低温烧成Ca(Li_(1/3)Nb_(2/3))O_(3-δ)基微波陶瓷材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在调研分析了国内外微波介质陶瓷研究状况的基础上,对Ca(Li_(1/3)Nb_(2/3))O_(3-δ)基陶瓷的组成、微观结构和介电性能及相互间关系等进行了系统的研究。探讨了介电常数、介电损耗和谐振频率温度系数的主要影响机制,对控制介电常数、降低介电损耗以及调节谐振频率温度系数提出了可行的改性方法及相关改性机理。不掺杂Ca(Li_(1/3)Nb_(2/3))O_(3-δ)陶瓷为典型的氧缺位型、钙钛矿结构的多元氧化物材料,随着B位Zr~(4+)取代量的增加,逐渐转化为氧过剩型。
     研究了Zr~(4+)置换对Ca[(Li_(1/3)Nb_(2/3))_(1-x)Zr_(3x)]O_(3-δ)(0.0≤x≤0.1)系陶瓷的晶胞参数、容忍因子、B位l:2有序度、离子极化率等方面的影响,以及晶体结构与介电性能之间的关系,以加深对微波介电性能的影响机理的认识。Zr~(4+)离子取代(Li_(1/3)Nb_(2/3))~(3.67+)复合离子,增大了Ca[(Li_(1/3)Nb_(2/3))_(1-x)Zr_(3x)]O_(3-δ)陶瓷体系的离子理论极化率。但随体系介电常数εr提高,B位l:2有序度减小,Qf值下降。Zr取代使体系的频率温度系数τf有所改善,例如x=2mol%时为-16.3 ppm/℃,x=10mol%时为-7.3ppm/℃。研究了Zr、Ti复合置换对Ca[(Li_(1/3)Nb_(2/3))_(0.95)Zr_(0.15-x)Ti_x]O_(~(3+δ)陶瓷的结构及性能的影响。Ti~(4+)进入体系B位导致体系介电常数增大,Qf值由x=0mol%时的13100 GHz增加到x=10mol%时的16570GHz,然后又减少到x=15mol%时的16020GHz。其原因是Zr~(4+)取代Li+产生的多余电子会导致陶瓷电阻率的降低,增加了电导损耗,而Ti~(4+)取代Nb5+产生空穴,于是电子浓度下降,电导损耗减小;但Ti~(4+)取代量增加到一定程度时,由于空穴浓度的上升,导致电导损耗又开始增大。随Ti含量的增加,τf向负谐振频率温度系数方向增大。同时研究了制备工艺对Ca(Li_(1/3)Nb_(2/3))O_(3-δ)基陶瓷介电性能的影响。
     研究了Ba~(2+)、Sr~(2+)及Nd~(3+)置换Ca[(Li_(1/3)Nb_(2/3))_(0.95)Zr_(0.15)]O_(~(3+δ)体系A位Ca~(2+)对晶体结及介电性能的影响,探讨了(Ca_(1-x)Ba_x)[(Li_(1/3)Nb_(2/3))_(0.95)Zr_(0.15)]O_(~(3+δ) (0.0≤x≤0.2)、(Ca1-xSrx) [(Li_(1/3)Nb_(2/3))_(0.95)Zr_(0.15)]O_(~(3+δ)(0.0≤x≤0.2)及(Ca_(1-x)Nd_x) [(Li_(1/3)Nb_(2/3))_(0.95)Zr_(0.15)]O_(~(3+δ) (0.0≤x≤0.2)体系中晶体结构与介电性能之间的关系。适量Ba~(2+)、Sr~(2+)置换Ca[(Li_(1/3)Nb_(2/3))_(0.95)Zr_(0.15)]~(3+)δ陶瓷A位Ca~(2+),钙钛矿结构B位键价减小,τf向正谐振频率温度系数方向增大,材料性能得到改善。当x=2.5mol%时,含Ba体系有很好的介电性能:εr=34.3,Qf =13400GHz,τf = 2.1 ppm/oC;而含Sr体系则在x=5mol%时介电性能最佳,其εr=32.5,Qf =13500GHz,τf = -2.4 ppm/oC。Nd~(3+)置换的体系中,适量置换,l:2有序度提高,陶瓷品质因素因而大幅度提高;过量置换会降低体系的1:2有序度。
