰结渣特性[J].可再生能源,2003,9:29-31.
    [48]叶贻杰.生物质灰特性及其结渣机理的研究[D].华中科技大学硕士学位论文,2007.
    [49]Baxter L L. Ash deposition during biosolid and coal combustion:a mechanistic approach[J]. Biomass Bioenergy,1993,4(2):85-102.
    [50]姚冬林,金保升,肖刚.生物质流化床燃烧/气化的烧结特性与机理综述[J].锅炉技术,2009,40(4):76-80.
    [51]Ferna'ndez M J, Llorente, J E, Garci'a C. Comparing methods for predicting the sintering of biomass ash in combustion[J]. Fuel,2005,84:1893-1900.
    [52]Skrifvars B J, Backman R, Hupa M. Characterization of the sintering tendency of ten biomass ashes in FBC conditions by a laboratory test and by phase equilibrium calculations[J]. Fuel Processing Technology,1998,56:55-67.
    [53]Vamvuka D, Pitharoulis M, Alevizos G, et al. Ash effects during combustion of lignite/biomass blends in fluidized bed[J]. Renewable Energy,2009,34:2662-2671.
    [54]Arvelakis S, Folkedahl B, Frandsen F J, et al. Studying the melting behaviour of fly ash from the incineration of MSW using viscosity and heated stage XRD data[J]. Fuel,2008, 87:2269-2280.
    [55]Arvelakis S., Folkedahl B, Dam-Johansen K, et al. Studying the Melting Behavior of Coal, Biomass, and Coal/Bioma Ash Using Viscosity and Heated Stage XRD Data[J]. Energy & Fuels,2006,20:1329-1340.
    [56]Barroso J, Ball ester J, Ferrer L M, et al. Study of coal ash deposition in an entrained flow reactor:Influence of coal type, blend composition and operating conditions[J]. Fuel Processing Technology,2006,87:737-752.
    [57]Andersen K H, Frandsen F J, Hansen P F B, et al. Deposit Formation in a 150 MWe Utility PF-Boiler during Co-combustion of Coal and Straw[J]. Energy & Fuels,2000,14: 765-780.
    [58]Wee H L, Wu H W, Zhang D K. Heterogeneity of Ash Deposits Formed in a Utility Boiler during PF Combustion[J]. Energy & Fuels,2007,21:441-450.
    [59]Abreu P, Casaca C, Costa M. Ash deposition during the co-firing of bituminous coal with pine sawdust and olive stones in a laboratory furnace[J]. Fuel,2010,89:4040-4048.
    [60]Gon-i C, Helle S, Garcia X, et al. Coal blend combustion:fusibility ranking from mineral matter composition[J]. Fuel,2003,82:2087-2095.
    [61]Li J B, Shen B X, Li H X, et al. Effect of ferrum-based flux on the melting characteristics of coal ash from coal blends using the Liu-qiao No.2 Coal Mine in Wan-bei[J]. JOURNAL OF FUEL CHEMISTRY AND TECHNOLOGY,2009,37(3): 262-265.
    [62]Li F H, Huang J J, Fang Y T, et al. Formation Mechanism of Slag during Fluid-bed Gasification of Lignite[J]. Energy Fuels,2011,25:273-280.
    [63]Schobert H H, Streeter R C, Diehl E K. FLOW PROPERTIES OF LOW-RANK COAL ASH SLAGS-IMPLICATIONS FOR SLAGGING GASIFICATION. Fuel,1985,64: 1611-1617.
    [64]Liu G J, Vassilev S V, Gao L F, et al. Mineral and chemical composition and some trace element contents in coals and coal ashes from Huaibei coal field, China[J]. Energy Conversion and Management.2005,46:2001-2009.
    [65]Vassilev S V, Vassileva C G. A new approach for the classification of coal fly ashes based on their origin, composition, properties, and behaviour[J]. Fuel,2007,86:1490-1512.
    [66]Aho M, Ferrer E. Importance of coal ash composition in protecting the boiler against chlorine deposition during combustion of chlorine-rich biomass[J]. Fuel,2005,84: 201-212.
    [67]戴爱军.煤灰成分对灰熔融性影响研究[J].转化利用,2007,13:23-26.
    [68]武瑞叶.神东矿区煤灰成分和煤灰熔融性变化规律浅析[J].陕西煤炭,2003,4:36-40.
    [69]魏雅娟,李寒旭.高温弱还原性气氛下MgO的助熔机理[J].安徽理工大学学报(自然科学版),2008,12(4):74-77.
