高性能柔性散热材料设计、制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据微电子领域最新涌现的散热需求,提出柔性散热材料这一全新概念,用以提升和整合相关散热材料的制备、设计、测量和应用技术,作为热管理技术领域新的研究方向。
     使用发泡法自蔓延燃烧合成法制备了长径比可控的高导热长柱状β-Si3N4粉体,结合其他粉体,与不同的有机基体相进行复合,制成了导热胶、导热泥、导热膏和导热垫片四类柔性散热材料。其中重点研究了导热胶和导热泥的设计、制备与应用技术,因为它们的应用背景为平面散热和整板均温,是热管理技术的重要发展趋势之一。
     导热胶采用环氧树脂或者硅灌封胶为基体材料,β-Si3N4粉体作为主要填料,分析了复合材料热导率和流动性随填料本征性能、颗粒长径比、粉体表面改性等因素的变化规律。重点论述了各因素对复合热导率的作用机理,引入了MG方程和渗流理论来分别描述填料弥散和连通状态的热导率规律,辅以界面热阻模型、伪晶界模型、排除体积等概念和二步法等数学手段,修正了MG方程和渗流标度率,并且首次给出了渗流标度率中斜率的物理意义。
     导热泥的制备以高分子量、硬度适中的生胶和乙烯基硅油配合作为基体胶,球形Al2O3粉体作为主要填料,实现了材料的无限压缩特性。同时系统研究了填料性能及其填充方式对导热泥的热导率和使用性能的影响,讨论了偶联剂、分散剂、触变剂和硫化剂的用法、用量及使用效果。
     基于Angstrom法,开发了测量平面散热材料面内热扩散率的仪器,作为下一步各向异性高导热柔性散热材料的研究的硬件支持。研究了样品夹持方式、热电偶加载方式、输入波形和电路放大方式、测试温度、样品长度等对测量结果的影响。最终实现了对高热扩散率的材料的测量,如柔性石墨片和铜片等,测量误差可以控制在10%以内。
A new concept of flexible heat dissipating materials was proposed accordingto the emerging application scenarios in the microelectronics industry. Flexibleheat dissipating materials point a new research direction in thermal managementby integrating and enhancing the preparation, design, measurement andapplication technology of related materials.
     Elongated β-Si3N4powders of controllable aspect ratio were prepared byfoaming combustion synthesis method. Together with other powders, the β-Si3N4powders were applied into various organic matrices to form flexible compositesof different physical states. The resulting composites included thermal adhesive,thermal mud, thermal grease and thermal pad. Thermal adhesive and thermal mudwere chosen as focuses, on which the design, preparation and applicationtechnology were studied. The main applications of thermal adhesives and thermalmud were as in-plane heat dissipating and temperature uniforming materials,which were an important trend in thermal management.
     Thermal adhesive was prepared with silicon rubber encapsulants as thematrix material and β-Si3N4powders as the main fillers. The thermal conductivityand fluidity of the resulting composites varied with the intrinsic properties, aspectratio and surface modification of the fillers. To reveal the thermal conductingmechanisms, MG equation and percolation theory were introduced to describe thevariation rules of discontinuous filler phase and continuous filler phase,respectively. With the consideration of interface thermal resistance,pseudo-grain-boundary model and exclusive volume assumption, using two-stepmethod and other mathematical means, we revised the MG equation and the scalelaw of percolation theory. For the first time, we give the physical meaning of theslope of the scale law.
     Thermal mud was prepared with silicone rubber of high molecular weight,moderate hardness and the spherical Al2O3powders. The resulting compositescould be compressed with no limit. The influences of filler properties and fillingmethods on thermal conductivities and application effects were systematically examined. The use of the coupling agent, dispersing agent, thixotropic agent andcuring agent were also discussed.
     An in-plane thermal diffusivity measuring equipment was developed basedon Angstrom method. This equipment is a necessary supportive hardware forresearching anisotropic flexible heat dissipating materials. The way ofsample-holding and thermocouple loading, the choices of input waveform, circuitamplification method, testing temperature and the sample length were determined.The as-developed equipment can effectively measure the materials with highthermal diffusivity such as flexible graphite sheet and copper. The error can becontrolled within10%.
引文
[1]高翔,凌惠琴,李明,等. CPU散热技术的最新研究进展.上海交通大学学报:2007,41(S2):48-52.
