硅酸盐基低温烧结微波陶瓷材料及其改性机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高频无线通信技术的高速发展,对电子元器件微型化、集成化及高性能化的要求越来越高,对电子封装技术也提出了更高的要求。低温共烧陶瓷(Low TemperatureCo-fired Ceramic, LTCC)技术为实现元器件的小型化和高密度封装提供了可能,是实现高频应用领域中元器件与基板高度集成的最有前景的技术。随着LTCC陶瓷和浆料低温烧结的深入研发,LTCC基板在芯片封装中的应用日渐广泛,因此,加速LTCC基板材料的研究不仅具有社会效益,还可以为今后电子元件的设计与研发提供更好的平台,带来经济效益。本论文主要研究了应用于LTCC基板的硅酸盐材料体系的微波介电性能,并对其介电性能和烧结温度进行了改善,制备出了适用于LTCC基板的性能优秀的微波介质陶瓷;探究了硅酸盐基微波陶瓷材料的介电损耗特性以及对其微波介电性能进行改善的过程中,损耗对微波介电性能的影响;分析了低温烧结中的液相烧结机理和硅酸盐微波介质陶瓷与银电极的化学兼容性;研究了硅酸盐基微波陶瓷材料的改性机理,并与实验数据作对比分析。
     硅酸盐陶瓷是无机非金属类材料中的重要组成部分,其微波介电性能大多极其优良,在微波介质陶瓷领域内的应用极广,其中Mg_2SiO_4和Zn_2SiO_4在所有已报道的微波陶瓷材料中都具有非常突出的高品质因数,但是它们极高的烧结温度和较差的热稳定性严重限制了它们作为LTCC基板材料在实际中的应用。根据Lichnetecker定则,选取具有正温度系数τf=+859ppm/°C的CaTiO_3材料与硅酸盐陶瓷进行复合,得到的复合陶瓷具有可调的τf值。当CaTiO_3的加入量从6.0mol%增加到10.0mol%时,(1-x)Mg_2SiO_4-xCaTiO_3陶瓷的谐振频率温度系数τf从-27.1增加到14.2ppm/°C。当x=0.08和0.09时,(1-x)Mg_2SiO_4-xCaTiO_3陶瓷有接近于零的τf值(-3.0和6.8ppm/°C)。与Mg_2SiO_4-CaTiO_3的Q×f值相比,当CaTiO_3的加入量从0mol%增加到7.0mol%时,(1-x)Zn_2SiO_4-xCaTiO_3陶瓷的τf值从-61.0增大到28.6ppm/°C,当x=0.05时,(1-x)Zn_2SiO_4-xCaTiO_3陶瓷的τf值为0.8ppm/°C。Zn_2SiO_4-CaTiO_3陶瓷的Q×f值的大小和变化趋势与之相近。同时,在实验结果的分析讨论过程中,还发现了CaTiO_3的加入对陶瓷材料的烧结温度有一定的降低效果。
     针对硅酸盐复合陶瓷的烧结温度高于950°C这一不利因素,首先采用Li~+替代Zn_2SiO_4中Zn_~(2+)的方法来降低陶瓷的烧结温度,研究了离子替代后陶瓷的微波介电性能,探讨该方法降低陶瓷烧结温度的可行性,并通过掺杂CaTiO_3对离子替代后陶瓷的τf进行了优化研究。研究发现,通过Li~+对Zn_~(2+)进行离子替代后,Li_2yZn_((2-y))SiO_4(y=0.5,0.8,1)陶瓷的Q×f值明显下降,烧结温度明显降低,当y=1时,降温达到最佳状态。掺杂CaTiO_3可使离子替代后陶瓷的τf在包含0的很大范围内可调。当x=0.17时,(1-x)Li_2ZnSiO_4-xCaTiO_3陶瓷有接近于零的τf值(-1.3ppm/°C),但是陶瓷的烧结温度仍远高于950°C。最后,只能采用添加低温烧结助剂的方法将复合陶瓷的烧结温度成功的降低到950°C以下,满足其在LTCC中应用的基本要求:当ZB玻璃的加入量为25.0wt.%时,0.75Li_2ZnSiO_4-0.25CaTiO_3陶瓷的微波介电性能为:r=9.5,Q×f=11,800GHz,τf=-5.2ppm/°C;当BLB的加入量为12.0wt.%时,0.91Mg_2SiO_4-0.09CaTiO_3陶瓷的微波介电性能为:r=7.7,Q×f=11,300GHz,τf=-5.0ppm/°C;当Li_2CO_3-H_3BO_3的加入量为4.0wt.%时,0.95Zn_2SiO_4-0.05CaTiO_3陶瓷的微波介电性能为:r=7.1,Q×f=26,300GHz,τf=-4.5ppm/°C。研究还表明0.95Zn_2SiO_4-0.05CaTiO_3复合陶瓷与Ag电极可以实现共烧。
     论文最后结合具体实验数据,从正价阳离子取代、掺杂CaTiO_3相、加入烧结助剂和改变烧结温度四个方面探讨了相对介电常数、介电损耗和谐振频率温度系数改性的基本理论。研究结果表明:微波陶瓷的相对介电常数随陶瓷单位体积内离子电价的升高和偶极子数量的增多而变大。对基板材料而言,低价态离子置换高价态离子,通过微孔降低材料的致密度等都会减小陶瓷的相对介电常数。多晶陶瓷作为主要的微波陶瓷,其衰减常数γ与损耗有关,微波陶瓷中所存在的非完整性因素如晶界、缺陷、杂质、气孔和裂纹等,是造成材料损耗的主要原因。Lichnetecker(李赫德捏凯)对数混合定则是针对多相共存复合微波介质陶瓷的微波介电性能的重要公式,对复合陶瓷的相对介电常数,介电损耗和谐振频率温度系数的改性机理都有指导意义。同时,经过研究发现,关于晶粒增大、晶界减少,陶瓷的Q×f值应该增大的理论,在陶瓷材料晶粒增大到某一程度以上或者陶瓷发生过烧而出现晶粒异常增大时,是与实验事实相违背的,即晶粒大小和晶界变化与陶瓷Q×f值的变化规律仅在某一晶粒粒度范围内才是符合实验事实的。粉末烧结由于在烧结过程中系统的自由能减小,有自动发生的趋势,烧结系统表面和界面自由能以及晶格歧变能的降低是烧结的主要推动力。在一定烧结温度下,液相的多少及分布对材料的烧结致密化起决定性作用。通过在不同烧结时期对烧结过程进行合理的选择和干预可使晶粒大小比例合理、均匀,减少气孔,有利于微波陶瓷材料介电性能的优化。
