高效铝土矿浮选捕收剂的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文从浮选药剂分子设计的角度出发,运用量子化学方法,结合表面张力、表面电性、红外光谱及单矿物浮选,对铝土矿主要组成矿物及其表面、常用浮选药剂及表面—药剂相互作用体系进行详细研究,围绕捕收剂选择性、硬水适应性和低温浮选等性能的改善进行筛选和设计,开发出了高效、实用的铝土矿浮选脱硅捕收剂KL,实现了KL捕收剂的工业化生产,并在“铝土矿选矿—拜尔法生产氧化铝”国家高新技术示范工程项目中得到了工业应用。主要研究内容与结果如下:
     1.铝土矿主要组成矿物表面电子结构差异
     采用基于密度泛函-赝势(DFT-pseudopotential)的量子化学方法,对铝土矿主要组成矿物表面电子结构进行模拟。计算结果表明,一水硬铝石(010)表面和高岭石(001)表面的电子结构有明显的差异,一水硬铝石(010)表面的前线分子轨道LUMO主要由表面铝原子和氢原子共同构成,而高岭石(001)表面的LUMO主要由表面氢原子构成,铝原子的贡献极小。所以,阴离子捕收剂(如脂肪酸)与一水硬铝石表面铝原子作用而可能产生化学吸附,而在高岭石表面只能与氢原子作用。
     量子化学计算结果也表明,一水硬铝石(010)表面的Al原子并没有直接暴露在表层,发生反应时存在一定立体位阻,所以阴离子捕收剂与一水硬铝石(010)表面铝原子较难发生化学反应,而可能与表面氢原子作用,如通过氢键方式产生特性吸附。
     2.铝土矿主要组成矿物与捕收剂的相互作用
     采用单矿物浮选、动电位测试、红外光谱等方法对铝土矿主要组成矿务与捕收剂的相互作用进行了较为详细的研究。结果表明,阴、阳离子捕收剂在矿物表面均发生明显的物理吸附,而且一水硬铝石表面可能产生了氢键吸附,但没有观测到表示化学吸附的特征峰位移;另外,运用半经验分子轨道理论量子化学方法对矿物表面-捕收剂相互作用体系进行模拟,计算结果显示,阴离子捕收剂氧原子与一水硬铝石表面铝原子能产生化学作用而吸附,但需要克服较高的能垒,而与高岭石表面则不能产生化学作用;捕收剂氧原子与矿物表面氢原子有可能以氢键方式相互作用,这与试验研究结果基本相符。
     3.常用阴离子捕收剂的结构性能关系
     采用量子化学从头算对常用阴离子捕收剂极性基的化学反应活性进行计算,结果显示:当捕收剂以分子形式存在时,化学反应活性顺序为:烷基羧酸>烷基羟肟酸>烷基砷酸>烷基瞵酸>烷基磺酸>烷基硫酸;当捕收剂由分子变成离子后,化学反应活性顺序变为:烷基羟肟酸>烷基砷酸>烷基瞵酸≈烷基羧酸>烷基磺酸>烷基硫酸。这与单矿物浮选试验中油酸和苯甲羟肟酸浮选性能较好的结果一致。
     考察了捕收剂非极性基结构对极性基反应活性、捕收剂疏水能力及浮选性能的影响,结果表明,除了提供必要的疏水能力之外,非极性基种类和碳链长度对极性基的反应活性均有一定影响,但是对浮选捕收能力的影响不明显;羧酸根离子的化学反应活性随着不饱和度的增加而逐渐增强,同时在水中的溶解分散能力增加,所以非极性基中存在双键是油酸具有良好浮选捕收能力的主要原因之一。
     4.羧酸类捕收剂浮选性能的改善
     浮选试验表明,药剂改性和组合用药两种方式都能改善羧酸类捕收剂的浮选性能。氯化改性能大大拓宽羧酸类捕收剂的浮选pH范围,磺化改性能获得更高的浮选回收率,改性羧酸仍然没有克服药剂用量较大的缺点;带有聚氧乙烯官能团的非离子表面活性剂Tween及Triton系列,对低浓度油酸有着良好的浮选增效效果,少量添加便能明显提高一水硬铝石的浮选回收率。
     5.组合捕收剂的浮选性能和作用机理
     以油酸为捕收剂主要组分,添加一些表面活性剂进行组合(称为组合捕收剂)。单矿物浮选试验表明,组合捕收剂比油酸具有更好的抗硬水能力和较好的低温浮选性能;人工混合矿浮选试验中,组合捕收剂能在保证精矿铝硅比的情况下,获得比油酸捕收剂更好的精矿产率和Al_2O_3回收率;
     根据表面张力测试结果、捕收剂与矿物作用前后的红外光谱,对组合捕收剂的作用机理做了初步探讨。结果表明,表面活性剂OL4显著降低了油酸钠的水解浓度和CMC,相当于提高了油酸钠的有效作用浓度,进而由物理吸附或氢键吸附转化为化学吸附,使得油酸的浮选性能提高;而OL2和OL3对油酸的浮选增效作用可能与其本身的浮选能力有一定关系,可能是通过互补吸附和共吸附的方式提高药效。
     6.KL捕收剂的工业生产与应用
     根据理论和试验研究结果,设计了一种高效铝土矿浮选捕收剂KL,按照中铝中州分公司第一条选矿拜尔法氧化铝生产线设计规模,完成了捕收剂KL工业生产的工艺流程设计、设备选型、安装调试,制定了严格的生产操作规程,建立了原材料、中间产品及成品的一系列质量控制标准,生产出了合格的产品,各项指标均达到质量标准的要求。
     实际矿石小型浮选试验表明,捕收剂KL不仅具有良好的铝土矿浮选性能,而且对生产现场的水质条件具有良好的适应性,并且拥有较好的稳定性,可以保证工业生产稳定运行。
     捕收剂KL成功地应用于世界上第一条铝土矿选矿脱硅工业生产线,经过近7个月的连续运行,共处理铝硅比4.5~6.5的原矿25万吨,获得铝硅比10.5~12.0的选精矿20多万吨,尾矿铝硅比为1.4~1.9,Al_2O_3回收率为80%~88%,达到了设计指标,为解决目前面临的铝土矿资源危机,提供了一个有效的途径。
Bauxite is the major raw material for manufacturing alumina. In China, diaspore type bauxite is the dominating one, which bearing higher aluminium, higher silicon and lower iron. The lower molar ratio of aluminium to silicon (A/S) in bauxite results in the higher cost of alumina industry, in order to reduce energy consumption and production cost, it is necessary to heighten the A/S of bauxite by desilica before alumina metallurgy. Ore dressing-Bayer process method is proved to be a efficient approach for utilization of the lower A/S bauxite, and application of high efficiency flotation collector is one of the key technique.