    [2] Kokini K. Effect of Package Lid on the Thermal-Shock Tests of Glass-to-Metal Seals inMicroelectronics. Am Ceram Soc Bull,1986,65(11):1493-1497.
    [3] Stern M, Melanson B, Gektin V, et al. Evaluation of and inspection metrology for lid attachfor advanced thermal packaging materials. Proceedings of the Asme Interpack Conference,Vancouver, British Columbia, Canada:2007,1:309-317.
    [4] Shah A, Sammakia B, Srihari H, et al. A numerical study of the thermal performance of animpingement heat sink-Fin shape optimization. Proceedings of Eighth IntersocietyConference on Thermal and Thermomechanical Phenomena in Electronic Systems, NY,USA:2002:298-306.
    [5] Shah A, Sammakia B G, Srihari H, et al. A numerical study of the thermal performance of animpingement heat sink-fin shape optimization. Ieee T Compon Pack T,2004,27:710-717.
    [6] Jang J H. Experimental study on visualization of a longitudinal heat sink with top-mountedfan by particle tracking. Proceedings of5thinternational Conference on Thermal andMechanical Simulation and Experiments in Microelectronics and Microsystems, Taipei,Taiwan:2004:505-508.
    [7] Mochizuki M, Saito Y, Nguyen T, et al. Revolution in fan heat sink cooling technology toextend and maximize air cooling for high performance processors in laptop/desktop serverapplication. Advances in Electronic Packaging, Pts A-C, Proceedings of InterPACK2005,San Francisco, California, USA:2005:431-437.
    [8] Quinones P D, Mok L S. Multiple Fan-Heat Sink Cooling System With EnhancedEvaporator Base: Design, Modeling, and Experiment. J Electron Packaging,2009,131(3):031009-031016.
    [9] Travis B. Fan heat sink cools Allegro Pentium Pro. Edn,1996,41:22.
    [10] Walsh E, Grimes R. The development of an integrated fan and heat sink solution for thermalmanagement in low profile applications. Proceedings of the4th International Conferenceon Nanochannels, Microchannnels, and Minichannels, Pts A and B, Limerick, Ireland:2006:279-284.
    [11] Walsh E, Grimes R. Low profile fan and heat sink thermal management solution for portableapplications. Int J Therm Sci,2007,46:1182-1190.
    [12] Chaparro P, Gonzalez J, Cai Q O, et al. Dynamic Thermal Management using Thin-FilmThermoelectric Cooling. Proceedings of14thACM/IEEE international symposium on Lowpower electronics and design (ISLPED '09), San Francisco, USA:2009:111-116.
    [13] Kapitulnik A. Thermoelectric Cooling at Very Low-Temperatures. Appl Phys Lett,1992,60(2):180-182.
    [14] Lee K H, Kim H, Kim O J. Effect of Thermoelectric and Electrical Properties on the CoolingPerformance of a Micro Thermoelectric Cooler. J Electron Mater,2010,39(9):1566-1571.
    [15] Naphon P, Wiriyasart S. Liquid cooling in the mini-rectangular fin heat sink with andwithout thermoelectric for CPU. Int Commun Heat Mass,2009,36:166-171.
    [16] Wang J, Zou K, Friend J. Minimum Power Loss Control-Thermoelectric Technology inPower Electronics Cooling.2009Ieee Energy Conversion Congress and Exposition,2009,1-6:2797-2802.
    [17] Kim K S, Won M H, Kim J W, et al. Heat pipe cooling technology for desktop PCCPU. ApplTherm Eng,2003,23:1137-1144.
    [18] Uddin A I, Feroz C M. Effect of working fluid on the performance of a miniature heat pipesystem for cooling desktop processor. Heat Mass Transfer,2009,46:113-118.
    [19] Xie X L, He Y L, Tao W Q, et al. An experimental study of a novel high-performance heatpipe for chip cooling of desktop computer. Appl Therm Eng,2007,28(5-6):257-262.
    [20] Zhou P, Hom J, Upadhya G, et al. Electro-kinetic microchannel cooling system for desktopcomputers. Proceedings of20th Annual Ieee Semiconductor Thermal Measurement andManagement Symposium, CA, USA:2004:26-29
    [21] Mulgaonker S, Chambers B, Mahalingam M. An assessment of the thermal performance ofthe PBGA family. Ieee T Compon Pack A,1995,18:739-748.
