铜活化二硼化镁低温烧结机制及超导电性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制备具有高临界电流密度的二硼化镁超导体是当前超导研究的热点,近几年发展起来的低温烧结技术为显著改善临界电流密度提供了可能。由于低温烧结过程中原子在固相中扩散缓慢,MgB_2的合成一般都需要很长时间才能完成,因此寻找一种低廉有效的方法来提高烧结效率,在低温条件下快速合成具有更高临界电流密度的MgB_2超导材料成为目前亟待解决的问题。在此背景下,本文首先阐明了低温条件下MgB_2的活化烧结机理和掺杂机制;以此为指导,把有效碳掺杂和球磨自氧化技术成功地应用到Cu活化烧结MgB_2的低温制备中;利用这两种新技术在低温下快速合成具有优异临界电流密度的MgB_2超导体,基本可满足应用要求。上述研究包含的主要内容及获得的结论有:
     综合采用原位X-射线衍射和扫描示差量热分析方法对Mg-B体系从低温到高温烧结全过程进行了探究,其后结合等温动力学分析重点阐明了低温成相动力学机理。结果表明,Mg-B体系低温固相反应是由可变的动力学机制控制,反应刚开始阶段活化的Mg和B原子较少,反应速率比较慢,该阶段主要为相界面控制的反应过程;随着反应的进行,生成的MgB_2层越来越厚,Mg的扩散变得越来越困难,此时一维扩散成为控制性环节。上述动力学机理导致反应激活能随着反应进行先减小而后增大。
     系统研究了不同金属(Cu、Sn和Ag)添加对MgB_2低温烧结效率的影响,据此澄清了金属活化低温烧结MgB_2的机理,并提出了金属活化剂选取的判据。结果表明:在Mg-Cu-B体系中,Cu首先与Mg在485℃左右形成Mg-Cu共晶液相,它可为Mg向B的扩散提供快速通道,降低MgB_2相的生成温度,促进MgB_2的生成。添加Cu的MgB_2烧结过程符合活化烧结机理。Ag和Sn的添加均能形成低温液相,明显提高MgB_2低温烧结效率,但对MgB_2低温烧结效率的提高比添加Cu弱。结合活化烧结机理分析确定了微量Cu作为最佳活化剂。
     结合微观组织形貌观察和超导性能测试全面分析了在低温和高温烧结条件下活化剂Cu对MgB_2微观组织和超导性能的影响。活化剂Cu在MgB_2烧结过程中能够有效减少MgO杂质的生成,提高低磁场下的临界电流密度。在较低的烧结温度下,局部Mg-Cu液相的生成能够溶解和包覆部分Mg颗粒,隔绝了它们与气态氧原子或者固态含氧物质的接触,因此可以减少它们的氧化。烧结温度在Mg的熔点以上时,Cu的加入可明显降低Mg熔体的蒸气压,减少Mg的挥发和气化Mg原子的数量,最终减少了因气化Mg原子与保护气氛中残余氧气反应生成的MgO杂质的数量。不同添加量的Cu活化低温烧结制备的MgB_2块体的显微组织形态差别明显。适量Cu添加可以生成层状MgB_2晶体组织,它取决于活化剂Cu添加后形成的Mg-Cu液相烧结环境。在该液相烧结环境中,MgB_2晶体能够以二维形核长大的机制最终形成层状组织。与传统高温烧结形成的典型MgB_2晶体组织相比,层状MgB_2晶体组织具有更优异的晶间连接性。
     为了进一步提高Cu活化低温烧结制备的MgB_2的载流能力,本文还系统分析了低温引入碳掺杂的机制,提出了碳掺杂在Cu活化低温烧结过程中有效引入的判据。研究表明,碳基化合物低温引入碳掺杂的关键是能够在MgB_2相生成之前或者同时释放出活性足够高的C。释放C的活性决定了低温引入碳掺杂的有效性。据此分析了纳米SiC和葡萄糖的低温引入碳掺杂机制的可行性:在烧结过程中,纳米SiC在低温下通过叠加反应释放出活性足够高的C,形成有效碳掺杂;葡萄糖低温分解释放出的活性C相对较少,低温时很难形成有效碳掺杂。在Cu活化低温烧结中能够引入有效碳掺杂的碳基化合物应该不与Cu反应,不破坏Cu的活化烧结作用。反过来,Cu的活化烧结也能够促进或者是至少不阻碍该碳基化合物低温有效引入碳掺杂。根据此条件,选取了纳米SiC为合适掺杂剂,在低温活化烧结中快速合成了碳掺杂MgB_2块体。无论是在低磁场中还是在高磁场中,其临界电流密度值都有明显的提高。
     除了引入碳掺杂以外,还尝试使用球磨处理和Cu活化烧结相结合的方法来进一步提高低温烧结效率和相应的临界电流密度。在这个过程中,发现短时间球磨后粉末的微量氧化不仅不恶化临界电流密度,反而会提高高场下的临界电流密度大小。在系统分析该现象的基础上总结出球磨自氧化引入MgO掺杂的机制,并把这一机制应用到Cu活化低温烧结MgB_2中,最终发现其在中低磁场下的载流能力有了更优异的表现。究其原因,一方面球磨自氧化机制可以促进Cu活化低温烧结,提高烧结试样的致密度,使得MgB_2晶粒排列紧密,有些甚至呈层状排列,这些因素都显著优化了MgB_2的晶间连接性;另一方面球磨自氧化机制在细化MgB_2晶粒的同时还可引入大量均匀分布的纳米MgO颗粒,显著增加了有效磁通钉扎中心。球磨自氧化处理与Cu活化低温烧结技术相结合,可以从提高晶间连接性和增加磁通钉扎中心两方面共同改善载流能力,最终大幅度提高了临界电流密度值,基本达到实际应用水平。
The synthesis of MgB_2 with high critical current density is the highlight of superconducting field. Low-temperature sintering developed in recent years is a potentially effective method for obtaining improved J_c. However, the reaction between magnesium and boron at low temperature takes a very long time to form the complete MgB_2 phase as the result of the low diffusion rate of atoms in the solid-state. Hence, to search a convenient and effective way in improving the sintering efficiency together with increasing J_c is very urgent. Based on these backgrounds, the activated sintering mechanism as well as doping mechanism in MgB_2 prepared at low temperature was explored in present work. Accordingly, the techniques that both autoxidation treatment of short-time milled original powders and effective C doping were introduced into the Cu-activated sintering process of MgB_2 at low temperature. As a result, excellent J_c was obtained in the synthesized samples, which basically meet the practical need of MgB_2 superconductors.
     Combined with in-situ X-ray diffraction and thermal analysis, the sintering process of Mg-B system from low temperature to high temperature was investigated. Then the kinetic mechanism of MgB_2 phase formation at low temperature was clarified according to the isothermal kinetics calculation. The result indicated that the reaction between Mg and B during the low-temperature sintering is controlled by varied mechanisms. At initial stage, the activated Mg and B atoms are limited and the reaction rate is mainly determined by the phase boundary reaction mechanism. As the reaction prolonging and the synthesized MgB_2 layer increasing, the diffusion-limited mechanism gradually becomes dominant. The corresponding activation energy is also decreased firstly and then increased again.