     From the viewpoint of molecular design, electronic structure of mineral surface, flotation collector and their interaction mechanism were detailly studied by quantum chemistry methods, combining with determination of surface tension, surface charge, infrared spectrum and flotation tests. Screening and designing of collector for bauxite flotation was carried out in order to improve the flotation selectivity and recovery,. An efficient and practical collector, KL, was developed, industrial manufacture and application of KL in 'production of alumina by ore dressing-Bayer process' were achieved. Main elements and conclusions are as follows:
     1. Surface electronic structure difference of diaspore and kaolinite
     Surface electronic structure of diaspore and kaolinite had been simulated by quantum chemistry method based on DFT-pseudopotential. Calculation results indicate that Highest Occupied Molecular Orbital (HOMO) of diaspore (010) surface is mostly composed of 2p orbital of surface O atoms, and Lowest Unoccupied Molecular Orbital (LUMO) is composed of 2p orbital of surface A1 atoms and 1s orbital of surface H atoms. It is concluded that anionic collectors should interact with surface O atoms and anionic collectors should interact with surface Al atomse or H atoms. On the other hand, Al atom isn't exposured on the top layer of diaspore (010) surface directly, so chemical reaction between anionic collectors and surface Al atom is difficult to occur, it is tend to generate specific adsorption between collectors and surface H atom through hydrogen bond; Calculation results also show that HOMO of kaolinite (001) surface is mostly constituted by 2p orbital of surface H atom, LUMO is mostly constituted by ls orbital of surface H atom, so anionic collectors are favored to adsorb to kaolinite surface at H atom site.
     2. Interaction of mineral surfaces and flotation collectors
     Interactions between minerals (diaspore or kaolinit) surface and flotation collectors had been detailedly studied by pure mineral flotation, electrokinetics and IR spectrum et al. Experimental results indicate that anionic/cationic flotation collectors adsorb to mineral surfaces with distinct physical interaction, and hydrogen bonding interaction should be existed between collectors and diaspore surface, but no evidence of chemical adsorption detected.
     Quantum chemistry simulation of interaction of mineral surface and flotation collector had been investigated by Semiempirical molecular orbital theory. Computational results reveal that O atom of anionic collector can chemically react with Al atom on diaspore surface, but the reaction process requires to overcome a higher energy barrage, and the hydrogen bond interaction between collector O atom and mineral surface H atom is possible as experimental results, but chemical interaction between collector and kaolinite is prohibited.
     3. Structure and performance relationship of usual anion collectors
     Chemical reaction activity of anionic collector polar group had been computed by using ab initio quantum chemistry theory. For molecular form of common collectors, the chemical reaction activity order is: carboxylic acid>hydroxamic acid>alkylarsenic acid>alkylphosphonic acid>alkylsulfonic acid>alkylsulfuric acid; for anioic form, the chemical reaction activity order is changed: Hydroxamic acid>alkylarsenic acid>alkylphosphonic acid≈carboxylic acid>alkylsulfonic acid>alkylsulfuric acid. The calculated chemical reactin order is in agreement with the flotation experimental results.
     The influence of nonpolar group structure on polar group chemical reaction activity, hydrophobicity and flotation performance also investigated. Besides providing necessary hydrophobicity, species and cabon chain length of nonpolar group also influence the chemical reaction activity of polar group in some degree, but its effect on flotation ability is unconspicuous. The chemical reaction activity of carboxylate anion is enhanced along with the unsaturated degree increasing, at the same time, double bond can enhance the solubility of collector in water, so double bond in nonpolar group is one of the major element of the excellent flotation ability of oleic acid..