     采用Ca[(Li_(1/3)Nb_(2/3))_(0.95)Zr_(0.15)]O_(~(3+δ))作为原始组分,以ZnO-B_2O_3-SiO_2 (ZBS)、ZnO-B_2O_3-Na_2O (ZBN)、B_2O_3作为烧结助剂降低陶瓷的烧结温度,研究单一或复合掺杂这些助剂后该陶瓷体系的烧结特性、结构及微波介电性能,探讨了Ca(Li_(1/3)Nb_(2/3))O_(3-δ)基陶瓷低温烧结机理。研究表明,单一掺杂时,ZBS、ZBN及B_2O_3均能降低陶瓷的烧结温度, ZBS的助烧作用有限,掺入量为7wt%时,于1000℃烧结,样品的微波介电性能为:εr=31.1,Qf=9530 GHz,τf = ?8.9 ppm/℃;B_2O_3的助烧效果最好,掺入1.0wt% B_2O_3,在990℃烧结4小时,陶瓷微波介电性能最佳:εr=33.1, Qf =13700GHz,τf =-6.8ppm/℃。而且,掺入2.0wt% B_2O_3,在940℃烧结,Qf可达8700GHz。复合掺杂比单一掺杂能更有效降低陶瓷的烧结温度,Ca[(Li_(1/3)Nb_(2/3))_(0.95)Zr_(0.15)]O_(~(3+δ)) +3.0 wt%ZBN +2.0wt% B_2O_3陶瓷在950℃烧结,有着较好介电性能,其εr=31.2 , Qf=10530GHz,τf =-5.1ppm/℃。
     研究了Zr~(4+)电荷、结构非平衡取代Ca(Li_(1/3)Nb_(2/3))O_(3-δ)陶瓷B位(Li_(1/3)Nb_(2/3))~(3.67+)对原缺陷模型的影响,研究表明,随氧分压及杂质浓度的增加,锂空位浓度不断提高,氧空位浓度不断下降,氧缺位型Ca(Li_(1/3)Nb_(2/3))O_(3-δ)化合物转变为氧过剩型化合物。同时研究了B位Zr、Ti复合置换的Ca[(Li_(1/3)Nb_(2/3))_(0.95)Zr_(0.15-x)Ti_x]O_(~(3+δ)) (0.0≤x≤0.15)陶瓷及A位Nd置换的(Ca_(1-x)Nd_x)[(Li_(1/3)Nb_(2/3))_(0.95)Zr_(0.15)]O_(~(3+δ))(0.0≤x≤0.20)陶瓷的缺陷化学,研究表明,随杂质Ti~(4+)浓度的增加,电子浓度不断下降,空穴浓度不断提高;而A位Nd置换使晶体中参与电导的电子浓度上升。探讨了点缺陷电子电导对微波介质陶瓷介电损耗的影响机理。
On the basis of research and analysis on a number of both domestic and foreign studies on microwave dielectric ceramics, this paper has systematically investigated the composition, microstructure, and dielectrics properties of Ca(Li_(1/3)Nb_(2/3))O_(3-δ) ceramics, and their mutual relationship. Discussion is made on the principal influence mechanism of dielectric constant, dielectric loss, resonance frequency temperature coefficient. Feasible modification method and related mechanism is proposed for dielectric constant control, dielectric loss reducing, and resonance frequency temperature coefficient adjustment. Un-doped Ca(Li_(1/3)Nb_(2/3))O_(3-δ) ceramics is of typical oxygen vacancy- type perovskite structure oxide, with the increase of B site Zr~(4+) substitution, it was transformed gradually into over the oxidized type.