    [70]于戈文,王延铭,徐元源.弱还原性气氛条件下CaO对高灰熔点煤灰熔融性影响的研究[J].内蒙古科技大学学报,2007,26:59-62.
    [71]李慧,李寒旭,武成利.红外光谱在煤灰熔融性研究中的应用[J].煤炭科学技术,2006.34(3):24-26.
    [72]宝音.浅谈扎诺尔褐煤煤灰成份与灰熔融温度的关系[J].呼伦贝尔学院学报,1999,7(1):119-120.
    [73]毛军,徐明厚,李帆.煤中碱性矿物质对灰熔融特性影响的实验.中国工程热物理学会2002年学术会议.2002.
    [74]王泉清,曾蒲君.煤灰熔融性的研究现状与分析[J].煤炭转化,1997,4:32-36.
    [75]李宝霞,张济宇.煤灰渣熔融特性的研究进展[J].现代化工,2005,25(5):22-26.
    [76]Dawes S G, Gibbs, G. B, Highley H. The British Coal/CEGB project on pressurised Fluidised bed combustion[J]. J. Inst. Energy,1988,17:17-26.
    [77]Lolja S A, Haxhi H, Gjyli D. Ash composition of the main Albanian coals[J]. Fuel,2000. 79:207-209.
    [78]Song W J, Tang, L H, Zhu X D, et al. Effect of Coal Ash Composition on Ash Fusion Temperatures[J]. Energy & Fuels,2010.24:182-189.
    [79]Vassilev S V, Kitanob K, Takedab S, et al. Influence of mineral and chemical composition of coal ashes on their fusibility[J]. Fuel Processing Technology.1995.45 27-51.
    [80]Vassilev S V, Kitanob K. Influence of mineral and chemical composition of coal ashes on their fusibility[J]. Fuel Processing Technology,1995.4(5):27.
    [81]van Dyk J C. Understanding the influence of acidic components (Si, Al, and Ti) on ash flow temperature of South African coal sources[J]. Minerals Engineering 2006.19: 280-286.
    [82]Vuthalurua H B, Domazetis G, Wall T F, et al. Reducing fly ash deposition by pretreatment of brown coal:effect of aluminium on ash character[J]. Fuel Processing Technology,1996,46:117-132.
    [83]Alpern B, Nahuys J, Martinez L. Mineral matter in ashy and nonwashable coals-its influence on chemical properties[J]. Commun Serv Geol Portugal,1984,70(2):299-317.
    [84]Seggiani M. Empirical correlations of the ash fusion temperatures and temperature of critical viscosity for coal and biomass ashes[J]. Fuel,1999,78:1121-1125.
    [85]陈文敏,姜宁.利用煤灰成份计算我国煤灰熔融性温度[J].煤炭加工与综合利用,1995,(3):13-17.
    [86]陈文敏,姜宁.煤灰成分和煤灰熔融性的关系[J].洁净煤技术,1996,2(2):34-37.
    [87]刘新兵.我国若干煤中矿物质的研究[J].中国矿业大学学报,1994,23(4).
    [88]Vassilev S V, Vassileva C G. Occurrence, abundance and origin of minerals in coals and coal ashes[J]. Fuel Processing Technology,1996,48:85-106.
    [89]Liu G J, Qi C C, Vassilev S V, et al. Mineral and chemical composition of Yanzhou coal and coal ash (China), with volatilisation behaviour to 1000C[J]. Journal of the Energy Institute,2007,80(4):199-203.
    [90]Ruan C D, Ward C R. Quantitative X-ray powder diffraction analysis of clay minerals in Australian coals using Rietveld methods[J]. Applied Clay Science,2002,21:227- 240.
    [91]Vassilev S V, Kitanob K, Shohei Takedab, et al. Influence of mineral and chemical composition of coal ashes on their fusibility[J]. Fuel Processing Technology,1995,45: 27-51.
    [92]Yang J G, Deng F R, Zhao H, et al. Mineral conversion and microstructure change in the melting process of Shenmu coal ash[J]. Asia-Pac. J. Chem. Eng.2007,2:165-170.
    [93]Van Dyk J C, Benson S A, Laumb M L, et al. Coal and coal ash characteristics to understand mineral transformationsand slag formation[J]. Fuel,2009,88:1057-1063.
    [94]Kahramana H, Reifensteinb A P, Coin C D A. Correlation of ash behaviour in power stations using the improved ash fusion test[J]. Fuel,1999,78:1463-1471.