The rapid progress of high-frequency wireless communication technology,increasingly high demand for the miniaturization, integration and high-performance ofelectronic components, also put forward higher requirements for the electronic packagingtechnology. LTCC technology provided the realization of the miniaturization andhigh-density packaging of the components, which is the most promising technology toachieve the integration of electronic components and the substrate in the field of highfrequency applications. With the in-depth research and development of low-temperaturesintering of LTCC ceramic and electrode paste, the LTCC substrate is increasinglywidespread application in the electronic packaging. To accelerate the study of LTCCsubstrate and antenna materials not only socially, but also thought to improve the designand development of electronic components in the future a better platform to bringeconomic benefits. In this thesis, the microwave dielectric properties of the silicatematerial system applied to the LTCC substrate were studied, and improved theirmicrowave dielectric properties and sintering temperature, prepared excellent LTCCsubstrate and microwave antenna ceramics; discuss the effects of intrinsic loss related tothe crystal structure and extrinsic loss due to the preparation process on the microwavedielectric properties of the silicate ceramic; analysed the low-temperature sinteringmechanism of liquid-phase sintering, and explored the compatibility of the system withAg; explore the dielectric loss characteristics of silicate base microwave ceramic materialand the silicate base microwave ceramic material modification theory, discussed themodification theory of the dielectric constant and dielectric loss, and compared with theexperimental data analysis.
     Silicate ceramics is a important part of inorganic non-metallic materials, theirmicrowave dielectric properties are extremely good, applied extremely extensive inmicrowave dielectric ceramics domain, such as: Mg_2SiO_4and Zn_2SiO_4have the extremelyprominent high quality factor in all the microwave ceramic material have been reported.But their extremely high sintering temperature and poor thermal stability severely limitthem as LTCC substrate materials in the practical application. According to theLichnetecker rule, in this paper we select CaTiO_3with positive temperature coefficient τf=+859ppm/°C as a compensation function material to get adjustable τfvalue. When the addition amount of CaTiO_3increase from6.0to10.0mol%, the τfvalues of the(1-x)Mg_2SiO_4-xCaTiO_3composite ceramic increase to14.2from-27.1ppm/°C. When x=0.08and0.09, the (1-x)Mg_2SiO_4-xCaTiO_3ceramic samples have close to zero τfvalues-3.0and6.8ppm/°C. Compared with the Q×f values of Mg_2SiO_4-CaTiO_3ceramics, the Q×fvalues and changing trends of Zn_2SiO_4-CaTiO_3ceramics are the same. When the additionamount of CaTiO_3from0increases to7.0mol%, the τfvalues of (1-x)Zn_2SiO_4-xCaTiO_3composite ceramic increase to28.6from-61.0ppm/°C. When x=0.05, the (1-x)Zn_2SiO_4-xCaTiO_3has close to zero τfvalue is0.8ppm/°C. And in the process of the analysis ofexperimental results, we find the addition of CaTiO_3has certain effect of low sinteringtemperature.