     The influence of B site Zr~(4+) substitution on the lattice parameter, the tolerance factor, the degree of B-site 1:2 ordering and the ionic polarizability and the relationship between the crystal structure and dielectric properties of Ca (Li_(1/3)Nb_(2/3))_(1-x)Zr_(3x)]O_(3-δ) (0.0≤x≤0.1) ceramics was investigated. A increase of the ionic polarizability in Ca[(Li_(1/3)Nb_(2/3)) 1-xZr3x]O_(3-δ) ceramics caused by B site Zr~(4+) substitution.Therefore, theεr value of specimens increased, but the degree of B-site 1:2 ordering and the Qf value decreased. Theτf value increased from ?16.3 to ?7.3 ppm /oC with increasing Zr ~(4+)content from 2.0 to 10.0mol%. The influence of multiple substitution of Zr~(4+) and Ti~(4+) on the ceramic structure and dielectric properties of Ca[(Li_(1/3)Nb_(2/3))_(0.95)Zr_(0.15-x)Ti_x]O_(~(3+)δ) (0.0≤x≤0.15)ceramics was studied. The substitution of Ti~(4+) at B site caused the increase of dielectric constant is increased. At first the Qf value is increased from 13100 GHz to 16570GHz as Ti~(4+) content increased from 0 to 10mol%, then it is decreased to 16020GHz at Ti~(4+) content of 15mol%. The reason is the substitution of Zr~(4+) to Li+ at B-site generated redundant electronic, lowered the resistance of ceramics, and leaded to an increase of conductivity loss, while the substitution of Ti~(4+) to Nb5+ generated hole, the electronic concentration was decreased, and conductivity loss decreases, but with increasing Ti~(4+) content to a certain degree, conductivity loss increased again due to the hole concentration increased. With a increase of Ti~(4+) content , theτf value moved to the negative direction. At the same time, effect of preparation processing on dielectric properties of Ca(Li_(1/3)Nb_(2/3))O_(3-δ)-based ceramics was discussed.
     The effect of A site Ba~(2+), Sr~(2+) and Nd~(3+) substitution on the crystal structure and dielectric properties of Ca[(Li_(1/3)Nb_(2/3))_(0.95)Zr_(0.15)]O_(~(3+)δ) ceramics was investigated. The proper substitution of Ba~(2+) and Sr~(2+) can improve the temperature coefficient of Ca[(Li_(1/3)Nb_(2/3))_(0.95)Zr_(0.15)]O_(~(3+)δ) system, which was resulted from the decrease of the B-site bond valence of the ABO3 perovskite structure. At x=2.5mol%, good dielectric properties were obtained in (Ca_(1-x)Ba_x)[(Li_(1/3)Nb_(2/3))_(0.95)Zr_(0.15)]O_(~(3+)δ) (0.0≤x≤0.2) ceramics:εr=34.3, Qf =13400Ghz andτf = 2.1 ppm/oC; the dielectric properties wereεr=32.5, Qf =13500GHz andτf = -2.4 ppm/oC for (Ca_(1-x)Sr_x) [(Li_(1/3)Nb_(2/3))_(0.95)Zr_(0.15)]O_(~(3+)δ) (x=5mol%). The proper substitution of Nd~(3+) can enhanced the degree of B-site 1:2 ordering. The Qf value of the specimens increased rapidly. Excessive substitution made the degree of B-site 1:2 ordering.
     Ca[(Li_(1/3)Nb_(2/3))_(0.95)Zr_(0.15)]O_(~(3+)δ) ceramics were selected as the research objects, and ZnO-B_2O_3-SiO2 (ZBS), ZnO-B_2O_3-Na2O (ZBN) and B_2O_3 were regarded as sintering aids. The effect of single aid or multiple aids on the sintering behavior, microstructure and dielectric properties of Ca[(Li_(1/3)Nb_(2/3))_(0.95)Zr_(0.15)]O_(~(3+)δ) ceramics was discussed, and the low temperature sintering mechanism was revealed. The results of research show that ZBS, ZBN and B_2O_3 can also lower the sintering temperature. The effect of B_2O_3 aid was best. When the B_2O_3 of l.0wt% were added, the optimum microwave dielectric properties:εr =33.1,Qf =13700GHz andτf =- 6.8×10~(-6)/℃were obtained at the sintering temperature of 990oC. Furthermore. The specimens with 2.0wt% B_2O_3 sintered at 940oC for 4h showed good microwave dielectric properties ofεr=31.4 ,Qf =8700GHz andτf = - 5.2×10~(-6)/℃. Multiple aids can reduced the sintering temperature more effectively. Sintered at 950℃, the dielectric properties of Ca[(Li_(1/3)Nb_(2/3))_(0.95)Zr_(0.15)]O_(~(3+)δ) with 3.0wt%ZBN +2.0wt% B_2O_3 wereε_r=31.2, Qf=10530Ghz andτ_f = ?5.1ppm/℃.