    [95]Gu "Ihan O" zbayog "lua, M. Evren O" zbayog "lu. A new approach for the prediction of ash fusion temperatures:A case study using Turkish lignites[J]. Fuel,2006,85:545-552.
    [96]Waanders F B, Govender A. Mineral assoeiations in coal and their transformation during gasification[J]. Hyperfine Interact,2005,166:687-691.
    [97]汤永新,芦涛,丰芸,魏雅娟,李寒旭.利用x射线衍射仪(XRD)分析高温煤灰熔融机理[J].华东理工大学学报(自然科学版),2010,36(2):198-202.
    [98]Vassilev S V, Tasco'n J M D. Methods for Characterization of Inorganic and Mineral Matter in Coal:A Critical Overview[J]. Energy & Fuels 2003,17:271-281.
    [99]Wu X J, Zhang Z X, Chen Y S, et al. Main mineral melting behavior and mineral reaction mechanism at molecular level of blended coal ash under gasification condition[J]. Fuel Processing Technology,2010,9:1591-1600.
    [100]川井隆夫,柴田次进,水曜会志.1985,30(5):325.
    [101]Li W D, Li M, Li W F, et al. Study on the ash fusion temperatures of coal and sewage sludge mixtures[J]. Fuel,2010,89:1566-1572.
    [102]李慧,李寒旭,焦发存.红外光谱分析助熔剂对煤灰熔融性的影响[J].新技术应用,2006,1:15-18.
    [103]Pronobis M. Evaluation of the influence of biomass co-combustion on boiler furnace slagging by means of fusibility correlations[J]. Biomass and Bioenergy,2005,28: 375-383.
    [104]Vuthalurua H B, Frenchb D. Ash chemistry and mineralogy of an Indonesian coal during combustion. Part 1 Drop-tube observations[J]. FUEL PROCESSING TECHNOLOGY,2008,89:595-607.
    [105]Wee H L, Wu H W, Zhang D K, et al. The effect of combustion conditions on mineral matter transformation and ash deposition in a utility boiler fired with a sub-bituminous coal. Proceedings of the Combustion Institute 30 (2005) 2005,2981-2989.
    [106]van Dyk J C, Melzer S, Sobiecki A. Mineral matter transformation during Sasol-Lurgi fixed bed dry bottom gasification-utilization of HT-XRD and FactSage modelling[J]. Minerals Engineering,2006,19:1126-1135.
    [107]Hansen P F B, Andersen K H, Wieck-Hansen K, et al. Co-firing straw and coal in a 150-MWe utility boiler:in situ measurements[J]. Fuel Processing Technology,1998, 54:207-225.
    [108]Thy P, Jenkins B M, Grundvig S, et al. Lesher. High temperature elemental losses and mineralogical changes in common biomass ashes[J]. Fuel 2006,85:783-795.
    [109]陈龙,张忠孝,乌晓江,陈国艳.用三元相图对煤灰熔点预报研究[J].电站系统工 程,2007,23(1):22-24.
    [110]张德祥,龙永华,高晋生,郑斌.煤灰中矿物的化学组成与灰熔融性的关系[J].华东理工大学学报,2003,29:590-594.
    [111]张忠孝,朴桂林,森滋胜,板谷羲纪,陈龙.配煤对降低高灰熔融性煤的三元相图分析[J].洁净煤技术,2007,13(3):64-67.
    [112]Song W J, Tang, L H, Zhu X D, et al. Prediction of Chinese Coal Ash Fusion Temperatures in Ar and H2 Atmospheres [J]. Energy & Fuels,2009,23:1990-1997.
    [113]Wu X J, Zhang Z X, Piao G L, et al. Xiang He, Yushuang Chen, Shigekatsu Mori, Nobusuke Kobayashi, Yoshinori Itaya, Behavior of Mineral Matters in Chinese Coal Ash Melting during Gasfication Reaction char-CO2/H2O[J]. Energy&Fuels 2009,23: 2420-2428.
    [114]Wu H W, Bryant G, Wall T. The effect of pressure on ash formation during pulverized coal combustion[J]. Energy & Fuels,2000,14(4):745-750.
    [115]Wall T F, Liua G S, Wua H W, et al. The effects of pressure on coal reactions during pulverised coal combustion and gasification[J]. Progress in Energy and Combustion Science,2002,28:405-433.
