ZnO压敏电阻的低温烧结及流延法制膜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,叠层片式压敏电阻器(MLCV)的造价过高,其主要原因在于难以实现压敏陶瓷膜片与内电极的低温共烧(<1000℃),而必须采用烧结温度高但价格昂贵的钯或银钯做内电极。针对这个问题,本文重点研究ZnO压敏电阻的低温烧结以及流延法制膜。具体内容如下:
     研究各种有机添加剂(如分散剂、粘结剂、溶剂和增塑剂)在流延浆料中的作用、机理及选择原则。并根据本文需要选定实验的分散剂为蓖麻油,粘结剂为聚乙烯醇缩丁醛(PVB),溶剂为正丁醇和环己酮组成的二元混合有机溶剂,增塑剂为邻苯二甲酸二丁脂(DBP)。
     研究了ZnO压敏电阻的低温烧结机理和途径。通过总结各种ZnO压敏电阻陶瓷的低温烧结方案,设计出一个ZnO-Bi系压敏电阻的低温烧结材料配方,并采用干压成型法实验验证其最高烧结温度可低至950℃。
     实验研究制备ZnO压敏电阻的流延膜片。探讨不同配比的粘结剂、增塑剂、分散剂以及ZnO压敏电阻流延浆料中不同的固体含量对流延浆料和流延膜片性能的影响,并最终确定一个各种有机添加剂的最优的配比方案。
     研究ZnO压敏电阻流延膜片的排胶和烧结。实验验证本文制备的流延膜片最高烧结温度可低至950℃,该流延膜片可用于制备叠层片式压敏电阻,实现流延膜片与内电极的低温共烧。
Nowadays ZnO varistor’s ceramic tape can’t be sintered with inner electrode below 1000℃, so Pd and Pd/Ag must be chosen as MLCV’s inner electrode, that have higher sintering temperature but more expensive than pure Ag. This is why the cost of MLCV is too high. To solve the problem above, low temperature sintering of ZnO varistor ceramics and tape-casting of ZnO varistor ceramic tape were studied in this paper. The conclusions are as following:
     The organic additives’mechanism, selective rules and their roles in preparing tape-casting ceramic slurry were discussed. The organic additives included dispersant, binder, plasticizer and solvent. Based on the characteristic of ZnO varistor’s green powder, castor oil was chosen as dispersant, PVB was chosen as binder, DBP was chosen as plasticizer, and n-butanol with cyclohexanone were chosen as dual-combining solvent. The mechanism and the methods of low temperature sintering ZnO varistor ceramics were investigated. After summarizing several designs for low temperature sintering ZnO varistor ceramics, an optimal recipe for low temperature sintering ZnO-Bi varistor ceramics was presented. To prove the property of the recipe, some ZnO varistor specimens were made by traditional dried mould process using the optimal recipe mentioned above. And the experimental results showed that, the sintering temperature of the specimens could be as low as 950℃.
     The experiment of preparing ZnO varistor’s green tape using tape-casting technique had been done. And the influence of organic additives’different adding amount on the property of ceramic slurry and the ZnO varistor’s green tape were studied systematically. Finally the best adding amount of the organic additives including dispersant, binder, plasticizer and solvent were determined.
     The organic burnout process and the sintering process of green tape prepared by tape-casting were discussed. The experimental results showed that, the ZnO varistor’s green tape could successfully be sintered at 950℃. This tape could be used for manufacturing MLCV.
引文
[1] Frosch C J. Improved Carbide Varistors, Bell Lab. Rec., 1954, 32:326-340
    [2] Matsuoka M. Nonohmic Properties of Zinc Oxide Ceramics. Jpn. J. Appl. Phys, 1971, 10(6):736-746
    [3] Levison L M, Philip H R. Zinc Oxide Varistor-A Review. Cera. Bull., 1986,65: 639-646
    [4] Einzinger R. Metal Oxide Varistors. Ann. Rev. Mater. Sci., 1987,17:299-321
    [5] Mukae K, Tsuda K, and Nagasawa L. Non-ohmic Properties of ZnO-rare Earth Metal Oxide-Co3O4 ceramics. Jpn. J. Appl. Phys., 1977,16(8):1361-1368
    [6] 周东祥, 张绪礼, 李标荣. 半导体陶瓷及应用. 武汉:华中理工大学出版社, 1991. 164-207
    [7] 李盛涛. 电子元件发展现状与趋势. 第八届压敏电阻器学术年会论文集.2001年9月.1-8
    [8] Littlefuse Inc. Technologic Report. The ESD Problem, 2001.