     The influence of different metals (Cu, Sn and Ag) on the sintering efficiency of MgB_2 at low temperature was systemically studied. Accordingly, the metal activated sintering mechanism of MgB_2 at low temperature was clarified and also the criteria for selecting appropriate activator were proposed. It was found that during the sintering process of Mg-Cu-B system, Cu firstly reacted with Mg forming Mg-Cu liquid, which could provide high transport for the diffusion of Mg atoms into B and thus accelerate the MgB_2 phase formation. The effect of Cu addition on the sintering process was proved to follow the activated sintering mechanism. Besides, Ag and Sn also formed local liquid at low temperature and thus improved the sintering efficiency of MgB_2 obviously. However, the enhancement in the sintering efficiency resulting from Ag and Sn addition is not as significant as Cu addition. This phenomenon can be explained well on the basis of activated sintering mechanism. The minor Cu addition is finally determined to be the most suitable activator according to above results.
     The effect of Cu activator on the microstructure and superconductive properties of MgB_2 sintered at both low temperature and high temperature were investigated in detail. Results showed that the Cu activator could reduce the amount of MgO impurity in the prepared MgB_2 samples dramatically. During the low-temperature sintering process, the formation of local Mg-Cu liquid could wrap the Mg particles and thus protect them from the oxidation caused by the oxide impurity in the starting powders and the gaseous O; During the high-temperature sintering process, the Cu addition could decrease the vapor pressure of Mg liquid and thus reduce the volatilization of Mg liquid, which could depress the reaction between gaseous Mg and O_2 impurity in the protective Ar gas forming MgO impurity. It is also found that the lamellar MgB_2 grains could be synthesized by Cu activated sintering at low temperature. It is proposed that the Mg-Cu liquid environment is the critical condition, and the lamellar MgB_2 grains was formed at the liquid-solid interface between Mg-Cu liquid and B following the two dimensional nucleation and growth mechanism. According to the analysis on the temperature dependence of resistivity, the lamellar MgB_2 grains possess much better grain connectivity than the typical morphology of MgB_2 grains synthesized by the traditional solid-state sintering.
     In order to further optimize J_c in the MgB_2 synthesized by Cu activated sintering at low temperature, the C doping mechanism in the carbon-based chemicals added MgB_2 at low temperature was discussed and then the criteria for judging validity of C doping during the Cu activated sintering process of MgB_2 were proposed. The results indicated that following factors should be considered when discussing the validity of C doping at low temperature: (ⅰ) carbon-based chemicals ought to release C before or simultaneously with the formation of the MgB_2 phase. (ⅱ) The released C should be active enough to guarantee that it could enter the MgB_2 crystal lattice and replace B atoms. Accordingly, the validity of C doping resulting from nano SiC and glucose (C_6H_(12)O_6) at low temperature were verified: Nano SiC could release related high active C via reaction between Mg and SiC at low temperature and then introduce C doping effectively while C6H12O6 could not release sufficiently high active C through its decomposition and failed to bring about C doping. The carbon-based chemical which will introduce C doping effectively into MgB_2 sample prepared by Cu activated sintering at low temperature must meet two criteria as follows: (ⅰ) It should not react with Cu during the low temperature sintering process, and therefore not destroy its effect of activated sintering. (ⅱ) On the other hand, Cu should improve or at least not inhibit C doping caused by this carbon-based chemical addition. In view of above, nano SiC was selected as appropriate dopant. Consequently, the corresponding SiC doped MgB_2 samples activated sintered at low temperature exhibit excellent J_c.
     Besides C doping, ball milling treatment of original powders was also applied to further increase J_c in MgB_2 samples prepared by Cu activated sintering at low temperature. It is observed that the slight oxidation of short-time milled original powders led to the increase of J_c at high field. Based on the investigation of this phenomenon, the autoxidation technique of milled original powders was developed and then introduced into the Cu activated sintering process of MgB_2 at low temperature. On one hand, autoxidation treatment of milled original powders could improve Cu activated sintering and result in higher density. Moreover, some lamellar MgB_2 grains were observed in the Cu-activated sintered sample after autoxidation treatment of milled original powders. Both of factors could improve the connectivity between MgB_2 grains; On the other hand, autoxidation treatment of milled original powders could generate lots of homogenously distributed MgO nanoimpurities as well as refine MgB_2 grains in the sintered sample, which both significantly increase the number of flux pinning centers. Hence, the J_c in the MgB_2 sample prepared by combining autoxidation treatment of milled original powders with Cu activated sintering at low temperature was dramatically improved.
引文
[1] J. Nagamatsu, N. Nakagawa, T. Muranaka et al., Superconductivity at 39K in magnesium diboride, Nature, 2001, 410: 63~64.
    [2] J.D. Jorgensen, D.G. Hinks, S. Short, Lattice properties of MgB_2 versus temperature and pressure, Phys. Rev. B, 2001, 63: 224522.
    [3] I.I. Mazin,V.P.Antropov, Electronic structure, electron- phonon coupling and multiband effects in MgB_2, Physica C, 2003, 385: 49~65.
    [4] D.C. Larbalestier, M.O. Rikel, L.D. Cooley, et al., Strongly linked current flow in polycrystalline forms of the superconductor MgB_2, Nature, 2001, 410:186~189.
    [5] Y. Bugoslavsky, G.K. Perkins, X. Qi et al., Vortex dynamics in superconducting MgB_2 and prospects for applications, Nature, 2001, 410: 563~565.
    [6] M. Kambara, N. Hari Babu, E.S. Sadki et al., High intergranular critical currents in metallic MgB_2 superconductor, Supercond. Sci. Technol., 2001, 14: L5~L7.
    [7] Y. Takano, H. Takeya, H. Fujii, et al., Superconducting properties of MgB_2 bulk materials prepared by high pressure sintering, Appl. Phys. Lett., 2001, 78: 2914~2916.
    [8] K. Kawano, J.S. Abell, M. Kamnara, et al., Evidence for high inter-granular current flow in single-phase polycrystalline MgB_2 superconductor, Appl. Phys. Lett., 2001, 79: 2216~2218.
    [9] B.Q. Fu, Y. Feng, G. Yan et al., Hig transport critical cruuent in MgB_2/Fe wire by in situ powder-in-tube process, Physica C, 2003,392-396: 1035~1038.
    [10] J.S. Slusky, N. Rogado, K.A. Regan et a1, Loss of supercond-uctivity with the addition of Al to MgB_2 and a structural transition in Mg1-xAlxB_2, Nature, 2001, 410: 343~345.
    [11] S.V. Okatov, A.L. Ivanovskii, Y.E. Medvedeva et al.,The Electronic band structures of superconducting MgB_2 and selated sorides CaB_2, MgB6 and CaB6, phys. stat. sol.(b), 2001, 225: R3~R5.
    [12] M.D. Sumption, X. Peng, E. Lee, Transport current in MgB_2 based superconducting strand at 4.2 K and self-field, 2001, arXiv: cond-mat/0102441.
    [13] S.X. Dou, X.L. Wang, J. Horvat et al., Flux jumping and a bulk-to-granulartransition in the magnetization of a compacted and sintered MgB_2 superconductor, Physica C, 2001, 361: 79~83.