     4. Mehtods of flotaion performance improvement,of oleic acid
     Flotation test results show that reagent modification and reagent combination both can improve the flotation performance of carboxylic acid type collector. Chlorination modification can greatly extend the flotation pH range, sulfonation modification can obtain higher flotation recovery, however, reagent modification cannot decrease the collector consumption; Nonionic surfactants with PEO functional[ group, such as Tween and Triton series, are flotation synergists of oleic acid, which can remarkably improve the flotation recovery of diaspore with few amount added to oleic acid.
     5. Design, performance and mechanism of combinational collector
     Based on a great deal of floitation tests, a high efficiency combinational collector, oleic acid(OL 1) as major element and OL2, OL3 and OL4 as synergists, had been developed, combinational collector exhibits better performance of anti-hard water and low temperature flotation than OL1 in pure mineral flotation tests, and gives higher concentrate yield and A12O3 recovery in artificial mixed minerals flotation tests. Flotation results of nature minerals in small-scale tests indicate that combinational collector has approved media flexibility and stability as well as efficient flotation performance, it can guarantee the stable working of industrial flotation process.
     Flotation mechanism of combinational collector had been studied by surface tension mensuration and IR spectrum before and after interaction of collector and minerals. Additive OL4 decrease the hydrolysis concentration and CMC of sodium oleate distinctly, which increase the efficiency concentration of sodium oleate in water, transform the physical or hydrogen bond adsorption into chemical adsoption, and improve the flotation performance of oleic acid; OL2 and OL3 also have a little flotation ability, it is supposed that the effct of enhanceing flotation performance of oleic acid result from complement adsorption or co-adsorption with the major collector.
     6. Industrial manufacture and application of collector KL
     Industrial production process of flotation desilica collector KL for bauxite had been designed developed and according to the design scale of dressing-Bayer process, the first alumina product line in world projected by Zhongzhou branch china aluminum co.,ltd. Collector KL had been successfully applied in the industrial product line of bauxite flotation desilica, during about 7 months of continuous production, 250000 tons of bauxite raw mineral with A/S of 4.5~6.5 had been disposed, it yield more then 200000 tons of flotation concentrates with A/S of 10.5~12.0, the A/S of tailings range 1.4 to 1.9, recovery of A12O3 is 80~88%.
引文
[1] 刘中凡.世界铝土矿资源综述[J].轻金属,2001.(5):7-12.
    [2] 谢珉.论铝土矿选矿的必要性和可行性[J].国外金属矿选矿,1991.(7):69-76.
    [3] 钮因健.对我国铝土矿资源和氧化铝工业发展的认识[J].轻金属,2003.(3):3-8.
    [4] 程汉林.烧结法氧化铝生产的节能与降耗——低品位铝土矿焙烧预脱硅研究[D].长沙:中南大学.1995.
    [5] 刘永康.一水硬铝石型铝土矿化学选矿脱硅中焙烧过程的研究[D].长沙:中南大学.1997.
    [6] Grondeva,V.I.铝土矿的微生物选矿[J].国外金属矿选矿,1989.(11):9-11.
    [7] 索洛日,细菌在矿物工程中的应用[J].国外金属矿选矿,1991.(5):1-10.
    [8] 冯其明,刘广义,卢毅屏.九十年代铝土矿选矿除杂研究现状与展望[J].轻金属,1998.(4):9-13.
    [9] 刘丕旺,张晓风.高硅铝土矿脱硅选矿的现状和前景[J].轻金属,1998.(6):9-12.
    [10] 姜涛,邱冠周.中低品位铝土矿选矿预脱硅的新进展[J].矿冶工程,1999.19(2):3-6.
    [11] 黄国智,葛长礼.铝土矿脱硅方法及其研究的进展[J].轻金属,1999.(5):16-20.
    [12] 方启学,黄国智.我国铝土矿资源特征及其选矿脱硅技术[J].国外金属矿选矿,2000.37(5):11-16.
    [13] Antti, B. M.,Forssberg, E. Pulp chemistry in calcite flotation. Modelling of oleate adsorption using theoretical equilibrium calculations[J]. Miner. Eng., 1989. 2(1):93-109.
    [14] Antti, B. M.,Forssberg, E. Pulp chemistry in industrial mineral flotation. Studies of surface complex on calcite and apatite surfaces using FTIR spectroscopy[J]. Miner. Eng., 1989.2(2):217-227.
    [15] Hanumantha Rao, K.,Forssberg, K. S. E. Mechanism of fatty acid adsorption in salt-type mineral flotation[J]. Miner. Eng., 1991.4(7-11):879-890.
    [16] Chudacek, M. W.,Fichera, M. A. The relationship between the test-tube flotability test and batch cell flotation[J]. Miner. Eng., 1991.4(1):25-35.
    [17] Wang, Q.,Heiskanen, K. Selective hydrophobic flocculation in apatite-hematite system by sodium oleate[J]. Miner. Eng., 1992.5(3-5):493-501.
    [18] Yehia, A., Miller, J. D.,Ateya, B. G. Analysis of the adsorption behaviour of oleate on some synthetic apatites[J]. Miner. Eng., 1993.6(1):79-86.
    [19] Pavez, O.,Peres, A. E. C. Effect of sodium metasilicate and sodium sulphide on the floatability of monazite-zircon-rutile with oleate and hydroxamates[J]. Miner. Eng., 1993.6(1):69-78.