     According to the restriction condition the silicate ceramic sintering temperature arehigher than the LTCC ceramic sintering temperature of950°C, first use of Li+alternativeZn_~(2+)to reduce the sintering temperature, and research the microwave dielectric propertiesof the ceramic after ion substitution, to explore the feasibility of the ways to reduce thesintering temperature and research theτfthrough doping CaTiO_3. Studies have found thatafter Li+alternative Zn_~(2+), the Q×f values of Li_2yZn_((2-y))SiO_4(y=0.5,0.8,1) and sinteringtemperatures are fall, especially when y=1. When x=0.17,(1-x)Li_2ZnSiO_4-xCaTiO_3ceramic samples has close to zero τfvalue-1.3ppm/°C. But the sintering temperatures aremore than950°C. At last, we successfully reduced the sintering temperature of threecomposite ceramics by means of adding low melting point mixed oxideBi2O_3-Li_2CO_3-H3BO_3(BLB), Li_2CO_3-H3BO_3and zinc boron (ZB) glass as lowtemperature sintering additives to950°C below, meeting the basic requirements of theapplication of LTCC, and a deep research on the relations of sintering additives additionand microwave dielectric properties: When the addition amount of ZB glass is25.0wt.%,the microwave dielectric properties of the0.75Li_2ZnSiO_4-0.25CaTiO_3ceramic samplesarer=9.5, Q×f=11,800GHz, τf=-5.2ppm/°C; when the addition amount of BLB is12.0wt.%, the microwave dielectric properties of the0.91Mg_2SiO_4-0.09CaTiO_3ceramicsamples arer=7.7, Q×f=11,300GHz, τf=-5.0ppm/°C; when the Li_2CO_3-H3BO_3quantityadded to4.0wt.%, the microwave dielectric properties of the0.95Zn_2SiO_4-0.05CaTiO_3ceramic samples arer=7.1, Q×f=26,300GHz, τf=-4.5ppm/°C. We also found that0.95Zn_2SiO_4-0.05CaTiO_3composite ceramic and Ag electrode have good chemicalcompatibility, can be co-fired, they can be used as the LTCC materials in the microwaveantenna and substrate.
     The paper studied the modified theory of the silicate base microwave ceramicmaterials, discussed the modification theory of relative dielectric constant, dielectric lossand resonance frequency temperature coefficient, and compared with the experimentaldata analysis. From the positive valence cations replace, doping new phase, add sinteringadditives and change the sintering temperature four aspects made a thorough research tomicrowave ceramic material modification theory, obtained some research achievements.Finally, powder sintering principle are discussed. The results show that the unit volumeinside ion electricity price is higher, more dipoles, the microwave ceramic relativedielectric constant is bigger, high ion replacement low state ion, the craft on the graingrowth fully, density as far as possible to achieve saturation, and improve the materialdensity is effective methods of relative dielectric constant improvement. Forpolycrystalline ceramics, attenuation constant γ related to the loss caused by grainboundary, void, dislocation, periodic defect, impurity atom and vacancy. Lichnetecker ruleis an important formula for microwave dielectric properties of multiphase coexistencecomposite microwave dielectric ceramics, has the guidance meaning to the dielectricproperty modification mechanism of composite ceramic. Sintering mechanism of thesintering process has automatic happen trend, from the view of thermodynamics point,powder sintering is the reducing process of system free energy, the reducing of free andlattice variable energy is the main driving force of sintering. The distribution of liquidphase under the sintering temperature will play a decisive role to material sinteringdensification. In different sintering period, reasonable choice sintering process can makethe grain size reasonable proportion, uniform, reduce porosity, be helpful for the materialdielectric performance optimization of microwave ceramic.
引文
[1]童志义.低温共烧陶瓷技术现状与趋势.北京:电子工业专用设备,2008.166:1-9.
    [2]郭梅.铌酸盐M2+Nb2O6(M2+=Zn,Ni)基微波介质陶瓷低温烧结和微波介电性能研究:[博士学位论文].武汉:华中科技大学,2012.