    [14] Y. Eltsev, S. Lee, K. Nakao et al., Anisotropic superconducting properties of MgB_2 single crystals probed by in-plane electrical transport measurements, Phys. Rev. B, 2002, 65: 140501.
    [15] M. Eisterer, M. Zehetmayer, H.W. Weber et al., Current percolation and anisotropy in polycrystalline MgB_2, Phys. Rev. Lett., 2003, 90: 247002.
    [16] O.F. de Lima, R.A. Ribeiro, M.A. Avila et al., Anisotropic superconducting properties of aligned MgB_2 crystallites, Phys. Rev. Lett., 2001, 86: 5974~5977.
    [17] V. Braccini, A. Gurevich, J.E. Giencke et al., High-field superconductivity in alloyed MgB_2 thin films, Phys. Rev. B, 2005, 71: 012504.
    [18] M.D. Sumption, M. Bhatia, M. Rindfleisch et al., Large upper critical field and irreversibility field in MgB_2 wires with SiC additions, Appl. Phys. Lett., 2005, 86: 092507.
    [19] Y. Iwasa, D.C. Larbalestier, M. Okada et al., A round table discussion on MgB_2 toward a wide market or a niche production?A summary, IEEE Trans. Appl. Supercond., 2006, 16: 1457~1464.
    [20] R.M. Scanlan, A.P. Malozemoff and D.C. Larbalestier, Superconducting materials for large scale applications, IEEE Proc, 2004, 92: 1639~1654.
    [21] D.C. Larbalestier, A. Gurevich, D.M. Feldmann et al., High-Tc superconducting materials for electric power applications, Nature, 2001, 414: 368~377.
    [22]吴怡芳,二硼化镁超导体的组织结构与性能研究: [硕士学位论文],西安:西北工业大学, 2005。
    [23] A. Brinkman, A.A. Golubov, H. Rogalla et al., Multiband model for tunneling in MgB_2 junctions, Phys. Rev. B, 2002, 65: 180517.
    [24] P.M. Grant, APS Meeting, Seattle Washington, 2001, 12 March.
    [25] M. Modica, S. Angius, L. Bertora et al., Design, construction and tests of MgB_2 coils for the development of a cryogen free magnet, IEEE Trans. Appl. Supercond., 2007, 17: 2196~2199.
    [26] M. Razeti, S. Angius, L. Bertora et al., Construction and operation of cryogen free MgB_2 magnets for open MRI systems, IEEE Trans. Appl. Supercond., 2008, 18: 882~886.
    [27] X.H. Li, X.J. Du, M. Qiu et al., Design and experimental demonstration of an MgB_2 based 1.5 T MRI test magnet, Physica C, 2007, 463: 1338~1341.
    [28] W.J. Yao, J. Bascunan, W.S. Kim et al., A solid nitrogen cooled MgB_2 "Demonstration" coil for MRI applications, IEEE Trans. Appl. Supercond., 2008, 18: 912~915.
    [29] D. Nardelli, R. Marabotto, G. Grasso et al., Test result on MgB_2 windings for AC applications, IEEE Trans. Appl. Supercond., 2007, 17: 2742~2745.
    [30] D. Mijatovic, A. Brinkman, D. Veldhuis et al., SQUID magnetometer operating at 37 K based on nanobridges in epitaxial MgB_2 thin films, Appl. Phys. Lett, 2005, 87: 192505.
    [31] S.A. Cybart, K. Chen, Y. Cui et al., Planar MgB_2 Josephson junctions and series arrays via nanolithography and ion damage, Appl. Phys. Lett., 2006, 88: 012509.
    [32] K. Chen, Y. Cui, Q. Li et al., Planar MgB_2 superconductor-normal metal-superconductor Josephson junctions fabricated using epitaxial MgB_2/TiB_2 bilayers, Appl. Phys. Lett., 2006, 88: 222511.
    [33] H. Shimakage, K. Tsujimoto, Z. Wang et al., All-MgB_2 tunnel junctions with aluminum nitride barriers, Appl. Phys. Lett., 2005, 86: 072512.
    [34] R.K. Singh, R. Gandikota, J. Kim et al., MgB_2 tunnel junctions with native or thermal oxide barriers, Appl. Phys. Lett., 2006, 89: 042512.
    [35] H. Shim, K.S. Yoon, J.S. Moodera et al., All MgB_2 tunnel junctions with Al2O3 or MgO tunnel barriers, Appl. Phys. Lett., 2007, 90: 212509.
    [36] H. Padamsee, Accelerating applications of RF superconductivity - Success stories, IEEE Trans. Appl. Supercond., 2005, 15: 2432~2439.
    [37] E.W. Collings, M.D. Sumption, T. Tajima, Magnesium diboride superconducting RF resonant cavities for high energy particle acceleration, Supercond. Sci. Technol., 2004, 17: S595~S601.
    [38] S. Mitsunobu, S. Inagaki, H. Nakanishi et al., MgB_2 thin films on Nb cavity by pulse laser deposition, 2008 Proc. SRF 2007 (Beijing, 11-13 October).
    [39] T. Ishida, M. Nishikawa, Y. Fujita et al., Superconducting MgB_2 thin film detector for neutrons, J. Low Temp. Phys, 2008, 151: 1074~1079.
    [40] G. Blatter, M.V. Feigel’man, V.B. Geshkenbein et al., Vortices in high-temperature superconductors, Rev. Mod. Phys, 1994, 66: 1125-1388.
    [41] M.J. Qin, X.L. Wang, H.K. Liu et al., Evidence for vortex pinning induced by fluctuations in the transition temperature of MgB_2 superconductors, Phys. Rev. B, 2002, 65: 132508.
    [42] J.L. Wang, R. Zeng, J.H. Kim et al., Effects of C substitution on the pinningmechanism of MgB_2, Phys. Rev. B, 2008, 77: 174501.
    [43] M.J. Qin, X.L. Wang, H.K. Liu et al., Evidence for vortex pinning induced by fluctuations in the transition temperature of MgB_2 superconductors, Phys. Rev. B, 2002, 65: 132508.
    [44] Z.X. Shi, A.K. Pradhan, M. Tokunaga et al., Flux-pinning properties of single crystalline and dense polycrystalline MgB_2, Phys. Rev. B, 2003, 68: 104514.
    [45] S.L. Prischepa, M.L. Della Rocca, L. Maritato et al., Critical currents of MgB_2 thin films deposited in situ by sputtering, Phys. Rev. B, 2003, 67: 024512.
    [46] I. Pallecchi, C. Tarantini, H.U. Aebersold et al., Enhanced flux pinning in neutron irradiated MgB_2, Phys. Rev. B, 2005, 71: 212507.
    [47] E. Martinez, P. Mikheenko, M. Martinez-Lopez et al., Flux pinning force in bulk MgB_2 with variable grain size, Phys. Rev. B, 2007, 75: 134515.
    [48] O. Perner, W. H??ler, J. Eckert et al., Effects of oxide particle addition on superconductivity in nanocrystalline MgB_2 bulk samples, Physica C, 2005, 432: 15~24.