    [116]Al-Otoom A Y, Bryant G W, Elliott L K, et al. Experimental Options for Determining the Temperature for the Onset of Sintering of Coal Ash[J]. Energy & Fuels,2000,14(1): 227-233.
    [117]Wall T F, Creelman R A, Gupta R P, et al. Coal ash fusion temperatures--New characterization techniques, and implications for slagging and fouling[J]. Progress in Energy and Combustion Science,1998,24(4):345-353.
    [118]杜淑凤整理,资料来自英刊-燃料加工技术.灰熔融性与煤灰成渣机理的研究[J].煤质技术,1998,56:33-43.
    [119]Al-Otoom A Y, Ninomiya Y, Moghtaderi B, et al. Coal Ash Buildup on Ceramic Filters in a Hot Gas Filtration System. Energy & Fuels,2003,7:316-320.
    [120]揭涛,王勤辉,骆仲泱,李小敏,景妮结,岑可法.反应气氛对不同煤灰烧结温度影响的实验研究[J].燃料化学学报,2010.38(1):17-22.
    [121]曹战民,宋晓艳,乔芝郁.热力学模拟计算软件FactSage及其应用[J].稀有金属,2008,32(2):216-219.
    [122]Bale C W, Chartrand C, Degterov S A, et al. FactSage Thermochemical Software and Databases[J]. Calphad,2002,26(2):189-228.
    [123]俞海淼,曹欣玉,周俊虎,岑可法.高碱灰渣烧结反应的化学热力学平衡计算[J].动力工程,2008.28:128-131.
    [124]Fryda L E, Panopoulos D P, Kakaras E. Agglomeration in fluidised bed gasification of biomass[J]. Powder Technology,2008,181:307-320.
    [125]田洪鹏,朱学栋,朱子彬.应用FactSage预测CaO助熔剂对模拟灰熔融特性的影响.上海市化学化工学会2008年度学术年会.2008,《化学世界》编辑部:上海.
    [126]Henri C, Brigitte N P D. Coal science and technology[M].1990, Amsterdam:Elsevier.
    [127]Seggiani M. Empirical correlations of the ash fusion temperatures and temperature of critical viscosity for coal and biomass ashes[J]. Fuel,1999,78:1121-1125.
    [128]孙琴月,朱学栋,唐黎华,吴勇强,朱子彬,煤灰熔融温度多项式模型的偏回归函数分析[J].华东理工大学学报(自然科学版),2005,31(1):18-21.
    [129]Bryer R D, Taylor T E. An examination of the relationship between ash chemistry and ash fusion temperatures in various coal size and gravity fraction uusing Polynomial regression analysis[J]. Journal of Engineering for GasTurbines and Power,1976,98: 528.
    [130]Lolja S A, Haxhi H, Dhimitri R, et al. Correlation between ash fusion temperatures and chemical composition in Albanian coal ashes[J]. Fuel,2002,81:2257-2261.
    [131]Hupa M. Interaction of fuels in co-firing in FBC[J]. Fuel,2005,84:1312-1319.
    [132]肖军,段菁春,王华,庄新国.生物质与煤共燃研究(Ⅱ)燃烧性质分析[J].煤炭转化,2003,26(2):43-47.
    [133]刘豪,邱建荣,吴昊,董学文.生物质和煤混合燃烧污染物排放特性研究[J].环境科学学报,2002,22(4):484-488.
    [134]Pronobis M. The influence of biomass co-combustion on boiler fouling and efficiency[J]. Fuel 2006,85:474-480.
    [135]王爽,姜秀民,王宁,于立军,李祯,何培民.海藻生物质灰熔融特性分析[J].中国电机工程学报,2008,28(5):96-100.
    [136]Nielsen H P; Frandsen F J; Dam-Johansen K, et al. The implication of chlorine-association corrosion on the operation of biomass-fired boiler[J]. Progress in Energy and Combustion Science,2000,26:283-298.
    [137]Haykiri-Acma H, Yaman S, Kucukbayrak S. Effect of biomass on temperatures of sintering and initial deformation of lignite ash[J]. Fuel,2010,89:3063-3068..
    [138]Zheng Y J, Jensen P A, Jensen A D, et al. Ash transformation during co-firing coal and straw[J]. Fuel,2007,86:1008-1020.
    [139]Vassilev S V, Baxter D, Andersen L K, et al. An overview of the chemical composition of biomass[J]. Fuel,2010,89:913-933..