    [3] M.T. Sebastian, Dielectric Materials for Wireless Communication. Elsevier Science,Oxford, U.K.2008.
    [4] R.R. Tummala. Ceramic and glass packaging in the1990s. J. Am. Ceram. Soc.1991,74:895-908.
    [5] U. Chowdhry and A.W. Sleight. Ceramics substrates for microelectronic packaging.Ann. Rev. Mater. Sci.1987,17:323-340.
    [6] G. Kelly, J. Alderman, C. Lyden and J. Barrett. Microsystem packaging: lessonsfrom conventional low cost IC packaging. J. Micromech. Microeng.1997,7:99-103.
    [7]许佳.小型LTCC天线的研究与分析:[硕士学位论文].杭州:浙江工业大学图书馆,2004.
    [8] M.R.Gongora-Rubio, P.Espinoza-Vallejos, L.Sola-Laguna, et al. Overview of lowtemperature co-fired ceramics tape technology for meso-system technology (MsST).Sensor. Actuat. A-Phys.2001,89:222-241.
    [9]周琪.低温共烧陶瓷技术发展现状及趋势.南京电子技术研究所,2009.
    [10] A.L. Eustice, S.J. Horowitz, J.J. Stewart, A.R. Travis, and H.T. Sawhill. Lowtemperature cofireable ceramics. A new approach for Electronic packaging Proc.36th Electronic Component Conference, IEEE,1986,37-47.
    [11] J. Muller, H. Thust, and K.H. Drue. RF design considerations for passive elements inLTCC material systems. Int. J. Microcircuits Electron. Packaging.1995,18:200-206.
    [12] G.N. Howatt. Method of producing high dielectric high insulation ceramicplates.U.S.Pat.1952,2:582,993.
    [13]刘福田,李兆前,黄传真等. Mo-(Fe-B)-Fe混合粉末流延成型薄层坯体技术研究.陶瓷学报,2003,24(2):71-77.
    [14]陈殿营,张宝林等.氮化硅流延膜的制备.硅酸盐通报,2003,22(6):71-74.
    [15]秦承伟,张永恒.流延成型法制备三氧化二铝陶瓷膜基体浆体的制备和流延成型.青岛科技大学学报,2004,25(4):335-338.
    [16] S. Mei, J. Yang, J.M.F. Ferreira. The fabrication and characterization of low-kcordierite-based glass-ceramics by aqueous tape casting. J. Eur. Ceram. Soc.,2004,24(2):295-300
    [17] X.J. Luo, B.L. Zhang, W.L. Li. Effects of organic additives and glass on theproperties of AlN/glass tape-casting slurries and green tapes. J. Mater. Sci.,2004,39(13):4387-4389
    [18] C.W. Cho, J.G. Yeo, Y.G. Jung. Green microstructure and mechanical properties ofBaTiO3-poly(vinyl butyral) tape-cast bodies. J. Mater. Sci. Letters.,2003,22(22):1639-1641
    [19] Y.P. Zeng, D.L. Jiang. Fabrication and Properties of Tape-Cast Laminated andFunctionally Gradient Alumina-Titanium Carbide Materials. J. Am. Ceram. Soc.,2000,83(12):2999-3003
    [20] A. Roosen. New lamination technique to join ceramic green tape for themanufacturing of multilayer devices. J. Eur. Ceram. Soc.,2001,21(10):1993-1996
    [21] A.I.Y. Tok, F.Y.C. Boey, K.A. Khor. Tape casting of high dielectric ceramiccomposite substrates for microelectronics application. J. Mater. ProcessingTechnology,1999,89-90:508-512.
    [22] R.D. Richtmyer. Dielectric resonators. J. Appl. Phys.,1939,10:391-398.
    [23] A. Okaya. The rutil microwave resonator (Correspondence). Proe. IRE.,1960,48(11):1902-1921.
    [24] A. Okaya, L.F. Barash.The dielectric microwave resonator. Proe. IRE.,1962,50(10):2081-2092.
    [25] B.W. Hakki, P.D. Coleman. A dielectric resonator method of measuring induetivecapacities in the millimeter range. IEEE Trans on Microwave Theo&Tech,1960,8(4):402-410.
    [26] D.J. Masse, R.A. Pueel, D.W. Readey, et al. A new low loss high-k temperaturecompensated dielectric for microwave applications. Proc. IEEE,1971,59(11):1628-1629.