    [49] M. Herrmann, W. Haessler, C. Rodig et al., Touching the properties of NbTi by carbon doped tapes with mechanically alloyed MgB_2, Appl. Phys. Lett., 2007, 91: 082507.
    [50] N.M. Strickland, R.G. Buckley, A. Otto, High critical current densities in Cu-sheathed MgB_2 formed from a mechanically-alloyed precursor, Appl. Phys. Lett., 2003, 83: 326~328.
    [51] Y.F. Wu, Y.F. Lu, J.S. Li et al., The microstructures and superconducting properties of MgB_2 bulks prepared by a high-energy milling method, Physica C, 2007, 467: 38~42.
    [52] B. Lorenz, O. Perner, J. Eckert et al., Superconducting properties of nanocrystalline MgB_2, Supercond. Sci. Technol., 2006, 19: 912~915.
    [53] I. Pallecchi, C. Tarantini, H.U. Aebersold et al., Enhanced flux pinning in neutron irradiated MgB_2, Phys. Rev. B, 2005, 71: 212507.
    [54] C. Tarantini, H.U. Aebersold, V. Braccini et al., Effects of neutron irradiation on polycrystalline (MgB_2)B11, Phys. Rev. B, 2006, 73: 134518.
    [55] S.M. Kazakov, R. Puzniak, K. Rogacki et al., Carbon substitution in MgB_2 single crystals: Structural and superconducting properties, Phys. Rev. B, 2005, 71: 024533.
    [56] S.X. Dou, O. Shcherbakova, W.K. Yeoh et al., Mechanism of enhancement inelectromagnetic properties of MgB_2 by nano SiC doping, Phys. Rev. Lett., 2007, 98: 097002.
    [57] X.L. Wang, S.H. Zhou, M.J. Qin et al, Significant enhancement of flux pinning in MgB_2 superconductor through nano-Si addition, Physica C, 2003, 385: 461~465.
    [58] Y. Ma, H. Kumakura, A. Matsumoto et al, Improvement of critical current density in Fe-sheathed MgB_2 tapes by ZrSi , ZrB_2 and WSi2 doping, Supercond. Sci. Technol., 2003, 16: 852~856.
    [59] S. Soltanian, X.L. Wang, I. Kusevic et al, High-transport critical current density above 30 K in pure Fe-clad MgB_2 tape, Physica C, 2001, 361: 84~90.
    [60] C.H. Jiang, H. Hatakeyama, H. Kumakura, Effect of nanometer MgO addition on the in situ PIT processed MgB_2/Fe tapes, Physica C, 2005, 423: 45~50.
    [61] J.H. Kim, S.X. Dou, D.Q. Shi et al, Study of MgO formation and structural defects in in situ processed MgB_2/Fe wires, Supercond. Sci. Technol, 2007, 20: 1026~1031.
    [62] X.F. Rui, J. Chen, X. Chen et al, Doping effect of nano-alumina on MgB_2, Physica C, 2004, 412: 312~315.
    [63] J. Wang, Y. Bugoslavsky, A. Berenov et al, High critical current density and improvedirreversibility field in bulk MgB_2 made by a scaleable, nanoparticle addition route, Appl. Phys. Lett., 2002, 81: 2026~2028.
    [64] X.F. Rui, Y. Zhao, Y.Y. Xu et al, Improved flux pinning behaviour in bulk MgB_2 achieved by nano-SiO_2 addition, Supercond. Sci. Technol., 2004, 17: 689~691.
    [65] S.K. Chen, B.A. Glowacki, J.L. MacManus-Driscoll et al, Influence of in situ and ex situ ZrO_2 addition on the properties of MgB_2, Supercond. Sci. Technol., 2004, 17: 243~248.
    [66] J.Y. Xiang, D.N. Zheng, J.Q. Li et al., Effects of Al doping on the superconducting and structural properties of MgB_2, Physica C, 2003, 386: 611~615.
    [67] A. Berenov, A. Serquis, X.Z. Zhao et al, Enhancement of critical current density in low level Al-doped MgB_2, Supercond. Sci. Technol., 2004, 17: 1093~1096.
    [68] Y.G. Zhao, X.P. Zhang, P.T. Qiao et al., Effect of Li doping on structure and superconducting transition temperature of Mg1?xLixB_2 , Physica C, 2001, 361: 91~94.
    [69] H.R. Zhang, J.Y. Zhao, L. Shi, The charge transfer induced by Cr doping inMgB_2, Physica C, 2005, 424: 79~84.
    [70] Y. Hishinuma, A. Kikuchi, Y. Iijima et al., Microstructure and superconductivity of Cu addition MgB_2 wires using Mg2Cu compound as additional source material, Supercond. Sci. Technol., 2006, 19: 1269~1273.
    [71] C. Shekhar, R. Giri, R.S. Tiwari et al, High critical current density and improved flux pinning in bulk MgB_2 synthesized by Ag addition, J. Appl. Phys., 2007, 101: 043906.
    [72] S.F. Wang, S.Y. Dai, Y.L. Zhou et al., Effect of Cd doping on structure and superconductivity in Mg_(0.5)Cd_(0.5)B_2, Journal of Superconductivity: Incorporating Novel Magnetism, 2004, 17: 397~400.
    [73] Z.Q. Ma, Y.C. Liu, Y.H. Han et al., Variation of the enhancement mechanism in thecritical current density of Cu-doped MgB_2 samples sintered at different temperatures, J. Appl. Phys, 2008, 104: 063917.
    [74] C. Shekhar, R. Giri, R.S. Tiwari et al., Effect of La doping on microstructure and critical current density of MgB_2, Supercond. Sci. Technol., 2005, 18: 1210~1214.
    [75] A. Agostino, M. Panetta, P. Volpe et al., Na substitution effects on MgB_2 synthesized with a microwave-assisted technique, IEEE Trans. Appl. Supercond., 2007, 17: 2774~2777.
    [76] Y. Zhao, Y. Feng, D.X. Huang et al., Doping effect of Zr and Ti on the critical current density of MgB_2 bulk superconductors prepared under ambient pressure, Physica C, 2002, 378: 122~126.
    [77] Y. Zhao, Y. Feng, C.H. Cheng et al., High critical current density of MgB_2 bulk superconductor doped with Ti and sintered at ambient pressure, Appl. Phys. Lett., 2001, 79: 1154~1156.
    [78] Y. Zhao, D.H. Huang, C.H. Cheng et al., Nanoparticle structure of MgB_2 with ultrathin TiB_2 grain boundaries, Appl. Phys. Lett, 2002, 80: 1640~1642.
    [79] T. Masui, S. Lee, S. Tajima, Carbon-substitution effect on the electronic properties of MgB_2 single crystals, Phys. Rev. B, 2004, 70: 024504.
    [80] E. Ohmichi, T. Masui, S. Lee et al., Carbon-substitution effect on vortex order-disorder transition in MgB_2 single crystals, Phys. Rev. B, 2004, 70:174513.
    [81] W.K. Yeoh, J.H. Kim, J. Horvat et al., Control of nano carbon substitution for enhancing the critical current density in MgB_2, Supercond. Sci. Technol., 2006, 19: 596~599.