    [22] Chou H E, Yang S R, Wang S F, et al. Thermal Conductivity of Diamond-Containing Grease.J Electron Packaging,2010,132(4):37.
    [23] Hong H P, Thomas D, Waynick A, et al. Carbon nanotube grease with enhanced thermal andelectrical conductivities. J Nanopart Res,2010,12:529-535.
    [24] Savija I, Yovanovich M M, Culham J R, et al. Thermal joint resistance of conforming roughsurfaces with grease-filled interstitial gaps. J Thermophys Heat Tr,2003,17:278-282.
    [25] Tomimura T, Nomura S, Okuyama M. Simple measuring method of thermal conductivity ofsilicone grease and effect of carbon nanomaterials on its thermal conductivity.Proceedings of the Asme/Jsme Thermal Engineering Summer Heat Transfer Conference,Vancouver, British Columbia, Canada:2007,3:449-453.
    [26] Travis B. Phase-change material replaces thermal grease. Edn,1998,43:14.
    [27] Lee J G, Woo H J, Hong J S, et al. Effect of PCB pad structure and PWB build-up layer onsolder joint life under thermal cycling and drop condition. El Packag TechConf, Hwasung:2007:471-475.
    [28] Song F B, Lee S W R, Osterman M, et al. Investigation of the effect of PCB base materialsand pad surface finish on the thermal fatigue life of lead-free solder joints of PBGA andpassive resistors.2006International Conference on Electronic Materials and Packaging,Hong Kong:2006,1-3:166-172.
    [29] Haque S, Lu G Q, Goings J, et al. Characterization of interfacial thermal resistance byacoustic micrography imaging. Microelectron Reliab,2000,40:465-476.
    [30] Ohashi M, Kawakami S, Yokogawa Y, et al. Spherical aluminum nitride fillers forheat-conducting plastic packages. J Am Ceram Soc,2005,88:2615-2618.
    [31] Bagchi A, Nomura S. On the effective thermal conductivity of carbon nanotube reinforcedpolymer composites. Compos Sci Technol,2006,66:1703-1712.
    [32] Basavaraja C, Jo E A, Kim B S, et al. Thermal Stimulated Conductivity in CelluloseTriacetate-Multiwalled Carbon Nanotube Polymer Films. B Korean Chem Soc,2010,31:2207-2210.
    [33] Bryning M B, Milkie D E, Islam M F, et al. Thermal conductivity and interfacial resistancein single-wall carbon nanotube epoxy composites. Appl Phys Lett,2005,87(16):161909-161911.
    [34] Cai D Y, Song M. Latex technology as a simple route to improve the thermal conductivity ofa carbon nanotube/polymer composite. Carbon,2008,46:2107-2112.
    [35] Chalopin Y, Volz S, Mingo N. Upper bound to the thermal conductivity of carbon nanotubepellets. J Appl Phys,2009,105(8):084301-5.
    [36] Choi T Y, Maneshian M H, Kang B, et al. Measurement of the thermal conductivity of awater-based single-wall carbon nanotube colloidal suspension with a modified3-omegamethod. Nanotechnology,2009,20(31):5706.
    [37] Clancy T C, Gates T S. Modeling of interfacial modification effects on thermal conductivityof carbon nanotube composites. Polymer,2006,47:5990-5996.
    [38] Deng F, Zheng Q S, Wang L F, et al. Effects of anisotropy, aspect ratio, and nonstraightnessof carbon nanotubes on thermal conductivity of carbon nanotube composites. Appl PhysLett,2007,90(2):021914-021914-3.
    [39] Santos A S, Leite T D, Furtado C A, et al. Morphology, thermal expansion, and electricalconductivity of multiwalled carbon nanotube/epoxy composites. J Appl Polym Sci,2008,108:979-986.
    [40] Du F M, Fischer J E, Winey K I. Coagulation method for preparing single-walled carbonnanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity,and thermal stability. J Polym Sci Pol Phys,2003,41:3333-3338.
    [41] Duong H M, Papavassiliou D V, Yamamoto N, et al. Off-Lattice Monte Carlo Simulation ofthe Thermal Conductivity of Single-Walled Carbon Nanotube-Polymer Composites withInter-Carbon Nanotube Contact. Proceedings of the Asme International MechanicalEngineering Congress and Exposition, Pts A and B, Boston, Massachusetts, USA:2009,13:1171-1176.