    [27] Y. Konishi. Microwave dielectric resonator. NHK., Tokyo, Japan, Tech. Rep.,1971.
    [28] J.K. Plourde, D.F. Linn, H.M. O’Bryan, etal. Ba2Ti9O20as a microwave dielectricresonator. J. Am. Ceram. Soc.,1975,58:418-420.
    [29]徐建梅.水热合成Ba-Ti基微波介质陶瓷的研究:[博士论文].武汉:华中科技大学,2004.
    [30] D.J. Masse, R.A. Pucel, D.W. Readey. A new low-loss, high-L temperature-compensating dielectric for microwave applications. Proc. IEEE.,1971,59(11):1628-1629.
    [31] D. Kolar, S. Gaberscek, B. Volavsek. Synthesis and crystal chemistry of BaNdTi3O10,BaNd2Ti5O14and Nd4Ti5O24. J. solid State Chem.,1981,38:58-l64.
    [32] Minoru, Takaya. Surface mounting technologies for chip transformers and inductor.JEE,1993,30(5):65.
    [33]冯明良,田纯祥.微晶玻璃的制备原理.中国玻璃机械网http://www.glass.cn/glassnews/newsinfo130.html.2004.
    [34] M.T. Sebastian, H. Jantunen. Low Loss Dielectric Materials for LTCC Applications:a Review. Int. Mater. Rev.,2008,53(1):57-90.
    [35] V.M.F. Marques, D.U. Tulyaganov, S. Agathopoulos, et al. Low temperaturesynthesis of anorthite based glass-ceramics via sintering and crystallization ofglass-powder compacts. J. Eur. Ceram. Soc.,2006,26:2503-2510.
    [36] R. Wang, J. Zhou, B. Li, et al. CaF2-AlF3-SiO2glass-ceramic with low dielectricconstant for LTCC application, J. Alloy. Compd.,2010,490:204-207.
    [37] H. Zhu, H. Zhou, M. Liu, et al. Microstructure and microwave dielectriccharacteristics of CaO-B2O3-SiO2glass ceramics. J. Mater. Sci. Technol.,2009,20:1135-1139.
    [38] H. Shao, T. Wang, Q. Zhang. Preparation and properties of CaO-SiO2-B2O3glass-ceramic at low temperature. J. Alloy. Compd.,2009,484:2-5.
    [39] C.L. Lo, J.G. Duh. Low temperature sintering and crystallization behaviour of lowloss anorthite-based glass-ceramics. J. Mater. Sci.,2003,38:693-698.
    [40]韦冬梅.硼酸锌陶瓷制备及微波介电性能研究:[硕士学位论文].武汉:华中科技大学,2012.
    [41]西北轻工业学院主编.玻璃工艺学.北京:轻工业出版社,1983.
    [42]李璐. MgO-Al2O3-SiO2微晶玻璃晶化行为研究:[硕士学位论文].南宁:广西大学,2003.
    [43] E. Manor and R. Z. Shneck. Crystallization of60SiO2-20MgO-10Al2O3-10BaOglass ceramics. Journal of American Ceramic Society,2005,88(8):2249-2254.
    [44]岳振星,周济,张洪国.低温可烧结堇青石微晶玻璃[J].高技术通讯,2000,10(7):96-97.
    [45] C. Reich, R. Brückner. Effect of preparation parameters on the properties ofunidirectional SiC-fiber-reinforced MAS and BMAS glass-ceramics. CompositesScience and Technology,1997,57(5):533-541.
    [46] H.K. Zhu, M. Liu, H.Q. Zhou, et al. Study on properties of CaO-SiO2-B2O3systemglass-ceramic. Materials Research Bulletin,2007,42:1137-1144.
    [47] C.R. Chang, J.H. Jean. Crystallization kinetics and mechanism of low-dielectric,low-temperature, cofirable CaO-B2O3-SiO2glass-ceramics. J. Am. Ceram. Soc.,1999,82(7):1725-1732.
    [48]孙慧萍,张启龙,杨辉等. ZnO和Na2O对CaO-B2O3-SiO2介电陶瓷结构与性能的影响.陶瓷学报,2004,25(1):60.
    [49]陈国华.机械力化学作用对CaO-B2O3-SiO2系陶瓷微观结构及相组成和相变规律的影响.硅酸盐学报,2003,31(10):994-997.
    [50]吕安国,丘泰,刘敏等.低温烧结CaO-B203-SiO2玻璃陶瓷及其性能.硅酸盐通报,2005,25:5.