     The influence of electric charge and structure unbalance substitution of Zr~(4+) at B site on the original defect model in Ca(Li_(1/3)Nb_(2/3))O_(3-δ) ceramics was studied. The result shows that the electron concentration rises with a increase of the partial pressure of oxygen and dopants concentration, the oxygen vacancy concentration decreased, and Ca(Li_(1/3)Nb_(2/3)) O_(3-δ) compounds changed from oxygen vacancy-type into oxygen ionic Surplus-type compounds. At the same time, the defect chemistry of Ca[(Li_(1/3)Nb_(2/3))_(0.95)Zr_(0.15-x)Ti_x]O_(3+δ) (0.0≤x≤0.15) ceramics was discussed. The study shows that the decrease of electron concentration with a increase of Ti~(4+) content, and the increase of electron concentration with increasing Nd~(3+) content. The influence mechanism of point defect electronic conductivity on the dielectric loss of microwave dielectric ceramics was discussed.
引文
[1]郭秀芬.陶瓷介质在微波技术中的应用.压电与声光, 1990, 12(6): 40-47
    [2]干福熹.信息材料.天津:天津大学出版社, 2000: 200-222
    [3]李标荣,王筱珍,张绪礼.无机电介质.第一版.武汉:华中理工大学出版社, 1995: 163
    [4]汪东亮,谭寿涛,赵梅瑜.精细陶瓷材料.北京:中国物质出版社, 2000: 200
    [5]张启龙.低温烧结微波介质陶瓷及多层片式带通滤波器研究[博士论文].浙江大学材料学院, 2004: 4-8, 56
    [6]何进,杨传仁.微波介质材料综述.电子元件与材料, 1995(4): 7-13
    [7]方亮,杨卫明,鄢俊兵,张辉.微波介质陶瓷的研究现状与发展趋势.武汉理工大学学报, 2002, 24(2): 12-15
    [8]董显存.功能陶瓷材料研究进展与发展趋势.中国科学院院刊, 2003(6): 407-412
    [9] Huang C L, Chen Y C. Microwave dielectric properties and microstructure of Ba2-XSm4+2/3Ti8+yO24+2y. Material Science Engineering, 2003, A345: 106-112
    [10] Wu Y J, Chen X M, Structure and microwave dielectric properties of Ba6-3X(Nd, Bi)8+2XTi18O54. Journal of Materials Research, 2001, 16(6): 1734-1738
    [11] Noboru I, Hideyuki A Preparation and microwave dielectric properties of the BaO·(Sm1-xLax)2O3·5TiO2 ceramic system. Journal of European Ceramic Society. 2001, 21: 2751-2753
    [12] Takahashi H, Yoko B, Ezaki K, et al. Dielectric characteristics of (A1+1/2·A3+1/2) TiO3 ceramics at microwave frequencies. Japanese Journal of Applied Physics, 1993, 30: 2339-2342
    [13] Ezaki K, Yoko B, Takahashi H, et al. Microwave Dielectric Properties of CaO-Li2O-Ln2O3-TiO2 ceramics. Japanese Journal of Applied Physics, 1993, 32:4319-4322
    [14] Huang C L, Chen H L, Wu C C Improved high Q value of CaTiO3-Ca (Mg1/3Nb2/3)O3 solid solution with near zero temperature coefficient of resonant frequency. Materials Research Bulletin, 2001, 36: 1645-1652
    [15] Huang C L, Yang R Y, Weng M H. Dielectric properties of CaTiO3-Ca (Mg1/3Nb2/3)O3 ceramics system at microwave frequency. Japanese Journal of Applied Physics, 2000, 39: 6608-6612
    [16] Kato J, Kagata H, Nishimoto K. Dielectric properties of lead alkaline-earth zirconate at microwave frequencies. Japanese Journal of Applied Physics, 1991, 30: 2343-2369
    [17] Kagata H, Kato J, Nishimoto K Dielectric properties of Pb-based perovskite substituted by Ti for B-site at microwave frequencies. Japanese Journal of Applied Physics, 1993, 32: 4332-4339