    [20] Rodrigues, A. J.,Brandao, P. R. G. The influence of crystal chemistry properties on the floatability of apatites with sodium oleate[J]. Minerals Engineering, 1993. 6(6):643-653.
    [21] Valdiviezo, E.,Oliveira, J. F. Synergism in aqueous solutions of surfactant mixtures and its effect on the hydrophobicity of mineral surfaces[J]. Miner. Eng., 1993.6(6):655-661.
    [22] Pavez, O., Brandao, P. R. G.,Peres, A. E. C. Adsorption of oleate and octyl-hydroxamate on to rare-earths minerals[J]. Miner. Eng., 1996.9(3):357-366.
    [23] de Castro, F. H. B., de Hoces, M. C.,Borrego, A. G. The effect of pH modifier on the flotation of celestite with sodium oleate and sodium metasilicate[J]. Miner. Eng., 1998.11(10):989-992.
    [24] Liu, Q.,Peng, Y. The development of a composite collector for the flotation of rutile[J]. Miner. Eng., 1999.12(12): 1419-1430.
    [25] Sis, H.,Chander, S. Adsorption and contact angle of single and binary mixtures of surfactants on apatite[J]. Miner. Eng., 2003.16(9):839-848.
    [26] Sis, H.,Chander, S. Improving froth characteristics and flotation recovery of phosphate ores with nonionic surfactants[J]. Miner. Eng., 2003.16(7):587-595.
    [27] Orhan, E. C.,Bayraktar, I. Amine-oleate interactions in feldspar flotation[J]. Miner. Eng., 2005. In Press, Corrected Proof.
    [28] 朱玉霜,朱建光.浮选药剂的化学原理(修订版)[M].长沙:中南工业大学出版社.1996.
    [29] 陈让怀.羧酸类捕收剂改性研究进展[J].矿冶工程,1994.14(1):34-38.
    [30] Glebosky,A.V.苏联硫化矿和非硫化矿新浮选药剂[J].国外金属矿选矿, 1989.(5):1-6.
    [31] Wang, S. S., L. Eugene, S. J.,Huliganga, F. E. Process for froth flotation of non-sulfide minerals[P].U.S.A, 1980.
    [32] 翟芝明,阮世镳.新型高效捕收剂EM—2及其在包头矿石浮选中的应用[J].矿冶工程,1992.12(1):55-57.
    [33] 晨杨.用新的阴离子捕收剂浮选锡石[J].国外金属矿选矿,1976.(11-12):71-72.
    [34] 王景伟.氟碳铈矿及伴生矿物浮选行为的研究[J].稀土,1991.12(2):33-37.
    [35] 林祥辉,靳芳琳,路平,等.新型铁矿捕收剂的研制及应用[J].矿冶工程, 1986.6(4):35-38.
    [36] 朱建光.浮选药剂技术讲座——第一讲羧酸捕收剂[J].金属矿山,1988.(5):63-67.
    [37] 见百熙.浮选药剂[M].北京:冶金工业出版社.1981.
    [38] 王淀佐.浮选药剂作用原理及应用[M].北京:冶金工业出版社.1994.
    [39] Yamin, L. J., Ponce, C. A., Estrada, M. R., et. al.. Protonation and deprotonation of hydroxamic acids. An MO ab initio study[J]. Journal of Molecular Structure: THEOCHEM, 1996. 360(1-3): 109-117.
    [40] Wu, D. H.,Ho, J. J. Ab initio study of intramolecular proton transfer in formohydroxamic acid[J]. J. Phys. Chem. A, 1998. 102(20):3582-3586.
    [41] Turi, L., Dannenberg, J. J., Rama, J., et. al.. Molecular-Orbital Study of the Structures of Hydroxamic Acids[J]. J. Phys. Chem., 1992.96(9):3709-3712.
    [42] Surova, T. V.,Enyashin, A. N. Tautomerism and acidic properties of N-unsubstituted benzohydroxamic acids: Semiempirical quantum chemical estimation[J]. J. Struct. Chem., 2003.44(2):297-300.
    [43] Stinchcomb, D. M.,Pranata, J. Conformational and tautomeric equilibria of formohydroxamic acid in the gas phase and in aqueous solution[J]. Theochem-Journal of Molecular Structure, 1996.370(1):25-32.
    [44] Sant'Anna, C. M. R.,do Souza, V. P. A semiempirical study on hydroxamic acids: Formohydroxamic acid and derivatives of the allelochemical DIMBOA[J]. Quim. Nova, 2001.24(5):583-587.
    [45] Remko, M., Mach, P., Schleyer, P. V., et. al.. Abinitio Study of Formohydroxamic Acid Isomers, Their Anions and Protonated Forms[J]. Theochem-Journal of Molecular Structure, 1993.98:139-150.
    [46] Munoz-Caro, C., Nino, A., Senent, M. L., et. al.. Modeling of protonation processes in acetohydroxamic acid[J]. J. Org. Chem., 2000.65(2):405-410.
    [47] Kolasa, T. The conformational behaviour of hydroxamic acids[J]. Tetrahedron, 1983.39(10):1753-1754.
    [48] Fitzpatrick, N. J.,Mageswaran, R. Theoretical study of hydroxamic acids[J]. Polyhedron, 1989.8(18):2255-2263.