    [140]Kupka T, Mancini M, Irmer M, et al. Investigation of ash deposit formation during co-firing of coal with sewage sludge, saw-dust and refuse derived fuel[J]. Fuel,2008,87: 2824-2837.
    [141]Vamvuka D, Kakaras E. Ash properties and environmental impact of various biomass and coal fuels and their blends[J]. Fuel Processing Technology,2011,92:570-581.
    [142]Paula Teixeira, Lopes H, Gulyurtlu I, et al. Evaluation of slagging and fouling tendency during biomass co-firing with coal in a fluidized bed[J]. Biomass and bioenergy,2012, 39:192-203.
    [143]Zuhal G, GogebakanY, Selcuk N, Ekrem Selcuk.et al Investigation of ash deposition in a pilot-scale fluidized bed combustor co-firing biomass with lignite[J]. Bioresource Technology,2009,100:1033-1036.
    [144]李帆,邱建荣.煤燃烧过程矿物质行为研究.工程热物理学报,1999,2.
    [145]Bale C W, Thomopson W T. F*A*C*T 2.1-User's Manual.1997, Canada:Ecole Polytechnique de Montreat/Royal Military College.
    [146]生物质燃烧与混燃研讨会资料.欧盟框架6计划中欧合作项目CH-EU-BIO.2008,03.
    [147]舒朝晖.煤及地低温灰的热重试验研究[J].中国电机工程学报,2007,5:46-50.
    [148]Mysen, B.O. THE STRUCTURE OF SILICATE MELTS[J]. Annual Reviews Earth Planet. Science,1983,11:75-97.
    [149]Zhang Z X, Wu X J, Zhou T, et al. The effect of iron-bearing mineral melting behavior on ash deposition during coal combustion. Proceedings of the Combustion Institute 33, 2011.
    [150]Vassileva C G, Vassilev S V. Behaviour of inorganic matter during heating of Bulgarian coals 2. Subbituminous and bituminous coals[J]. Fuel Process Technol.,2006,87: 1095-116.
    [151]岑可法,樊建人,池作和等.锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算[M].北京:科学出版社.1994.2-10.
    [152]LI H X, Qiu X S, TANG Y X. Ash melting behavior by Fourier transform infrared spectroscopy[J]. J China-Univ Mining & Technol,2008,18:0245-0249.
    [153]Schobert H H, Witthoeft C. The petrochemistry of coal ash slags Part 3. Behavior of the rosebud slag-limestone system[J]. Fuel Processing Technology,1981,5(1-2): 157-164.
    [154]Gupta S, Dubikova M, French D, et al. Characterization of the origin and distribution of the minerals and phases in metallurgical cokes[J]. Energy Fuels,2007,21:303-313.
    [155]van Dyk JC, Melzer S, Sobiecki A. Mineral matter transformation during Sasol-Lurgi fixed bed dry bottom gasification-utilization of HT-XRD and FactSage modelling [J]. Minerals Engineering,2006,19:1126-1135.
    [156]Tulyaganov D U, Ribeiro M J, Labrincha J A. Development of glass-ceramics by sintering and crystallization of fine powders of calcium-magnesium-aluminosilicate glass[J]. Ceramics International,2002,28:515-520.
    [157]Gupta S K, Gupta R P, Bryant G W, et al. The effect of potassium on the fusibility of coal ashes with high silica and alumina levels[J]. Fuel.1998,77(11):1195-1201.
    [158]Vamvuka D, Kakaras E. Ash properties and environmental impact of various biomass and coal fuels and their blends. Fuel Processing Technology,2011,92:570-581.
    [159]Raask E. Mineral impurities in coal combustion; behaviour, problems and remedial measures.1985, Bristol, PA:Hemisphere Publishing.
    [160]Matsuoka K, Suzuki Y, Eylands K E, Benson S A, Tomita A. CCSEM study of ash forming reactions during lignite gasification. Fuel,2006,85:2371-2376.
    [161]Vuthaluru H B, Zhang D k. Effect of Ca-and Mg-bearing minerals on particle agglomeration defluidisation during fluidised-bed combustion of a South Australian lignite. Fuel Processing Technology,2001,69:13-27.
    [162]MONSON C R, GERMANE G J, BLACKDAM A U, et al. Char Oxidation At Elevated Pressures [J]. COMBUSTIONAND FLAME,1995,100:669-683.
    [163]Liua G S, H.R.R., Lucas J A, et al. Modelling of a pressurised entrained flow coal gasifier:the effect of reaction kinetics and char structure[J]. Fuel 2000,79:1767-1779.