    [82] Y. Ma, X. Zhang, G. Nishijima et al., Significantly enhanced critical current densities in MgB_2 tapes made by a scaleable nanocarbon addition route, Appl. Phys. Lett., 2006, 88: 072502.
    [83] Z. Holanova, J. Kacmarc?k, P. Szabo et al., Critical fluctuations in the carbon-doped magnesium diboride, Physica C, 2004, 404: 195~199.
    [84] M. Putti, V. Braccini, C. Ferdeghini et al., Critical field of MgB_2: Crossover from clean to dirty regimes, Phys. Rev. B, 2004, 70: 052509.
    [85] P. Samuely, Z. Holanova, P. Szabo et al., Energy gaps in doped MgB_2, Phys. Status Solidi, 2005, 2: 1743~1748.
    [86] S. Soltanian, J. Horvat, X.L. Wang et al., Effect of nano-carbon particle doping on the flux pinning properties of MgB_2 superconductor, Physica C, 2003, 390: 185~190.
    [87] S.X. Dou, S. Soltanian, J. Horvat et al., Enhancement of the critical current density and flux pinning of MgB_2 superconductor by nanoparticle SiC doping, Appl. Phys. Lett., 2002, 81: 3419~3421.
    [88] S.X. Dou, A.V. Pan, S.H. Zhou et al., Substitution-induced pinning in MgB_2 superconductor doped with SiC nano-particles, Supercond. Sci. Technol., 2002, 15: 1587~1591.
    [89] S.X. Dou, A.V. Pan, S.H. Zhou et al., Superconductivity, critical current density, and flux pinning in MgB_(2–x)(SiC))(x/2) superconductor after SiC nanoparticle doping, J. Appl. Phys., 2003, 94: 1850~1856.
    [90] S.X. Dou, W.K. Yeoh, J. Horvat et al., Effect of carbon nanotube doping on critical current density of MgB_2 superconductor, Appl. Phys. Lett., 2003, 83: 4996-4998.
    [91] W.K. Yeoh, J. Horvat, S.X. Dou et al., Strong pinning and high critical current density in carbon nanotube doped MgB_2, Supercond. Sci. Technol., 2004, 17: 572~577.
    [92] J.H. Kim, W.K. Yeoh, M.J. Qin et al., The doping effect of multiwall carbon nanotube on MgB_2/Fe superconductor wire, J. Appl. Phys., 2006, 100: 013908.
    [93] J.H. Kim, W.K. Yeoh, M.J. Qin et al., Enhancement of in-field Jc in MgB_2/Fe wire using single- and multiwalled carbon nanotubes, Appl. Phys. Lett., 2006, 89: 122520.
    [94] H. Yamada, M. Hirakawa, H. Kumakura et al., Effect of aromatic hydrocarbon addition on in situ powder-in-tube processed MgB_2 tapes, Supercond. Sci.Technol., 2006, 19: 175~177.
    [95] S.H. Zhou, A.V. Pan, S.X. Dou et al., Sugar coating of boron powder for efficient carbon doping of MgB_2 with enhanced currentcarrying performance, Adv. Mater., 2007, 19: 1373~1376.
    [96] J.H. Kim, S. Zhou, M.S.A. Hossain et al., Carbohydrate doping to enhance electromagnetic properties of MgB_2 superconductors, Appl. Phys. Lett., 2006, 89: 142505.
    [97] A. Matsumoto, H. Kumakura, H. Kitaguchi et al., The microstructures and superconducting properties of MgB_2 tapes processed in-situ by a ball-milling method, IEEE Trans. Appl. Superconduct., 2005, 15: 3333~3336.
    [98] Q.Z. Shi, Y.C. Liu, Q. Zhao et al., Phase formation process of bulk MgB_2 analyzed by Differential Thermal Analysis during sintering, J. Alloys. Compd., 2008, 458: 553~557.
    [99] G. Yan, Y.Feng, B.Q. Fu et al., Effect of synthesis temperature on density and microstructure of MgB_2 superconductor at ambient pressure, J. Mater. Sci., 2004, 39: 4893~4898.
    [100] A.Yamamoto, J. Shimoyama, S. Ueda et al., Improved critical current properties observed in MgB_2 bulks synthesized by low-temperature solid-state reaction, Supercond. Sci. Technol., 2005, 18: 116~121.
    [101] C.F. Liu, G. Yan, S.J. Du et al., Effect of heat-treatment temperatures on density and porosity in MgB_2 superconductor, Physica C, 2003, 386: 603~606.
    [102] T.C. Shields, K. Kawano, D. Holdom et al., Microstructure and superconducting properties of hot isostatically pressed MgB_2, Supercond. Sci. Technol., 2002, 15: 202~205.
    [103] S.S. Indrakanti, V.F. Nesterenko, M.B. Maple et al., Hot isostatic pressing of bulk magnesium diboride: mechanical and superconducting properties, Phil. Mag. Lett., 2001, 81: 849~857.
    [104] X.Z. Liao, A. Serquis, Y.T. Zhu et al., Defect structures in MgB_2 wires introduced by hot isostatic pressing, Supercond. Sci. Technol., 2003, 16: 799~803.
    [105] S. Li, B.J. Taylor, N.A. Frederick et al., Mixed-state flux dynamics in bulk MgB_2, Physica C, 2002, 382: 177~186.
    [106] A. Serquis, L. Civale, D.L. Hammon et al., Hot isostatic pressing of powder in tube MgB_2 wires, Appl. Phys. Lett., 2003, 82: 2847~2849.
    [107] A. Serquis, X.Z. Liao, Y.T. Zhu et al., Influence of microstructures and crystalline defects on the superconductivity of MgB_2, J. Appl. Phys., 2002, 92: 351-356.
    [108]朱嘉林,李绍春, MgB_2的高压高温合成及其超导电性,科学通报, 2001, 46 (15): 1254~1255。
    [109] P.C. Canfield, D.K. Finnemore, S.L. Budko, et a1., Superconductivity in dense MgB_2 wires, Phys. Rev. Lett., 2001, 86: 2423~2426.
    [110] C.E. Cunningham, C. Petrovic, G. Lapertot et al., Synthesis and processing of MgB_2 powders and wires, Physica C, 2001, 353: 5~10.
    [111] J.D. DeFouw, D.C. Dunand, In situ synthesis of superconducting MgB_2 fibers within a magnesium matrix, Appl. Phys. Lett., 2003, 83: 120~122.
    [112] K. Komori, K. Kawagishi, Y. Takano et al., Approach for the fabrication of MgB_2 superconducting tape with large in-field transport critical current density, Appl. Phys. Lett., 2002, 81: 1047~1049.
    [113] V. Ferrando, P. Orgiani, A.V. Pogrebnyakov et al., High upper critical field and irreversibility field in MgB_2 coated-conductor fibers, Appl. Phys. Lett., 2005, 87: 252509.
    [114] B.A. Glowacki, M. Majoros, MgB_2 conductors for dc and ac app-lications, Physica C, 2002, 372: 1235~1240.
    [115] H. Kumakura, A. Matsumoto, H. Fujii et al., High transport critical current density obtained for powder-in-tube-processed MgB_2 tapes and wires using stainless steel and Cu-Ni tubes, Appl. Phys. Lett., 2001, 79: 2435~2437.