    [49] Denis, P.,Ventura, O. N. Hydroxamic chelates of boric acid, a density functional study[J]. Journal of Molecular Structure: THEOCHEM, 2001.537(1-3): 173-180.
    [50] 范小英,戴子林.异羟肟酸的合成方法[J].广东有色金属学报,1997.7(2):100-105.
    [51] 高颖剑,林江顺.国内外羟肟酸的合成及其在浮选中的应用[J].国外金属矿选矿,1997.34(6):54-56.
    [52] 曾伟,曾贵玉,秦圣英.异羟肟酸的合成与应用研究新进展[J].有机化学, 2003.23(11):1213-1218.
    [53] 车丽萍,余永富,庞金兴,等.羟肟酸类捕收剂的合成、性质及在稀土矿物浮选中的作用机理[J].稀土,2004.25(6):74-79.
    [54] Bergmann, F.,Wurzel, M. The formation of hydroxamic acids from esters under the catalytic influence of liver esterase[J]. Biochimica et Biophysica Acta, 1953. 12(1-2):412-415.
    [55] Mizukami, S.,Nagata, K. Metal complexes of hydroxamic acid analogs[J]. Coordination Chemistry Reviews, 1968.3(2):267-278.
    [56] Fouche, K. F., le Roux, H. J.,Phillips, F. Complex formation of Zr(Ⅳ) and Hf(Ⅳ) with hydroxamic acids in acidic solutions[J]. Journal of Inorganic and Nuclear Chemistry, 1970.32(6): 1949-1962.
    [57] Chatterjee, B. Donor properties of hydroxamic acids[J]. Coordination Chemistry Reviews, 1978.26(3):281-303.
    [58] Hiriart, M. V., Corcuera, L. J., Andrade, C., et. al.. Copper(Ⅱ) complexes of a hydroxamic acid from maize[J]. Phytochemistry, 1985.24(9): 1919-1922.
    [59] Dessi, A., Micera, G., Sanna, D., et. al.. Vanadium(Ⅳ) and oxovanadium(Ⅳ) complexes of hydroxamic acids and related ligands[J]. Journal of Inorganic Biochemistry, 1992.48(4):279-287.
    [60] May, I., Taylor, R. J., Denniss, I.S., et. al.. Neptunium(Ⅳ) and uranium(Ⅵ) complexation by hydroxamic acids[J]. Journal of Alloys and Compounds, 1998. 275-277:769-772.
    [61] Farkas, E., Enyedy, E. A., Micera, G., et. al.. Coordination modes of hydroxamic acids in copper(Ⅱ), nickel(Ⅱ) and zinc(Ⅱ) mixed-ligand complexes in aqueous solution[J]. Polyhedron, 2000. 19(14): 1727-1736.
    [62] 纳加雷,D.R.非硫化矿浮选综述[J].国外金属矿选矿,2002.39(4):4-8.
    [63] Ren, J., Lu, S., Song, S., et. al.. A new collector for rare earth mineral flotation[J]. Miner. Eng., 1997. 10(12): 1395-1404.
    [64] Yoon, R. H., Nagaraj, D. R., Wang, S.S., et. al.. Benefication of kaolin clay by froth flotation using hydroxamate collectors[J]. Miner. Eng., 1992.5(3-5):457-467.
    [65] Liu, Q.,Friedlaender, F. J. Fine particle processing by magnetic carrier methods[J]. Miner. Eng., 1994. 7(4):449-463.
    [66] Pavez, O.,Peres, A. E. C. Technical note bench scale flotation of a brazilian monazite ore[J]. Miner. Eng., 1994. 7(12): 1561-1564.
    [67] Assis, S. M., Montenegro, L. C. M.,Peres, A. E. C. Utilisation of hydroxamates in minerals froth flotation[J]. Miner. Eng., 1996.9(1):103-114.
    [68] Pereira, C. A.,Peres, A. E. C. Flotation concentration of a xenotime pre-concentrate[J]. Miner. Eng., 1997. 10(11): 1291-1295.
    [69] Hu, Y., Wang, D.,Xu, Z. A study of interactions and flotation of wolframite with octyl hydroxamate[J]. Miner. Eng., 1997. 10(6):623-633.
    [70] Lee, J. S., Nagaraj, D. R.,Coe, J. E. Practical aspects of oxide copper recovery with alkyl hydroxamates[J]. Miner. Eng., 1998. 11(10):929-939.
    [71] Celik, M. S., Can, I.,Eren, R. H. Removal of titanium impurities from feldspar ores by new flotation collectors[J]. Minerals Engineering, 1998. 11(12):1201-1208.
    [72] Quast, K. B. A review of hematite flotation using 12-carbon chain collectors[J]. Miner. Eng., 2000. 13(13):1361-1376.
    [73] 王淀佐,林强,蒋玉仁.选矿与冶金药剂分子设计[M].长沙:中南工业大学出版社.1996.
    [74] 王淀佐.矿物浮选与浮选剂[M].长沙:中南工业大学出版社.1986.
    [75] 吴力明,幸伟中,钱鑫.捕收剂与锐钛矿表面的量子化学研究[J].中国矿业, 1997.33(5):52-57.
    [76] 邵绪新,廖沐真.量子化学的基本理论及其在矿物工程中的应用[J].矿冶工程,1991.11(1):67-70.