    [42] Foygel M, Morris R D, Anez D, et al. Theoretical and computational studies of carbonnanotube composites and suspensions: Electrical and thermal conductivity. Phys Rev B,2005,71(10):104201-104208.
    [43] Gao L, Zhou X F, Ding Y L. Effective thermal and electrical conductivity of carbonnanotube composites. Chem Phys Lett,2007,434:297-300.
    [44] Gonnet P, Liang S Y, Choi E S, et al. Thermal conductivity of magnetically aligned carbonnanotube buckypapers and nanocomposites. Curr Appl Phys,2006,6:119-122.
    [45] Haggenmueller R, Guthy C, Lukes J R, et al. Single wall carbon nanotube/polyethylenenanocomposites: Thermal and electrical conductivity. Macromolecules,2007,40:2417-2421.
    [46] Hong J, Lee J, Hong C K, et al. Improvement of thermal conductivity of poly(dimethylsiloxane) using silica-coated multi-walled carbon nanotube. J Therm Anal Calorim,2010,101:297-302.
    [47] Hong J, Lee J, Hong C K, et al. Effect of dispersion state of carbon nanotube on the thermalconductivity of poly(dimethyl siloxane) composites. Curr Appl Phys,2010,10:359-363.
    [48] Hou Q W, Cao B Y, Guo Z Y. Thermal conductivity of carbon nanotube: From ballistic todiffusive transport. Acta Phys Sin-Ch Ed,2009,58:7809-7814.
    [49] Jakubinek M B, White M A, Mu M F, et al. Temperature dependence of thermal conductivityenhancement in single-walled carbon nanotube/polystyrene composites. Appl Phys Lett,2010,96:083105-083107.
    [50] Kim H S, Chae Y S, Park B H, et al. Thermal and electrical conductivity ofpoly(L-lactide)/multiwalled carbon nanotube nanocomposites. Curr Appl Phys,2008,8:803-806.
    [51] King J A, Via M D, Caspary J A, et al. Electrical and Thermal Conductivity and Tensile andFlexural Properties of Carbon Nanotube/Polycarbonate Resins. J Appl Polym Sci,2010,118:2512-2520.
    [52] Kuo C H, Huang H M. Measurements on the thermal conductivity of epoxy/carbon nanotubecomposite. Proceedings of the Micro/Nanoscale Heat Transfer International Conference2008, Pts a and B, Tainan, Taiwan:2008:1077-1082.
    [53] Lindsay L, Broido D A, Mingo N. Diameter dependence of carbon nanotube thermalconductivity and extension to the graphene limit. Phys Rev B,2010,82:161402-161405.
    [54] Liu C H, Fan S S. Effects of chemical modifications on the thermal conductivity of carbonnanotube composites. Appl Phys Lett,2005,86:123106-123106-3.
    [55] Liu C H, Huang H, Wu Y, et al. Thermal conductivity improvement of silicone elastomerwith carbon nanotube loading. Appl Phys Lett,2004,84:4248-4250.
    [56] Moisala A, Li Q, Kinloch I A, et al. Thermal and electrical conductivity of single-andmulti-walled carbon nanotube-epoxy composites. Compos Sci Technol,2006,66:1285-1288.
    [57] Moon S I, Jin F, Lee C, et al. Novel carbon nanotube/poly(L-lactic acid) nanocomposites;Their modulus, thermal stability, and electrical conductivity. Macromol Symp,2005,224:287-295.
    [58] Nan C W, Liu G, Lin Y H, et al. Interface effect on thermal conductivity of carbon nanotubecomposites. Appl Phys Lett,2004,85:3549-3551.
    [59] Nan C W, Shi Z, Lin Y. A simple model for thermal conductivity of carbon nanotube-basedcomposites. Chem Phys Lett,2003,375:666-669.
    [60] Nanda J, Maranville C, Bollin S C, et al. Thermal conductivity of single-wall carbonnanotube dispersions: Role of interfacial effects. J Phys Chem C,2008,112:654-658.
    [61] Ngo Q, Cruden B A, Cassell A M, et al. Thermal conductivity of carbon nanotube compositefilms. Materials, Technology and Reliability for Advanced Interconnects and Low-KDielectrics-2004,2004,812:179-184
    [62] Noya E G, Srivastava D, Chernozatonskii L A, et al. Thermal conductivity of carbonnanotube peapods. Phys Rev B,2004,70:115416-115420.