    [51] Q.L. Zhang, H.Yang, J.X. Tong. Low temperature firing and microwave dielectricproperties of MgTiO3ceramics with Bi2O3-V2O5. Mater. Lett.2006,60:1188-1191.
    [52] J.S. Kim, M.E. Song, M.R. Joung, et al. Effect of B2O3addition on the sinteringtemperature and microwave dielectric properties of Zn2SiO4ceramics. J. Eur. Ceram.Soc.,2010,30:375-379
    [53] J.S. Kim, M.E. Song, M.R. Joung, et al. Low-Temperature Sintering and MicrowaveDielectric Properties of V2O5-Added Zn2SiO4Ceramics. J. Am. Ceram. Soc.,2008,91(12):4133-4136
    [54] J.B. Lim, D.H. Kim, S. Nahm, J.H. Paik, H.J. Lee. Effect of B2O3and CuO additiveson the sintering temperature and microwave dielectric properties ofBa(Mg1/3Nb2/3)O3ceramics. Mater. Res. Bull.2006,41:1199-1205.
    [55] H. Zhou, H。 Wang, K。 Li, et al. Effect of B2O3and CuO additions on the sinteringtemperature and microwave dielectric properties of3Li2O–Nb2O5–3TiO2ceramics. JMater Sci: Mater Electron,2009,20:283-288
    [56] P. Liu, E.S. Kim, K.H. Yoon. Low temperature sintering and microwave dielectricproperties of Ca[(Li1/3Nb2/3)1xTix]O3ceramics. J. Appl. Phys.2001,40:5769-5773.
    [57] P. Liu, H. Ogawa, E.S. Kim, A. Kan. Low temperature sintering and microwavedielectric properties of Ca[(Li1/3Nb2/3)1xTix]O3-CaTiO3ceramics. J. Eur. Ceram.Soc.2003,23:2417-2421.
    [58] J.Y. Ha, J.W. Choi, S.J. Yoon, D.J. Choi, K.H. Yoon, H.J. Kim. Effect oflithium-based glass addition on the microwave dielectric properties ofCa[(Li1/3Nb2/3)1xTix]O3ceramics for LTCC applications. J. Eur. Ceram. Soc.,2003,23:2413-2416.
    [59] B. Li, Z.X. Yue, L.T. Li, et al., Low-fired microwave dielectrics in ZnO-TiO2ceramics doped with CuO and B2O3. J. Mater. Sci.,2002,13(7):415-418.
    [60] H.T. Kim, S.H.Kim, S. Nahm, et al. Low-temperature sintering and microwavedielectric properties of zinc metatitanate-rutile mixtures using boron. J. Am. Ceram.Soc.,1999,82(11):3043-3048.
    [61] Y.C. Zhang, L.T. Li, Z.X. Yue, Z. L. Gui, Effects of Additives on Microstructuresand Microwave Dielectric Properties of ZnNb2O6Ceramics. Mater. Sci. Eng. B,2003,99:282-285.
    [62] D.W. Kim, H.B. Hong, K.S. Hong, Structural Transition and Microwave DielectricProperties of ZnNb2O6-TiO2Sintered at Low Temperatures. Jpn. J. Appl. Phys.,2002,41:1465-1469.
    [63]孙飞. Mg3B2O6-玻璃复合体系的低温烧结特性和微波介电性能:[硕士学位论文].武汉:华中科技大学,2012
    [64] C.H. Wei and J.H. Jean. Low-fire Processing (Ca1-xNd2x/3)TiO3Microwave Ceramics.J. Am. Ceram. Soc.,2003,86(1):93-98
    [65] A. Golovchansky, H.T. Kim, Y. Kim. Zinc titanates dielectric ceramics prepared bySol-Gel process. J. Korean. Phys. Soc.,1998,32(2):1167-1169.
    [66] H. Mandai and S. Okube. Ceram. Trans.1992,32:91.
    [67] C.L. Huang, J.F. Tseng. Dielectric Characteristics of La(Co1/2Ti1/2)O3ceramics atmicrowave frequencies. Mater. Lett.2004,58:3732-3736.
    [68] S.O. Yoon, T.H. Jo, K.S. Kim, et al. Phase formation in the Al2O3-, quartz-, andcordierite-zinc borosilicate glass composites. Ceram. Int.,2008,34:2155-2157
    [69] B.H. Jung, S.J. Hwang, H.S. Kim. Glass-ceramic for low temperature cofireddielectric ceramic materials based on La2O3–B2O3–TiO2glass with BNT ceramics. J.Eur. Ceram. Soc.,2005,25:3187.