    [164]Pronobis M. Evaluation of the influence of biomass co-combustion on Boiler furnace slagging by means of fusibility correlations[J]. Biomass and Bioenergy,28:375-383.
    [165]Vassileva C G, Vassilev S V. Behaviour of inorganic matter during heating of Bulgarian coals 2. ubbituminous and bituminous coals[J]. Fuel Processing Technology 2006,87: 095-1116.
    [166]Bryant G W, Lucas J A, Gupta S K, et al. Use of Thermomechanical Analysis To Quantify the Flux Additions Necessary for Slag Flow in Slagging Gasifiers Fired with Coal[J]. Energy & Fuels,1998,12:257-26.
    [167]Qiu J R, Li F, Zheng Y, et al. The influences of mineral behaviour on blended coal ash fusion characteristics[J]. Fuel,1999,78:963-969.
    [168]舒红宁.钙的多元组合对灰渣熔融特性的影响及数值模拟[D].浙江大学硕士论文.2006.
    [169]Ninomiya Y, Sato A. Ash melting behavior under coal gasification conditions[J]. Energy Conversion and Management,1997,38:1405-1412.
    [170]Watt J D, Fereday F. The flow Properties of slags formed from the ashes of British coals. Journal of the Institllte[J]. Fuel,1969,42:131-134.
    [171]McLennan A R, Bryant G W, Stanmore B R, et al. Ash Formation Mechanisms during pf Combustion in Reducing Conditions[J]. Energy & Fuels,2000,14:150-159.
    [172]Song W J, Tang, L H, Zhu X D, et al. Fusibility and flow properties of coal ash and slag[J]. Fuel,2009,88:297-304.
    [173]Ding L H, Yang H, Rahimi P, Omotoso O, et al. Solid transformation of zeolite NaA to sodalite[J]. Microporous and Mesoporous Materials,2010,130:303-308.
    [174]Patterson J H, Hurst H.J.Ash and slag qualities of Australian bituminous coals for use in slagging gasifiers. Fuel,2000,79(3):1671-1678.
    [175]STEIN D J, STEBBINS J F, CARMICHAEL I S E. Density of Molten Sodium Aluminosilicates[J]. J. Am. Ceram. SOC.,1986,69 (5):396-399.
    [176]DINGWELL D B, BREARLEY M, DICKINSON,J E. Melt densities in the Na2O-FeO-Fe2O3-SiO2 system and the partial molar volume of tetrahedrally-coordinated ferric iron in silicate melts[J]. Geochimica et Cosmochimica Ada.,1988,52:2467-2475.
    [177]Liu G, Vassilev S V, Gao L, et al. Mineral and chemical composition and some trace element contents in coals and coal ashes from Huaibei coal field, China. Energy Conversion and Management,2005,46:2001-2009.
    [178]MYSEN B O, VIRGO D. Viscositv and structure of iron-and aluminum-bearing calcium silicate melts at 1 atm[J]. American Mircralogist,1985,70:487-498.
    [179]MYSEN B O, SEIFERT F, VIRGO D. Structure and redox equilibria of iron-bearing silicate melts[J]. American Mineralogist,1980,65:867-884.
    [180]李帆,邱建荣,郑楚光.煤中矿物质对灰熔融温度影响的三元相图分析[J].华中理工大学学报,1996,24:96-99.
    [181]刘文胜,赵虹,杨建国,翁善勇,周永刚,冯国华,凌柏林,郑航[J].三元相图在配煤结渣特性研究中的应用.热力发电,2009,38(10):5-10.
    [182]Levin E M, Robbins C R, Mcmurdie H F. Phase Diagrams for Ceramists.1964, Washington, D.C.:The American Ceramic Society.219.
    [183]Shahid K A, Glasser F P. Phys. Chem. Glasses,1971,12(2):50.
    [184]Levin E M, Robbins C R, Mcmurdie H F. Phase Diagrams for Ceramists[M].1964, Washington, D.C. The American Ceramic Society.
    [185]Jie Li, Du M F, Zhang Z X,et al. Selection of Fluxing Agent for Coal Ash and Investigation of Fusion Mechanism:A First-Principles Study[J]. Energy & Fuels,2009, 23:704-709.
    [186]Osborn E F, Muan A. Phase Equilibrium Diagram of Oxide Systems, Plate 5[M].1960, New York:American Ceramic Society and Edward Orton, Jr. Ceramic Foundation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700