    [9] 戴善忠. 数字光通讯设备的静电防护. 现代有线传输, 1996,(4):52-60
    [10] James Colby. Key consideration for ESD circuit Portection. Electronic Design, sep 3, 2001.
    [11] 杨建华. 静电对光纤接入网设备的危害及防护. 广东通讯技术, 2000,20(5): 32
    [12] 张勇. 新型片式元器件在通信领域中的应用和发展. 半导体杂志, 2000,(6):45
    [13] Phillip H R, Levinson L M. Zno Varistors for Protection Against Nuclear Electromagnetic Pulse. J. Appl. Phys., 1981,52(2):1083-1090
    [14] Sletson L C, Potter M E, and Alim M A. Influence of Sintering Temperature on Intrinsic Trapping in Zinc Oxide-Based Varistor. J. Am. Ceram. Soc., 1988, 71(11): 909-913
    [15] Hingorani S, Shah D O. Effect of Process Variables on the Grain Growth and Microstructure of ZnO-Bi2O3 Varistors and Their Nanosize ZnO Precursors. J. Mater. Res., 1995,10(2): 461-467
    [16] 章天金. 低压ZnO压敏电阻的结构与性能研究. 武汉:华中科技大学图书馆,1999.
    [17] Atsushi Iga. Electric characteristics in low temperature sintered ZnO varistor. Journal of the Japan Society of Powder and Powder Metallurgy, 1997, 44(12): 1075-1077
    [18] 周东祥, 周莉, 龚树萍. 低温烧结非线形Zn-Bi/Sn系压敏瓷料的研究. 电子元件与材料,2002,21(3):18-19
    [19] Pillai S C, Kelly J M, McCormack D E, et al. Microstructural analysis of varistor prepared from nanosize ZnO. Mater. Sci. Tech., 2004, 20(8):964-968
    [20] Brooks M H, Luna J R. Microwave sintering of ZnO Varistors. Am. Ceram. Soc. Bull., 1981,60(9):931-931
    [21] Lee Wan-Chui, Liu Kuo-Shung, Lin I-Nan. Electrical properties of microwave sintered ZnO varistors. Jan. J. Appl. Phys., 1999,38(9B): 5500-5504
    [22] 付明. 低温烧结ZnO-玻璃系压敏电阻材料及机理研究. 武汉:华中科技大学图书馆,2001.
    [23] Tsai J K, Wu T B. Microstructure and Nonohmic Properties of Binary ZnO-V2O5 Ceramics Sintered at 900℃. Mater. Lett., 1996,26:199-203
    [24] Hng H H, Chan P L. Effects of MnO2 Doping in V2O5-doped ZnO Varistor System. Mater. Chem. and Phys., 2002, 75:61-66
    [25] 吴隽, 谢长生, 黄开金等. 掺杂ZnO-V2O5压敏电阻的低温烧结. 无机材料学报, 2004, 19(1):239-243
    [26] Kuo Cheng-Tzu, Chen Chang-Shun, Lin I-Nan. Microstructure and nonlinear properties of microwave-sintered ZnO-V2O5 varistors:I, Effect of V2O5 doping. J. Am. Ceram. Soc., 1998, 81(11):2942-2948
    [27] 雷鸣. 低温烧结和高电位梯度ZnO压敏陶瓷的研究. 西安:西安交通大学图书馆, 2003.