    [77] 王淀佐,龙翔云.硫化矿的氧化与浮选机理的量子力学研究[J].中国有色金属学报,1991.1(1):15-23.
    [78] 孙水裕,王淀佐.无捕收剂浮选的电化学及量子化学研究[J].矿冶工程,1993.13(2):22-26.
    [79] 丁敦煌,李天瑞.硫化矿物的表面结构和表面电荷与无捕收剂浮选[J].中国有色金属学报,1994.4(3):36-40.
    [80] 陈建华,冯其明.浮选药剂的量子化学研究[J].金属矿山,1998.(10):16-20.
    [81] 陈建华,冯其明.浮选药剂的量子化学研究[J].有色金属,1999.51(1):18-21.
    [82] 蒋玉仁,薛玉兰.浮选药剂性能的能量判据计算[J].中南工业大学学报,1999.30(5):481-484.
    [83] 杨刚,龙翔云.巯基类浮选药剂电子结构及其与金属离子作用的量子化学研究[J].高等学校化学学报,2001.22(1):86-90.
    [84] 杨刚,张爱琴,等.黄药类浮选药剂电子结构与浮选机理的量子化学研究[J].常熟高专学报,2001.15(2):43-46.
    [85] 夏启斌,李忠,邱显扬,等.浮选剂苯甲羟肟酸的量子化学研究[J].矿冶工程,2004.24(1):30-33.
    [86] 杨刚,杨高文,徐桦,等.巯基苯并类浮选剂的浮选作用机理及其分子设计[J].化学学报,2004.62(2):153-159.
    [87] 张剑锋,胡岳华,徐兢,等.苯氧乙酸类浮选抑制剂性能的量子化学计算[J].中国有色金属学报,2004.14(8):1437-1441.
    [88] Takahashi, K.,Wakamatsu, T. The role of amino acid on the xanthate adsorption at the water-mineral interface[J]. International Journal of Mineral Processing, 1984. 12(1-3):127-143.
    [89] Paulus, E. F., Siam, K., Wolinski, K., et. al.. Crystal structures of 4,4'-dimethoxydithiophene and comparison with quantum mechanical calculations[J]. J. Mol. Struct., 1989. 196:171-179.
    [90] Numata, Y., Takahashi, K., Liang, R., et. al.. Adsorption of 2-mercaptobenzothiazole onto pyrite[J]. International Journal of Mineral Processing, 1998.53(1-2):75-86.
    [91] O'Dea, A. R., Smart, R. S. C.,Gerson, A. R. Molecular modelling of the adsorption of aromatic and aromatic sulfonate molecules from aqueous soltutions onto graphite[J]. Carbon, 1999.37(7): 1133-1142.
    [92] Pradip, Rai, B., Rao, T.K., et. al.. Molecular Modeling of Interactions of Alkyl Hydroxamates with Calcium Minerals[J]. J. Colloid Interface Sci., 2002. 256(1):106-113.
    [93] Porento, M.,Hirva, P. A theoretical study on the interaction of sulfhydryl surfactants with a covellite (001) surface[J]. Surf. Sci., 2004. 555(1-31):75-82.
    [94] Hu, Y., Wei, S., Hao, J., et. al.. The anomalous behavior of kaolinite flotation with dodecyl amine collector as explained from crystal structure considerations[J]. International Journal of Mineral Processing, 2005.76(3): 163-172.
    [95] 胡显智.羟(氧)肟酸(盐)及其与铜矿物吸附体系的量子化学研究[J].有色金属,1997.49(4):24-28.
    [96] Takahashi, K., Hayashida, O.,Numata, Y. Quantum chemical approach to the adsorption of mercaptobenzothiazole on pyrite by the molecular orbital method[C]. International Mineral Processing Congress.Sydney: the Australasian institue of mining and metallurgy. 1993:735-743.
    [97] Tossell, J. A.,Vaughan, D. J. Theoretical Studies of Xanthates, Dixanthogen, Metal Xanthates, and Related Compounds[J]. J. Colloid Interface Sci., 1993. 155(1):98-107.
    [98] Edelbro, R., Sandstrom, A.,Paul, J. Full potential calculations on the electron bandstructures of Sphalerite, Pyrite and Chalcopyrite[J]. Appl. Surf. Sci., 2003. 206(1-4):300-313.
    [99] Gordeijev, J.,Hirva, R Theoretical studies on the interaction of oleoyl sarcosine with the surface of apatite[J]. Surf. Sci., 1999. 440(3):321-326.
    [100] Porento, M.,Hirva, R Theoretical studies on the interaction of anionic collectors with Cu~+,Cu~(2+),Zn~(2+) and ions[J]. Theor. Chem. Acc., 2002. 107(4):200-205.
    [101] Karvinen, S., Hirva, P.,Pakkanen, T. A. Ab initio quantum chemical studies of cluster models for doped anatase and rutile TiO_2[J]. Journal of Molecular Structure: THEOCHEM, 2003.626(1-3):271-277.
    [102] Porento, M.,Hirva, P. The adsorption interaction of anionic sulfhydryl collectors on different PbS(100) surface sites[J]. Surf. Sci., 2003.539(1-3): 137-144.