    [70] C.C. Cheng, T. Hsieh, I. N. Lin. Effects of composition on low temperature cofireBa-Nd-Sm-Ti-O microwave dielectric materials. J. Eur. Ceram. Soc.,2004,24:1787-1790.
    [71] C.C. Cheng, T.E. Hsieh, I.N. Lin. Microwave dielectric properties of glass ceramiccomposites for low temperature cofireable ceramics. J. Eur. Ceram. Soc.,2003,23:2553-2558.
    [72] C.C. Cheng, T.E. Hsieh, I.N. Lin. The effect of composition on Ba-Nd-Sm-Ti-Omicrowave dielectric materials for LTCC application. Mater. Chem. Phys.2003,79:119-123.
    [73] O. Dernovsek, A. Naeini, G. Preu, W. Wersing, M. Eberstein, W.A. Schiller, LTCCglass-ceramic composites for microwave application. J. Eur. Ceram. Soc.,2001,21:1693-1697.
    [74] M. Udovic, M. Valant. D. Suvorov. Dielectric characterization of ceramics from theTiO2–TeO2System. J. Eur. Ceram. Soc.,2001,21:1735-1738.
    [75] M. Udovic, M. Valant. D. Suvorov. Phase formation and dielectric characterizationof the Bi2O3–TeO2system prepared in an oxygen atmosphere. J. Am. Ceram. Soc.,2004,87(4):591-597
    [76] M. Valant, D. Suvorov. Glass-free low-temperature cofired ceramics: calciumgermanates, silicates and tellurates. J. Eur. Ceram. Soc.,2004,24:1715-1719
    [77] H.F. Zhou, X.L. Chen, L. Fang, et al. Microwave dielectric properties of LiBiW2O8ceramics with low sintering temperature. J. Am. Ceram. Soc.,2010,93(12):3976-3979.
    [78] T. Tsunooka, M. Androu, Y. Higashida, H. Sugiura, H. Ohsato. Effects of TiO2onsinterability and dielectric properties of high-Q forsterite ceramics. J. Eur. Ceram.Soc.,2003,23:2573-2578.
    [79] T.S. Sasikala, M.N. Suma, P. Mohanan, C. Pavithran, M.T. Sebastian. Forsterite-based ceramic–glass composites for substrate applications in micro-wave andmillimeter wave communications. J. Alloys Comp.,2008,461:555-559.
    [80] T.S. Sasikala, C.Pavithran, M.T. Sebastian. Effect of lithium magnesium zincborosilicate glass addition on densification temperature and dielectric properties ofMg2SiO4ceramics. J. Mater Sci: Mater Electron.,2010,21:141-144.
    [81] Q.L. Zhang, H. Yang, H.P. Sun. A new microwave ceramic with low-permittivityfor LTCC applications. J. Eur. Ceram. Soc.,2008,28:605-609.
    [82] P. Li, S. Karato, Z. Wang. High-temperature creep in fine-grained polycrystallineCaTiO3, an analogue material of (Mg, Fe)SiO3perovskite. Physics of the Earth andPlanetary Interiors,1996,95:19-36.
    [83] H. Wang, S. Xu, S. Zhai, D. Deng, H. Ju. Effect of B2O3Additives on the Sinteringand Dielectric Behaviors of CaMgSi2O6Ceramics. J. Mater. Sci. Technol.,2010,26(4):351-354.
    [84] M. Naoya, S. Yasutaka, H. Jun, et al. Dielectric properties of new glass-ceramics forLTCC applied to microwave or millimeter-wave frequencies. J. Eur. Ceram. Soc.,2006,26:1925-1928.
    [85] G. Sumesh, S.A. Prabhakaran, N.D. Vasudevan, et al. Low-Temperature Sinteringand Microwave Dielectric Properties of Li2MgSiO4Ceramics. J. Am. Ceram. Soc.,2009,92(6):1244-1249.
    [86] Y. Guo, H. Ohsato, K. Kakimoto. Characterization and dielectric behavior ofwillemite and TiO2-doped willemite ceramics at millimeter-wave frequency. J. Eur.Ceram. Soc.,2006,26:1827-1830.
    [87] M. Valant, D. Suvorov. Glass-free low-temperature cofired ceramics: calciumgermanates, silicates and tellurates. J. Eur.Ceram. Soc.,2004,24:1715-1719.
    [88]孙慧萍,张启龙,杨辉,王信权,陆德龙.烧结助剂对CaO-B2O3-SiO2介电陶瓷结构和性能的影响.硅酸盐通报,2004,5:116-118.