    [28] 付明, 周东祥, 龚树萍等. 多层片式ZnO压敏电阻器研究进展. 材料导报, 2000,14(9):39-40
    [29] 吴隽, 谢长生, 柏自奎等.一步法制备的ZnO-硼硅酸铅锌玻璃压敏电阻性能研究. 传感技术学报, 2004, (1):26-30
    [30] 黄勇 , 向军辉 , 谢志鹏等 . 陶瓷材料流延成型研究现状 . 硅酸盐通报 ,2001,5:22-27
    [31] 周桃生, 李秋红, 郑克玉等. 分散剂及其在陶瓷制备中的应用. 湖北大学学报(自然科学版), 2001,23(4):331-334
    [32] Sacks M D. Dispersion and rheology in ceramic processing. Advances in Ceramics, 1987,21:495-5152
    [33] 理查德. 陶瓷工艺(第1部分). 清华大学新型陶瓷与精细工艺国家重点实验室译. 北京: 科技出版社, 1999.55-65
    [34] 顾惕人. 表面化学. 北京: 科学出版社, 1994.395
    [35] Verway E J, Overbeek T G. Theory of the Stability of Lyophobic Colloids. Elsevier Amsterdam, 1948,64:325
    [36] Frederick M Fowkes. Dispersions of ceramic powders in organic media. In: Gary L. Messing et al. Ceramic Powder Science. Westerville OH:Am. Ceramic Soc., 1989.411
    [37] 贺连星, 温廷琏, 吕之奕. 流延法制膜技术. 化学通报,1996,(11):19-22
    [38] 章登宏, 汪小红, 周东祥等. 粘合剂PVA对制造PTC粉体的影响. 华中理工大学学报, 2000, 28(9):61-63
    [39] Kevin X L, Mcanany W J. Acrylic Binder for Green Machining, Rohm and Hass. Spring House, PA, 1995,74(5):356-386
    [40] Tok Alfred I Y, Boey Freddy Y C, Khor K A. Tape casting of high dielectric ceramic composite substrates for microelectronics application. J. Mater. Process. Technol., 1999, 89:508-512
    [41] Kristoffersson Annika, Carlstrom Elis. Tape casting of Alumina in water with an Acrylic Latex Binder. J. Eur. Ceram. Soc., 1997, 17(2):289-297
    [42] 何曼君, 董西侠, 陈维孝. 高分子物理. 上海:复旦大学出版社,1990.48-52
    [43] Yih Shing Lee, Kao Shiang Liao. Microstructure and Crystal Phase of Praseody-mium Oxide in ZnO Varistor Ceramics. J. Am. Ceram. Soc., 1996, 79(9): 2379-2384
    [44] Miyoshi T. Effects of Dopants on the characteristics of ZnO Varistors. In:Levinson L M, Hill D. Advances in Ceramics. Columbus, OH:American Ceramic Society,1981.309
    [45] Takemura T. Effects of Bismuth Sesquioxide on the Characteristics of ZnO Varistors. J. Am. Ceram. Soc., 1986,69(5):430-436
    [46] Gupta T K, Miller A C. Improved Stability of ZnO Varistor via Donor and Acceptor Doping at the Grain Boundary. J. Mater. Res., 1988,3(4):745-754
    [47] 朱杰. 低温烧结片式叠层ZnO压敏陶瓷材料的研究. 武汉:湖北大学图书馆,2001.
    [48] Luo J, Wang H F, Chinag Y M. Origin of Solid-State Activated Sintering in Bi2O3-Doped ZnO. J. Am. Ceram. Soc., 1999,82(4):916-920
    [49] Park H H, Cho S J, Yoon D N. Pore-Filling Process in Liquid-Phase Sintering. Metall. Trans. A., 1984,15A(6):1075-1080
    [50] 李标荣, 张绪礼. 电子陶瓷物理. 武汉:华中理工大学出版社,1991.
    [51] 金格瑞 W D. 陶瓷导论. 清华大学无机非金属材料教研组译. 北京:中国建筑工业出版社, 1982.451-516
    [52] Atsushi Iga. Mechanism of Low Temperature Sintering of ZnO-Varistor. Journal of the Japan Society of Powder and Powder Metallurgy, 1997, 44(12):1069-1074
    [53] 雒晓军. 水基流延成型制备高热导率氮化铝基片的研究. 上海:中国科学院上海硅酸盐研究所, 2004.
    [54] 李冬云, 乔冠军, 金志浩. 流延法制备陶瓷薄片的研究进展. 硅酸盐通报, 2004,(2):44-47
    [55] 韩振宇, 马莒生, 徐忠华等. 低温共烧陶瓷基板制备技术研究进展.电子元件与材料,2000,19(6):31-33
    [56] Hidber P C, Graule T J, Gauckler L J, Competitive absorption of citric acid and ploy(vinyl alcohol) onto alumina and its influence on the binder migration during drying. J. Am. Ceram. Soc., 1995,78(7):1775-1780
    [57] Zhang Y, Kawasaki M, Ando K, et al. Surface segregation of PVA during drying of PVA-water-Al2O3 slurry. J. Ceram. Soc. Jpn., 1992,100(8):1070-1073
    [58] Otsuka K, Ohsawa Y, Sekibate M. A study on the alumina ceramics casting conditions by the doctor-blade method and their effect on the properties of green tape. Yogyo Kyokai Shi, 1986,94(3):351-359
    [59] 吴音, 周和平, 刘耀诚等. 一种低温共烧AlN陶瓷基片的排胶技术. 无机材料学报,1998,13(3):396-400
    [60] 根赫特 R, 米勒 H. 塑料添加剂手册. 成国祥, 姚康德等译. 北京:化学工业出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700