    [63] Peters J E, Papavassiliou D V, Grady B P. Unique Thermal Conductivity Behavior ofSingle-Walled Carbon Nanotube-Polystyrene Composites. Macromolecules,2008,41:7274-7277.
    [64] Singh I V, Tanaka M, Endo M. Effect of interface on the thermal conductivity of carbonnanotube composites. Int J Therm Sci,2007,46:842-847.
    [65] Sivakumar R, Guo S Q, Nishimura T, et al. Thermal conductivity in multi-wall carbonnanotube/silica-based nanocomposites. Scripta Mater,2007,56:265-268.
    [66] Song Y S, Youn J R. Evaluation of effective thermal conductivity for carbonnanotube/polymer composites using control volume finite element method. Carbon,2006,44:710-717.
    [67] Tonpheng B, Yu J C, Andersson O. Thermal Conductivity, Heat Capacity, andCross-Linking of Polyisoprene/Single-Wall Carbon Nanotube Composites under HighPressure. Macromolecules,2009,42:9295-9301.
    [68] Volkov A N, Zhigilei L V. Scaling Laws and Mesoscopic Modeling of Thermal Conductivityin Carbon Nanotube Materials. Phys Rev Lett,2010,104:215902-215905.
    [69] Wang J L, Xiong G P, Gu M, et al. A study on the thermal conductivity of multiwalledcarbon nanotube/polypropylene composite. Acta Phys Sin-Ch Ed,2009,58:4536-4541.
    [70] Wang S R, Liang R, Wang B, et al. Dispersion and thermal conductivity of carbon nanotubecomposites. Carbon,2009,47:53-57.
    [71] Wu Y, Liu C H, Huang H, et al. The carbon nanotube based nanocomposite with enhancedthermal conductivity. Sol St Phen,2007,121-123:243-246.
    [72] Xue Q Z. Model for the enective thermal conductivity of carbon nanotube composites.Nanotechnology,2006,17:1655-1660.
    [73] Xue Q Z. Model for thermal conductivity of carbon nanotube-based composites. Physica B,2005,368:302-307.
    [74] Yamamoto N, Duong H M, Schmidt A J, et al. Simulation of Thermal Conductivity inFabricated Variable Volume Fraction Aligned Carbon Nanotube Polymer Composites.Proceedings of the Asme International Mechanical Engineering Congress and Exposition,Boston, Massachusetts, USA:2009,13(Pts a and B):1187-1194.
    [75] Yang K, Gu M Y. Enhanced thermal conductivity of epoxy nanocomposites filled withhybrid filler system of triethylenetetramine-functionalized multi-walled carbonnanotube/silane-modified nano-sized silicon carbide. Compos Part a-Appl S,2010,41:215-221.
    [76] Yu A P, Itkis M E, Bekyarova E, et al. Effect of single-walled carbon nanotube purity on thethermal conductivity of carbon nanotube-based composites. Appl Phys Lett,2006,89:133102-133104.
    [77] Yu A P, Ramesh P, Sun X B, et al. Enhanced Thermal Conductivity in a Hybrid GraphiteNanoplatelet-Carbon Nanotube Filler for Epoxy Composites. Adv Mater,2008,20:4740-4744.
    [78] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials.Nature,2006,442:282-286.
    [79] Karataskov S A, Yukhvid V I, Merzhanov A G. Regularities and Mechanism of Combustionof Melting Heterogeneous Systems in a Mass Force-Field. Combust Explo Shock+,1985,21:687-689.
    [80] Martirosyan N A, Dolukhanyan S K, Merzhanov A G. Principles and Mechanism ofCombustion in the Zirconium-Carbon-Hydrogen System. Combust Explo Shock+,1985,21:557-561.
    [81] Merzhanov A G, Khaikin B I. Theory of Combustion Waves in Homogeneous Media. ProgEnerg Combust,1988,14:1-98.
    [82] Merzhanov A G, Rogachev A S, Mukasyan A S, et al. Macrokinetics of StructuralTransformation during the Gasless Combustion of a Titanium and Carbon Powder Mixture.Combust Explo Shock+,1990,26:92-102.
    [83] Merzhanov A G, Mukasyan A S, Postnikov S V. Hydraulic Effect in the Processes ofGasless Combustion. Dokl Akad Nauk+,1995,343:340-342.