    [103] Porento, M.,Hirva, P. Effect of copper atoms on the adsorption of ethyl xanthate on a sphalerite surface[J]. Surf. Sci., 2005.576(1-3):98-106.
    [104] Yekeler, H.,Yekeler, M. Reactivities of some thiol collectors and their interactions with Ag~(+1) ion by molecular modeling[J]. Appl. Surf. Sci., 2004. 236(1-4):435-443.
    [105] Yekeler, M.,Yekeler, H. Molecular modeling study on the relative stabilities of the flotation products for arsenic-containing minerals: dixanthogens and arsenic(Ⅲ) xanthates[J]. J. Colloid Interface Sci., 2005.284(2):694-697.
    [106] Pradip,Rai, B. Design of tailor-made surfactants for industrial applications using a molecular modelling approach[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002. 205(1-2): 139-148.
    [107] Pradip,Rai, B. Molecular modeling and rational design of flotation reagents[J]. International Journal of Mineral Processing, 2003.72(1-4):95-110.
    [108] 北京矿冶研究总院《有机浮选药剂分析》组.有机浮选药剂分析[M].北京:冶金工业出版社.1987.
    [109] 陈远道,冯其明,向平,等.紫外光度法测定水溶液中的苯甲羟肟酸[J].中国科学学报,2004.1(12):1-4.
    [110] Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., et. al.. Development and use of quantum mechanical molecular models. 76. AMI: a new general purpose quantum mechanical molecular model [J]. J. Am. Chem. Soc., 1985. 107(13):3902-3909.
    [111] Stewart, J. J. P. Optimization of parameters for semiempirical methods Ⅰ. Method[J]. J. Comput. Chem., 1989. 10(2):209-220.
    [112] Stewart, J. J. P. Optimization of parameters for semiempirical methods Ⅱ. Applications[J]. J. Comput. Chem., 1989. 10(2):221-264.
    [113] Segall, M. D., Lindan, P. L. D., Probert, M. J., et. al.. First-principles simulation: ideas, illustrations and the CASTEP code[J]. J. Phys.: Cond. Matt., 2002. 14(11):2717-2743.
    [114] Gaussian 98, rev. A. 7, M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Menucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordan, E. S. Replogle, J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1998.
    [115] 王濮,潘兆鲁,翁玲宝.系统矿物学(上册)[M].北京:地质出版社.1982.
    [116] 王濮,潘兆鲁,翁玲宝.系统矿物学(中册)[M].北京:地质出版社.1982.
    [117] Hill, R. J. Crystal structure refinement and electron density distribution in diaspore[J]. Phys. Chem. Minerals, 1979. (5):179-200.
    [118] Winker, B., Hytha, M., Pickard, C., et. al.. Theoretical investigation of bonding in diaspore[J]. Eur. J. Mineral, 2001. (13):343-349.
    [119] Winker, B., Milman, V., Hennion, B., et. al.. Ab initio total energy study of brucite,diaspore and hypothetical hydrous wadsleyite[J]. Phys. Chem. Minerals, 1995. (22):461-467.
    [120] Gillan, M. J., Kantorovich, L. N.,Lindan, P. J. D. Modelling of oxide surfaces[J]. Current Opinion in Solid State and Materials Science, 1996. 1(6):820-826.
    [121] Manassidis, I., Goniakowski, J., Kantorovich, L. N., et. al.. The structure of the stoichiometric and reduced SnO_2(110) surface[J]. Surf. Sci., 1995. 339(3):258-271.
    [122] Hansen, E. W.,Neurock, M. Modeling surface kinetics with first-principles-based molecular simulation[J]. Chem. Eng. Sci., 1999. 54(15-16):3411-3421.
    [123] Haras, A., Witko, M., Salahub, D. R., et. al.. Electronic properties of the VO_2(0 1 1) surface: density functional cluster calculations [J]. Surf. Sci., 2001. 491(1-2):77-87.
    [124] Digne, M., Sautet, P., Raybaud, P., et. al.. Hydroxyl Groups on γ-Alumina Surfaces: A DFT Study[J]. J. Catal., 2002. 211(1):1-5.
    [125] Sensato, F. R., Custodio, R., Calatayud, M., et. al.. Periodic study on the structural and electronic properties of bulk, oxidized and reduced SnO_2(1 1 0) surfaces and the interaction with O_2[J]. Surf. Sci., 2002. 511(1-3):408-420.
    [126] Geneste, G., Morillo, J.,Finocchi, F. Ab initio study of MgO stoichiometric clusters on the MgO(0 0 1) flat surface[J]. Surf. Sci., 2003. 532-535:508-513.
    [127] Alvarez-Ramirez, F., Martinez-Magadan, J. M., Gomes, J. R. B., et. al.. On the geometric structure of the (0 0 0 1) hematite surface[J]. Surf. Sci., 2004.558(1-3):4-14.
    [128] de Lazaro, S., Longo, E., Sambrano, J. R., et. al.. Structural and electronic properties of PbTiO_3 slabs: a DFT periodic study[J]. Surf. Sci., 2004. 552(1-3):149-159.
    [129] Halim, W. S. A.,Shalabi, A. S. Surface morphology and interaction between water and MgO, CaO and SrO surfaces: Periodic HF and DFT calculations[J]. Appl. Surf. Sci., 2004. 221(1-4):53-61.