    [116] G. Grasso, A. Malagoli, C. Ferdeghini et al., Large transport critical currents in unsintered MgB_2 superconducting tapes, Appl. Phys. Lett., 2001, 79: 230~232.
    [117] H.L. Suo, C. Beneduce, M. Dhalle et al., Large transport critical currents in dense Fe- and Ni-clad MgB_2 superconducting tapes, Appl. Phys. Lett., 2001, 79: 3116~3118.
    [118] A. Serquis, L. Civale, D.L. Hammon et al., Microstructure and high critical current of powder-in-tube MgB_2, Appl. Phys. Lett., 2003, 82: 1754~1756.
    [119] M. Eisterer, B.A. Glowacki, H.W. Weber et al., Enhanced transport currents in Cu-sheathed MgB_2 wires, Supercond. Sci. Technol., 2002, 15: 1088~1091.
    [120] B.A. Glowacki, M. Majoros, M. Vickers et al., Superconductivity of powder-in-tube MgB_2 wires, Supercond. Sci. Technol., 2001, 14: 193~199.
    [121] S. Soltanian, X.L. Wang, J. Horvat et al., Improvement of critical currentdensity in the Cu/MgB_2 and Ag/MgB_2 superconducting wires using the fast formation method, Physica C, 2002, 382: 187~193.
    [122] G. Grasso, A. Malagoli, D. Marre et al., Transport properties of powder-in-tube processed MgB_2 tapes, Physica C, 2002, 378: 899~902.
    [123] P. kovac, I. Husek, T. Melisek et al., MgB_2 composite wires with Fe, Nb and Ta sheaths, Supercond. Sci. Technol., 2006, 19: 600~605.
    [124] H. Fang, S. Padmanabhan, Y.X. Zhou et al., High critical current density in iron-clad MgB_2 tapes, Appl. Phys. Lett., 2003, 82: 4113~4116.
    [125] X.L. Wang, S. Soltanian, J. Horvat et al., Very fast formation of superconducting MgB_2/Fe wires with high J(c), Physica C, 2001, 361: 149~155.
    [126] H. Kumakura, A. Matsumoto, H. Fujii et al., Microstructure and superconducting properties of powder-in-tube processed MgB_2 tapes, Physica C, 2002, 382: 93~97.
    [127] S.I. Schlachter, A. Frank, B. Ringsdorf et al., Suitability of sheath materials for MgB_2 powder-in-tube superconductors, Physica C, 2006, 777: 445~448.
    [128] J.M. Hur, K. Togano, A. Matsumoto et al., Fabrication of high-performance MgB_2 wires by an internal Mg diffusion process, Supercond. Sci. Technol., 2008, 21: 032001.
    [129] G. Giunchi, C. Orecchia, L. Malpezzi et al., Analysis of the minority crystalline phases in bulk superconducting MgB_2 obtained by reactive liquid Mg infiltration, Physica C, 2006, 433: 182~188.
    [130] Y. Wu, B. Messer, P. Yang, Superconducting MgB_2 Nanowires, Adv. Mater., 2001, 13: 1487~1489.
    [131] Q. Yang, J. Sha, X. Ma et al., Aligned single crystal MgB_2 nanowires, Supercond. Sci. Technol., 2004, 17: L31~L33.
    [132] M. Nash, B. A. Parkinson, A Simple Sol-Gel Synthesis of Superconducting MgB_2 Nanowires, Adv. Mater., 2006, 18: 1865~1868.
    [133] X.X. Xi, MgB_2 thin films, Supercond. Sci. Technol., 2009, 22: 043001.
    [134] Z.K. Liu, D.G. Schlom, Q. Li et al., Thermodynamics of the Mg–B system: implications for the deposition of MgB_2 thin films, Appl. Phys. Lett., 2001, 78: 3678~3680.
    [135] S.H. Moon, J.H. Yun, H.N. Lee et a1., High critical current densities in superconducting MgB_2 thin films, Appl. Phys. Lett., 2001, 79: 2429~2431.
    [136] A. Saito, A. Kawakami, H. Shimkage et a1., As-grown MgB_2 thin filmsdeposited on Al2O3 substrates with different crystal planes, Supercond. Sci. Technol., 2002, 15: l325~1329.
    [137] W. Jo, J-U. Huh, T. Ohnishi et a1., In situ growth of superconducting MgB_2 thin films with preferential orientation by molecular-beam epitaxy, Appl. Phys. Lett., 2002, 80: 3563~3565.
    [138] S.Q. Zhao, Y.L. Zhou, K. Zhao, et a1., Laser-induced thermoelectric voltage in normal state MgB_2 thin films, Appl. Surf. Sci., 2006, 253: 2671~2673.
    [139] Q. Li, B.T. Liu, Y.F. Hu et a1., Large anisotropic normal-state magnetoresistance in clean MgB_2 thin films,Phys. Rev. Lett., 2006, 96: 167003.
    [140] F. Li, T. Guo, K.C. Zhang et al., Progress in depositing MgB_2 films on stainless steel substrate, Physica C, 2007, 452: 6~10.
    [141] A. Yamamoto, J. Shimoyama, S. Ueda et al., Effects of sintering conditions on critical current properties and microstructures of MgB_2 bulks, Physica C, 2005, 426: 1220~1224.
    [142] N. Rogado, M.A. Hayward, K.A. Regan et al., Low temperature synthesis of MgB_2, J. Appl. Phys., 2002, 91: 274~277.
    [143] W. Goldacker, S.I. Schlachter, B. Obst et al., Development and performance of thin steel reinforced MgB_2 wires and low-temperature in situ processing for further improvements, Supercond. Sci. Technol., 2004, 17: S363~S368.
    [144] M. Maeda, Y. Zhao, S.X. Dou et al., Fabrication of highly dense MgB_2 bulk at ambient pressure, Supercond. Sci. Technol., 2008, 21: 032004.
    [145] M. Bhatia, M.D. Sumption, S. Bohnenstiehl et al., Superconducting properties of SiC doped MgB_2 formed below and above Mg's melting point, IEEE Trans Appl. Suprcond., 2007, 17: 2750~2753.
    [146] S. Soltanian, X.L. Wang, J. Horvat et al., High transport critical current density and large H-c2 and H-irr in nanoscale SiC doped MgB_2 wires sintered at low temperature, Supercond. Sci. Technol., 2005, 18: 658~666.
    [147] W.K. Yeoh, J. Horvat, J.H. Kim et al., Effect of processing temperature on high field critical current density and upper critical field of nanocarbon doped MgB_2, Appl. Phys. Lett., 2007, 90: 122502.
    [148] M.S.A. Hossain, J.H. Kim, X. Xu et al., Significant enhancement of H-c2 and H-irr in MgB_2+C4H6O5 bulks at a low sintering temperature of 600 degrees C, Supercond. Sci. Technol., 2007, 20: L51~L54.
    [149] J.H. Kim, X. Xu, M.S.A. Hossain et al., Influence of disorder on the in-field J(c) of MgB_2 wires using highly active pyrene, Appl. Phys. Lett., 2008, 92: 042506.