    [84] Merzhanov A G, Mukasyan A S, Rogachev A S, et al. Combustion-front microstructure inheterogeneous gasless media (using as an example the5Ti+3Si system). Combust ExploShock+,1996,32:655-666.
    [85] Merzhanov A G. Combustion processes that synthesize materials. J Mater Process Tech,1996,56:222-241.
    [86] Merzhanov A G. Fundamentals, achievements, and perspectives for development ofsolid-flame combustion. Russ Chem B+,1997,46:1-27.
    [87] Merzhanov A G, Peregudov A N, Gontkovskaya V T. Heterogeneous model of solidcombustion: Numerical experiment. Dokl Akad Nauk+,1998,360:217-219.
    [88] Merzhanov A G, Sanin V N, Yukhvid V I. The features of structure formation duringcombustion highly caloric metalothermic mixtures under microgravity. Dokl Akad Nauk+,2000,371:38-41.
    [89] Merzhanov A G. Combustion and explosion processes in physical chemistry and technologyof inorganic materials. Usp Khim+,2003,72:323-345.
    [90] Merzhanov A G, Bykov V I. Adequacy of Experimental and Theoretical Models ofCombustion Processes. Combust Explo Shock+,2010,46:549-553.
    [91]任克刚.多形态AlN、Si3N4粉体制备及其导热硅脂复合材料研究[博士学位论文].北京:清华大学材料科学与工程系,2009.
    [92]陈克新.自蔓延高温合成技术在陶瓷粉体中的应用//李建保.新材料科学及其实用技术.北京:清华大学出版社,2004:355-367
    [93] Zhu Y, Jin H B, Ren K G, et al. Floating combustion synthesis of spherical vitreous silicanano-powder. Mater Res Bull,2009,44:130-133.
    [94] Hashishin T, Wada N, Kaneko Y, et al. Dominant factor of the structure on the production ofbeta-eucryptite foaming type ceramic porous bodies. J Ceram Soc Jpn,1998,106:587-591.
    [95] Aoki S, Yamaguchi S, Nakahira A, et al. Preparation of porous calcium phosphates using aceramic foaming technique combined with a hydrothermal treatment and the cell responsewith incorporation of osteoblast-like cells. J Ceram Soc Jpn,2004,112:193-199.
    [96] Gonzenbach U T, Studart A R, Tervoort E, et al. Ultrastable particle-stabilized foams.Angewandte Chemie-International Edition,2006,45:3526-3530.
    [97] Yoon J H, Park J H, Park E K, et al. Osteogenic repair by bovine bone ash derived porousHA ceramic formed by foaming method. ASBM7: Advanced Biomaterials VII,2007,342-343:633-636.
    [98] Barg S, Soltmann C, Andrade M, et al. Cellular ceramics by direct foaming of emulsifiedceramic powder suspensions. J Am Ceram Soc,2008,91:2823-2829.
    [99] Wang X, Ruan J M, Chen Q Y. Effects of surfactants on the microstructure of porousceramic scaffolds fabricated by foaming for bone tissue engineering. Mater Res Bull,2009,44:1275-1279.
    [100] Menchavez R L, Intong L A S. Red clay-based porous ceramic with pores created byyeast-based foaming technique. J Mater Sci,2010,45:6511-6520.
    [101]南策文.非均质材料物理.北京:科学出版社,2005.
    [102] Maxwell C J: A Treatise on Electricity and Magnetism. London, U. K.: Oxford Univ.Press;1904,1: Ch9.1.
    [103] Fricke H. A mathematical treatment of the electric conductivity and capacity of dispersesystems I. The electric conductivity of a suspension of homogeneous spheroids TheElectrical Conductivity of a Suspension of Homogeneous Spheroids. Phys Rev,1924,24:575-578.
    [104] Donea J. Thermal Conductivities Based on Variational Principles. J Comp Mater,1970,6:262-266.
    [105] Jefferson J B, Witzell O W, Sibitt W L. Thermal Conductivity of Graphite-Silicone Oiland Graphite-Water Suspensions. Ind Eng Chem,1958,50:1589.
    [106] Russell H W. Principles of Heat Flow in Porous Insulation. J Am Ceram Soc,1935,18:1-5.