    [130] Perdew, J. P., Burke, K.,Ernzerhof, M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1996. 77(18):3865-3868.
    [131] Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1990. 41(11):7892-7895.
    [132] Monkhorst, H. J.,Pack, J. D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976. 13(12):5188-5192.
    [133] Busing, W. R.,Levy, H. A. A single crystal neutron diffraction study of diaspore, AlO(OH)[J].Acta Crystallogr., 1958. 11(11):798-803.
    [134] Bish, D. L. Rietveld refinement of the kaolinite structure at 1.5 K[J]. Clays and Clay Minerals, 1993.41(6):738-744.
    [135] 徐婉棠,吴英凯.固体物理学[M].北京:北京师范大学出版社.1991.
    [136] Fiolhais, C., Almeida, L. M.,Henriques, C. Extraction of aluminium surface energies from slab calculations: perturbative and non-perturbative approaches[J]. Prog. Surf. Sci., 2003.74(1-8):209-217.
    [137] Soon, A., Sohnel, T.,Idriss, H. Plane-wave pseudopotential density functional theory periodic slab calculations of CO adsorption on Cu_2O(111) surface[J]. Surf. Sci., 2005.579(2-3):131-140.
    [138] Ewing, F. J. The Crystal Structure of Diaspore[J]. The Journal of Chemical Physics, 1935.3(4):203-207.
    [139] Bates, S. P., Kresse, G.,Gillan, M. J. A systematic study of the surface energetics and structure of TiO_2(110) by first-principles calculations[J]. Surf. Sci., 1997. 385(3):386-394.
    [140] 俞庆森,朱龙观.分子设计导论[M].北京:高等教育出版社.2000.
    [141] 赵成大.固体量子化学——材料化学的理论基础(第二版)[M].北京:高等教育出版社.2002.
    [142] 张国范.铝土矿浮选脱硅基础理论及工艺研究[D].长沙:中南大学.2001.
    [143] 刘晓文.一水硬铝石和层状硅酸盐矿物的晶体结构与表面性质研究[D].长沙:中南大学.2003.
    [144] 沈钟,王果庭.胶体与表面化学(第二版)[M].北京:化学工业出版社.1997.
    [145] Yoon, R. H., Salman, T.,Donnay, G. Predicting point of zero charge of oxides and hydroxides[J]. J. Colloid Interface Sci., 1979. 70(3):483-493.
    [146] 胡为柏.浮选[M].北京:冶金工业出版社.1989.
    [147] 胡熙庚,黄和慰,毛锯凡.浮选理论与工艺[M].长沙:中南工业大学出版社.1991.
    [148] 闻辂,梁婉雪,章正刚,等.矿物红外光谱学[M].重庆:重庆大学出版社.1988.
    [149] Farmer, V. C. Infrared absorption of hydroxyle groups in kaolinite[J]. Science, 1964. 145:1189-1190.
    [150] Farmer, V. C.,Russel, J. D. The infrared spectra of layer silicates[J]. Spectrochim. Acta, 1964.20:1149-1173.
    [151] 蒋吴.铝土矿浮选脱硅过程中阳离子捕收剂与铝矿物和含铝硅酸矿物作用的溶液化学研究[D].长沙:中南大学.2004.
    [152] 周强.萤石等盐类矿物浮选调整剂及脂肪酸增效剂研究[D].长沙:中南工 业大学.1993.
    [153] Norskov, J. K.,Hammer, B. Theoretical Surface Science and Catalysis-Calculations and Concepts. In Adv. Catal., vol. 45 (eds B. Gates and H. Knoezinger). New York: Academic Press. 2000.
    [154] Michalak, A., Hermann, K.,Witko, M. Reactive oxygen sites at MoO_3 surfaces: ab initio cluster model studies[J]. Surf. Sci., 1996. 366(2):323-336.
    [155] Hermann, K., Michalak, A.,Witko, M. Cluster model studies on oxygen sites at the (010) surfaces of V_2O_5 and MoO_3[J]. Catal. Today, 1996. 32(1-4):321-327.
    [156] Stewart, J. Comparison of the accuracy of semiempirical and some DFT methods for predicting heats of formation[J]. Journal of Molecular Modeling, 2004. 10(1):6-12.
    [157] Foresman, J. B.,Frisch, A. Exploring chemistry with electronic structure methods (Second Edition)[M]. Pittsburgh, PA: Gaussian, Inc.2000.
    [158] Rodin, R. L.,Gershon, H. Photochemical α-Chlorination of Fatty Acid Chlorides by Thionyl Chloride[J]. The Journal of Organic Chemistry, 1973. 38(22):3919-3921.
    [159] 林强.浮选药剂活性.选择性原理与活性屏蔽.恢复假说[C].第二届全国青年选矿学术会议论文集.无锡:中国金属学会.1990:222-225.
    [160] Yarar, B.,Kaoma, J. Estimation of the critical surface tension of wetting of hydrophobic solid by flotation[J], colloid and surfaces, 1984. 11 (3-4):429-436.
    [161] 王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社.1998.
    [162] 刘家瑞,刘祥民.应用选矿.拜耳法工艺处理一水硬铝石型中低品位铝土矿生产氧化铝的工业实践[J].轻金属,2005.(4):11-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700