    [150] C. Chen, Z.J. Zhou, X.G. Li et al., Phase formation of polycrystalline MgB_2 using nanometer Mg powder, Solid State Commun, 2004, 131: 275~278.
    [151] H. Yamada, M. Hirakawa, H. Kumakura et al., Critical current densities of powder-in-tube MgB_2 tapes fabricated with nanometer-size Mg powder, Appl. Phys. Lett., 2004,84: 1728~1730.
    [152] H. Fujii, K. Togano, H. Kumakura et al., Enhancement of critical current densities of powder-in-tube processed MgB_2 tapes by using MgH2 as a precursor powder, Supercond. Sci. Technol., 2002, 15: 1571~1576.
    [153] S. Hata, T. Yoshidome, H. Sosiati et al., Microstructures of MgB_2/Fe tapes fabricated by an in situ powder-in-tube method using MgH2 as a precursor powder, Supercond. Sci. Techno., 2006, 19: 161~168.
    [154] C.H. Jiang, H. Hatakeyama, H. Kumakura et al., Preparation of MgB_2/Fe tapes with improved J(c) property using MgH2 powder and a short pre-annealing and intermediate rolling process, Supercond. Sci. Technol., 2005, 18: L17~L22.
    [155] T. Nakane, H. Kitaguchi, H. Fujii et al., Improvement of ex-situ MgB_2 powder in tube processed tapes using MgH2 powder, Physica C, 2006, 445: 784~787.
    [156] T. Nakane, H. Kitaguchi, H. Kumakura, Improvement in the critical current density of ex situ powder in tube processed MgB_2 tapes by utilizing powder prepared from an in situ processed tape, Appl. Phys. Lett., 2006, 88: 022513.
    [157] A. Kikuchi, Y. Iijima, Y. Yoshida et al., Microstructure and superconductivity of MgB_2 synthesized by using Mg-based compound powders, Physica C, 2004, 412: 1174~1178.
    [158] A. Kikuchi, Y. Yoshida, Y. Iijima et al., The synthesis of MgB_2 superconductor using Mg2Cu as a starting material, Supercond. Sci. Technol., 2004, 17: 781~785.
    [159] A. Gumbel, J. Eckert, G. Fuchs et al., Improved superconducting properties in nanocrystalline bulk MgB_2, Appl. Phys. Lett., 2002, 80: 2725~2727.
    [160] H. Abe, M. Naito, K. Nogi et al., Low temperature formation of superconducting MgB_2 phase from elements by mechanical milling, Physica C, 2003, 391: 211~216.
    [161] C. Fischer, C. Rodig, W. Ha?ler et al., Preparation of MgB_2 tapes using a nanocrystalline partially reacted precursor, Appl. Phys. Lett., 2003, 83:1083~1085.
    [162] W. Haessler, M. Herrmann, B. Birajdar et al., Superconducting MgB_2 tapes prepared using mechanically alloyed nanocrystalline precursor powder, IEEE Trans. Appl. Supercond., 2007, 17: 2919~2921.
    [163] W. Ha?ler, C. Rodig, C. Fischer et al., Low temperature preparation of MgB_2 tapes using mechanically alloyed powder, Supercond. Sci. Technol., 2003, 16: 281~284.
    [164] C. Fischer, W. Ha?ler, C. Rodig et al., Critical current densities of superconducting MgB_2 tapes prepared on the base of mechanically alloyed precursors, Physica C, 2004, 406: 121~130.
    [165] W. Ha?ler, M. Herrmann, C. Rodig et al., Further increase of the critical current density of MgB_2 tapes with nanocarbon-doped mechanically alloyed precursor, Supercond. Sci. Technol., 2008, 21: 062001.
    [166] Y.C. Liu, Q.Z. Shi, Q. Zhao et al., Kinetics analysis for the sintering of bulk MgB_2 superconductor, J. Mater. Sci: Mater. Electron., 2007, 18: 855~861.
    [167] S.C. Yan, Y.F. Lu, G.Q. Liu et al., The kinetic analysis of formation behavior for the MgB_2 phase, J. Alloys. Compd., 2007, 443: 161~165.
    [168] S. Bohnenstiehl, S.A. Dregia, M.D. Sumption et al., Thermal analysis of MgB_2 formation, IEEE Trans. Appl. Supercond., 2007, 17: 2754~2756.
    [169] C.X. Cui, D.B. Liu, Y.T. Shen et al., Nanoparticles of the superconductor MgB_2: structural characterization and in situ study of synthesis kinetics, Acta mater., 2004, 52: 5757~5760.
    [170] J.D. DeFouw, J.P. Quintana, D.C. Dunand et al., In situ X-ray synchrotron diffraction study of MgB_2 synthesis from elemental powders, Acta mater, 2008, 56: 1680~1688.
    [171] A.N. Baranov, V.L. Solozhenko, C. Lathe et al., Synchrotron radiation study of MgB_2 formation under high pressure, Supercond. Sci. Technol., 2003, 16: 1147~1151.
    [172] J.C. Grivel, R. Pinholt, N.H. Andersen et al., In situ investigations of phase transformations in Fe-sheathed MgB_2 wires, Supercond. Sci. Technol., 2006, 19: 96~101.
    [173] Q.R. Feng, X. Wang, X.Y.Wang et al., In situ resistance measurements and low temperature synthesis of superconducting MgB_2 bulk samples, Solid State Commun., 2002, 122: 459~461.
    [174] Q.R. Feng, X. Chen, Y.H. Wang et al., In situ resistance measurement of superconducting MgB_2 in flowing argon atmosphere, Physica C, 2003, 386: 653~656.
    [175] Q.R. Feng, C. Chen, J. Xu et al., Study on the formation of MgB_2 phase, Physica C, 2003, 411: 41~46.
    [176] W. Goldacker, S.I. Schlachter, B. Obst et al., In situ MgB_2 round wires with improved properties, Supercond. Sci. Technol., 2004, 17: S490~S495.
    [177] Q.Z. Shi, Y.C. Liu, Z.M. Gao et al., In-situ formation process and mechanism of bulk MgB_2 before Mg melting, J. Mater. Res., 2008, 23: 1840~1848.
    [178]刘志存,微小电阻测量方法及关键技术,物理测试, 2005, 23: 34~36。
    [179] J. Shimoyama, K. Hanafusa, A. Yamamoto et al., Catalytic effect of silver addition on the low temperature phase formation of MgB_2, Supercond. Sci. Technol., 2007, 20: 307~311.
    [180] W.J. Feng, T.D. Xia, T.Z. Liu et al., Synthesis and properties of Mg_(1-x)Cu_xB_2 bulk obtained by self-propagating high-temperature synthesis (SHS) method at low temperature, Physica C, 2005, 425: 144~148.
    [181] Y. Kimishima, S. Takami, M. Uehara et al., Pinning property of Cu/MgB_2 system, Physica C, 2006, 445: 224~227.
    [182] S.K. Chen, M. Majoros, J.L. MacManus-Driscoll et al., In situ and ex situ Cu doping of MgB_2, Physica C, 2005,418: 99~106.
    [183] Y. Hishinuma, A. Kikuchi, Y. Iijima et al., Superconducting properties of Mg_2Cu-doped MgB_2 wires with several metal sheath for fusion reactor application, IEEE Trans. Appl. Supercond, 2007,17: 2798~2801.