    [107] Loeb A J. Thermal Conductivity: VIII, A Theory of Thermal Conductivity of PorousMaterials. J Am Ceram Soc,1954,37:96.
    [108] Stauffer D, Aharony A: Introduction to Percolation Theory. In. London: Tailer and Francis,1992.
    [109] Carmona F, Canet R, Delhaes P. Piezoresistivity of Heterogeneous Solids. J Appl Phys,1987,61:2550-2557.
    [110] Carmona F, Elamarti A. Anisotropic Electrical-Conductivity in Heterogeneous Solids withCylindrical Conducting Inclusions. Phys Rev B,1987,35:3284-3290.
    [111] Balberg I. Excluded-Volume Explanation of Archie Law. Phys Rev B,1986,33:3618-3620.
    [112]黄昆.固体物理学.北京:高等教育出版社,1988.
    [113] Kapitza P L. The study of heat transfer in helium II. J Phys,1941:181.
    [114] Kapitza P L. Heat Transfer and Superfluidity of Helium II. Physical Review,1941,60:354-355.
    [115] Viswanath R, Wakharkar V, Watwe A, Lebonheur V, Thermal Performance Challengesfrom Silicon to Systems. Intel Technology Journal,2000,4.
    [116] Mahajan e a. Thermal Interface Materials: A Brief Review of Design Characteristics andMaterials. Electronics Cooling February2004, Vol.10.
    [117] ASTM D5470, Standard Test Methods for Thermal Transmission Properties of ThinThermally Conductive Solid Electrical Insulation Materials West Conshohocken, PA.
    [118] Dettmer E S, Romenesko B M, Charles H K, et al. Steady-State Thermal-ConductivityMeasurements of A1n and Sic Substrate Materials. Ieee T Compon Hybr,1989,12:543-547.
    [119] Khorunzhii I, Gabor H B, Job R, et al. Steady-state thermal conductivity measurements ofsuper-hard materials. Measurement,2002,32:163-172.
    [120] Sklyarchuk V, Plevachuk Y. A modified steady state apparatus for thermal conductivitymeasurements of liquid metals and semiconductors. Meas Sci Technol,2005,16:467-471.
    [121] Gesele G, Linsmeier J, Drach V, et al. Temperature-dependent thermal conductivity ofporous silicon. J Phys D Appl Phys,1997,30:2911-2916.
    [122] Kobatake H, Fukuyama H, Minato I, et al. Noncontact measurement of thermalconductivity of liquid silicon in a static magnetic field. Appl Phys Lett,2007,90:094102.
    [123] Kading O W, Skurk H, Goodson K E. Thermal Conduction in Metallized Silicon-DioxideLayers on Silicon. Appl Phys Lett,1994,65:1629-1631.
    [124] A J Angstr m. New method of determining the thermal conductibility of bodies. Ann PhysChemie,1861,144:513.
    [125] Roder H M, Perkins R A, Laesecke A, et al. Absolute steady-state thermal conductivitymeasurements by use of a transient hot-wire system. J Res Natl Inst Stan,2000,105:221-253.
    [126] Perichon S, Lysenko V, Roussel P, et al. Technology and micro-Raman characterization ofthick meso-porous silicon layers for thermal effect microsystems. Sensor Actuat a-Phys,2000,85:335-339.
    [127] Monticone E, Rajteri M, Maggi S, et al. Analysis of NB Josephson junction propertiesunder optical irradiation. Int J Mod Phys B,1999,13:1295-1300.
    [128] Oak S M, et al. Physical modeling of bubble generation in foamed-aluminum. J MaterProcess Tech,2002,130:304-308.
    [129] Hu H, Larson R G. Marangoni effect reverses coffee-ring depositions. J Phys Chem B,2006,110:7090-7094.
    [130]木崎弘明,远三山.导热硅脂组合物:中国, CN1990819.2006-12-26.
    [131] Cumberland J, Crawford R J. Eds. Handbook of Powder Technology, Amsterdam:Elsevier Science Publishers,1987.
    [132]乔梁,氮化铝陶瓷低温烧结机理研究[博士学学位论文].北京:清华大学材料科学与工程系,2002.
    [133] Lee H, Experimental Study of Thermal Conductivity Reduction of Silicon-GermaniumNanocomposite for Thermoelectric Application [Masteral Dissertation]. Massachusetts,USA: MIT. Department of Mechenical Engineering,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700