    [89] S.H. Kweon, M.R. Joung, J.S. Kim, B.Y. Kim, S. Nahm, J.H. Paik, Y.S. Kim, T.H.Sung. Low temperature sintering and microwave dielectric properties of B2O3-added LiAlSiO4Ceramics. J. Am. Ceram. Soc.,2011,94:1995-1998.
    [90] S. George, M.T. Sebastian. low permittivity glass-ceramic composites for LTCCapplications. Int. J. Appl. Ceram. Technol.,2011,8:172-179.
    [91] S. George, P.S. Anjana, V.N. Deepu, P. Mohanan, M.T. Sebastian. Low-temperaturesintering and microwave dielectric properties of Li2MgSiO4ceramics. J. Am. Ceram.Soc.,2009,27:1244-1249.
    [92] A.R. West, F.P. Glasser. Crystallization of lithium zinc silicates, Part1, phaseequilibria in the system Li4SiO4-Zn2SiO4. J. Mater. Sci.,1970,5:557-565.
    [93] A.R. West, F.P. Glasser. Crystallization of lithium zinc silicates, Part2, comparisonof the metastable and stable phase relations and the properties of the lithium zincorthosilicates. J. Non-Cryst. Solids,1986,80:237-242.
    [94] E. Demirkesen, Z. Erkmen, N. Y ld z. Effect of Al2O3additions on the thermalexpansion behavior of a Li2O-ZnO-SiO2glass-ceramic. J. Am. Ceram. Soc.,1999,82:3619-3621.
    [95] E. Demirkesen, G. Goller. Effect of Al2O3additions on the acid durability of aLi2O-ZnO-SiO2glass and its glass-ceramic. Ceram. Int.,2003,27:463-469.
    [96] M. Goswami, P. Sengupta, K. Sharma, R. Kumar, V.K. Shrikhande, J.M.F. Ferreira,G.P. Kothiyal. Crystallization behaviour of Li2O-ZnO-SiO2glass-ceramics system.Ceram. Int.,2007,33:863-867.
    [97]殷之文.电介质物理学.北京:科学出版社,2003.
    [98]钟维烈.铁电体物理学.北京:科学出版社,2000.
    [99] S.S. Dunkle, K.S. Suslick. Photodegradation of BiNbO4Powder during Photo-catalytic Reactions. J. Phy. Chem. C,2009,113(24):10341-10345.
    [100]朱建华.钙钛矿添加剂对钨青铜型陶瓷微波介电性能的固溶调控:[博士论文].武汉:华中科技大学,2007.
    [101] B.Tareev Translated. Physics of Dilectric Materials. English Translations. Mir.pubishers,1979.
    [102] Y. Kobayashi, Y. Aoki, and Y. Kabe. Influence of conductor shields on the Q factorof a TE0dielectric resonator. IEEE Trans. Microw. Theory Tech.,1985.1361-1366.
    [103]朱建华,梁飞,汪小红等.微波介质陶瓷材料介电性能间的制约关系.电子元件与材料,2005,25(3):32-35.
    [104] P.J. Harrop. Temperature coefficients of capacitance of solids. J. Mater. Sci.,1969,4(4):370-374
    [105]果世驹.粉末烧结理论.北京:冶金工业出版社,2007.
    [106]陈国华.低温共烧玻璃陶瓷材料的制备及性能、机理研究.中国知识资源总库:中国优秀博士学位论文全文数据库,2006.
    [107] M.Li, A. Feteira, M. Mirsaneh, M.T. Lanagan, D.C. Sinclair. A link between p-type electricalconduction and microwave dielectric loss in highly ordered Ba(Co1/3Nb2/3)O3ceramics. Journalof Materials Research,2010,25(6):1011-1014.
    [108] M. Li, A. Feteira, M. Mirsaneh, S. Lee, M.T. Lanagan, C.A. Randall, D.C. Sinclair. Influence ofNonstoichiometry on Extrinsic Electrical Conduction and Microwave Dielectric Loss ofBaCo1/3Nb2/3O3Ceramics. J. Am. Ceram. Soc.,2010,93(12);4087-4095.
    [109] J.T.S. Irvine, D.C. Sinclair, A.R. West. Electroceramics: characterization by impedancespectroscopy. Adv. Mater.,1990,2(3):132-138.
    [110] X.J. Kuang, X.P. Jing, Z. X. Tang. Dielectric loss spectrum of ceramic MgTiO3investigated byAC impedance and microwave resonator measurements. J. Am. Ceram. Soc.,2006,89(1):241-246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700