    [184] The Materials Information Society, Binary Alloy Phase Diagram, 2nd edn plus updates, Metals Park, OH: ASMInternational (1996).
    [185] C.M. Kipphut, R.M. German, Alloy phase stability in liquid phase sintering, Sci. Sintering, 1988, 20: 31~41.
    [186] Z.Q. Ma, H. Jiang, Y.C. Liu, Effect of Sn-doping on the sintering process of MgB_2 and its superconductive properties, Supercond. Sci. Technol., 2010, 23: 025005.
    [187] J.C. Grivel, A. Abrahamsen, J. Bednarcik, Effects of Cu or Ag additions on the kinetics of MgB_2 phase formation in Fe-sheathed wires, Supercond. Sci. Technol., 2008, 21: 035006.
    [188] J.H. Kim, S.X. Dou, J.L. Wang, et al., The effects of sintering temperature onsuperconductivity in MgB_2/Fe wires, Supercond. Sci. Technol., 2007, 20: 448~451.
    [189] X.Z. Liao, A.C. Serquis, Y.T. Zhu, et al., Controlling flux pinning precipitates during MgB_2 synthesis, Appl. Phys. Lett, 2002, 80: 4398~4400.
    [190] V. Ganesan, H. Feufel, F. Sommer et al., Thermochemistry of ternary liquid Cu-Mg-Si alloys, Metall. Mater.Trans. B, 1998, 29: 807~813.
    [191] A.E. Nielsen, Electrolyte crystal growth mechanisms, J. Cryst. Growth., 1984, 67: 289~310.
    [192] L.M. Fabietti, R.K. Trivedi, Nonequilibrium effects during the ledgewise growth of a solid-liquid interface, Metall. Trans. A., 1991, 22: 1249~1258.
    [193] K. Singh, R. Mohan, N. Kaur et al., Effect of Cu doping in MgB_2 superconductor at various processing temperatures, Physica C, 2006, 450: 124~128.
    [194] J.M. Rowell, S.Y. Xu, X.H. Zeng et al., Critical current density and resistivity of MgB_2 films, Appl. Phys. Lett., 2003, 83: 102~104.
    [195] R.H.T. Wilke, S.L. Bud’ko, P.C. Canfield, et al., Synthesis and optimization of Mg (B_(1-x)C_x) 2 wire segments, Physica C, 2005, 424: 1~16.
    [196] A. Gümbel, J. Eckert, G. Fuchs et al., Improved superconducting properties in nanocrystalline bulk MgB_2, Appl. Phys. Lett., 2002, 80: 2725~2727.
    [197] Y.D. Gao, J. Ding, Q. Chen, et al., Structure, superconductivity and magnetic properties of mechanically alloyed Mg1-xFexB_2 powders with x=0-0.4, Acta Mater, 2004, 52: 1543~1553.
    [198] R.A. Varin, C. Chiu et al., Synthesis of nanocrystalline magnesium diboride (MgB_2) metallic superconductor by mechano-chemical reaction and post-annealing, J Alloys.Compd., 2006, 407: 268~273.
    [199] S.K. Chen, K.A. Yates, M.G. Blamire et al., Strong influence of boron precursor powder on the critical current density of MgB_2, Supercond. Sci. Technol., 2005, 18: 1473~1477.
    [200] W. Hassler, B. Birajdar, W. Gruner et al., MgB_2 bulk and tapes prepared by mechanical alloying: influence of the boron precursor powder, Supercond. Sci. Technol., 2006, 19: 512~520.
    [201] X. Xu, J.H. Kim, M.S.A. Hossain et al., Phase transformation and superconducting properties of MgB_2 using ball-milled low purity boron, J. Appl. Phys., 2008, 103: 023912.
    [202] B.H. Jun, Y.J. Kim, K.S. Tan et al., Effective carbon incorporation in MgB_2 by combining mechanical milling and the glycerin treatment of boron powder, Supercond. Sci. Technol, 2008, 21: 105006.
    [203] J.H. Lee, S.Y. Shin, C.J. Kim et al., Superconducting properties of MgB_2 prepared from attrition ball-milled boron powder, J Alloys. Compd., 2009, 476: 919~924.
    [204] X.Xu, M.J. Qin, K. Konstantinov et al., Effect of boron powder purity on superconducting properties of MgB_2, Supercond. Sci. Technol., 2006, 19: 466~469.
    [205] R.F. Klie, J.C. Idrobo, N.D. Browning et al., Direct observation of nanometer-scale Mg- and B-oxide phases at grain boundaries in MgB_2, Appl. Phys. Lett., 2001, 79: 1837~1839.
    [206] X.Z. Liao, A. Serquis, Y.T. Zhu et al., Mg(B,O)2 precipitation in MgB_2, J. Appl. Phys., 2003, 93: 6208~6215.
    [207] C.C. Koch, O.B. Cavin, C.G. McKamey et al., Preparation of amorphous Ni_(60)Nb_(40) by mechanical alloying, Appl. Phys. Lett., 1983, 43: 1017-1019.
    [208] S. Ordonez, P. Rojas, O. Busto et al., Crystalline Mg_2Ni obtained from Mg-Ni amorphous precursor produced by mechanical alloying, J. Mater. Sci. Lett., 2003, 22: 717–720.
    [209] P. Rojas, S. Ordonez, D. Serafini et al., Microstructural evolution during mechanical alloying of Mg and Ni, J. Alloys Compd., 2005, 391: 267–276.
    [210] D. Guzman, S. Ordonez, D. Serafini et al., Effect of the milling energy on the production and thermal stability of amorphous Mg50Ni50, J. Alloys Compd., 2009, 471: 435–441.
    [211] N. Aydinbeyli, O.N. Celik, H. Gasan et al., Effect of the heating rate on crystallization behavior of mechanically alloyed Mg50Ni50 amorphous alloy, J. Alloys Compd., 2006, 31: 2266-2273.
    [212] L.P.H. Jeurgens, Z. Wang, E.J. Mittemeijer, Thermodynamics of reactions and phase transformations at interfaces and surfaces, Int. J. Mat. Res., 2009, 100: 1281-1307.
    [213] F. Sommer, R. N. Singh, E. J. Mittemeijer, Interface thermodynamics of nano-sized crystalline, amorphous and liquid metallic systems, J. Alloys Compd., 2009, 467: 142-153.
    [214] W.A. Jesser, G.J. Shiflet, G.L. Allen et al., Equilibrium phase diagrams ofisolated nano-phases, Mater. Res. Innovat., 1999, 2: 211-216.
    [215] J. Weissmüller, P. Bunzel, G. Wilde, Two-phase equilibrium in small alloy particles, Scripta Mater., 2004, 51: 813-818.
    [216] K. Lu, Nanocrystalline materials crystallized from amorphous solids: Nanocrystallization, structure, and properties, Mater. Sci. Eng. R., 1996, 16: 161-221.
    [217] R. A. Varin, T. Czujko, J. Mizera, Microstructural evolution during controlled ball milling of (Mg_2Ni~+MgNi_2) intermetallic alloy, J. Alloys. Compd., 2003, 350: 332-339.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700