    [18] Huang C L, Zheng M H. The effect of PbO loss on microwave dielectric properties of (Pb, Ca)(Zr, Ti)O3ceramics. Materials Research Bulletin, 2001, 36: 683-691
    [19] Wersing W. High frequency ceramic dielectrics and their application for microwave components. In Electronic ceramics. Edited by Steele BCH. London and New York: Elsevier applied science, 1991: 67-119
    [20] Wakino K, Minai K, Tamura H. Microwave characteristics of (Zr, Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 dielectric resonators. J. Am. Soc., 1984, 67(4): 278-281
    [21] Ohsato H, Ohhashi T, Kato H, et al. Microwave dielectric properties and structure of the Ba6-3XSm8+2XTi18O54 solid solutions. Jpn. J. Appl. Phys., 1995, 34: 187-191
    [22] Ichinose N, Amada H. Preparation and microwave BaO·(Sm 1-XLaX)2O3·5TiO2 ceramic system. J, Eur. C'eram. dielectric properties of the Soc., 2001, 21: 2751-2753
    [23] Kim W S, Yoon K H, Kim E S. Microwave dielectric properties and far-infrared reflectivity characteristics of the CaTiO3-Li1/2-3X Sm1/2+XTiO3 Ceramics, J Am.Ceram. Soc., 2000, 83(9): 2327-29
    [24] Huang C L, Tsai J T, Chen Y B. Dielectric properties of (1-y) (Ca, La)TiO3-yLi1/2 Nd 1/2 TiO3ceramic system at microwave frequency, Mater. Res. Bull., 2001, 36: 547-556
    [25] Kato J, Kagata H, Nishimoto K. Dielectric Properties of (Pb, Ca)(Me1/3Nb2/3)O3 at Microwave Frequencies, Jpn. J. Appl. Phys., 1992, 31: 3144-3147
    [26] Huang C L, Weng M H. The effect of Pb0 loss on microwave dielectric properties of (Pb, Ca)(Zr, Ti)O3 ceramics. Mater. Res. Bull., 2001, 36: 683-691
    [27] Kato J, Kagata H, Nishimoto K. Dielectric properties of lead alkaline-earth zirconate at microwave frequencies, Jpn. J. Appl. Phys., 1991, 30: 2343-2346
    [28]宋英,王福平,张明福. BaO-TiO2系陶瓷微波介电性的近期研究进展.硅酸盐通报, 1998(3): 50-52
    [29]吴顺华,陈力颖,陈小娟等. Mn掺杂BaTi4O9陶瓷结构和介电性能.硅酸盐学报, 2001, 29(1): 80-83
    [30] Han K R, Jang J W, Cho S Y, et al. Preparation and Dielectric of Low- Temperature-Sinterable (Zr0. 8Sn0. 2)TiO4 Powder. J. Am. Ceram. Soc., 1998, 81(5): 1209-1214
    [31]姚尧,赵梅瑜,王依琳等.固相合成制备单相Ba2Ti9O20粉体及陶瓷.硅酸盐学报, 1998, 26(6): 797-801
    [32] Huang C L, Weng M H. Liquid phase sintering of (Zr, Sn)TiO4 microwave dielectric ceramics. Mater. Res. Bull., 2000, 35: 1881-1888
    [33] Jancar B, Suvorov D, Valant M, et al. Characterization of CaTiO3-NdAlO3 dielectricceramics, J. Eur. Ceram. Soc., 2003, 23: 1391-1400
    [34] Sun P H, Nakamura T, Shan Y J, et al. Dielectric behavior of (1-x) SrTiO3-x LaAlO3 solid solution system at microwave Frequencies, Jpn. J. Appl. Phys., 1998, 37: 5625-5629
    [35] Levin I, Chan J Y, Mastar J, E et al. Bell S M Phase transitions and microwavedielectric properties in the perovslcite-like CaTiO3-Ca(Al1/2Nb1/2)O3 system, J. Appl. Phys., 2001, 90(2): 904-913
    [36] Nomura S, Toyama K, Kaneta K. Ba(Mg1/3Ta2/3)O3 ceramics with temperature-stable high dielectric constant and low microwave loss. Jpn. J. Appl. Phys., 1982, 21(10): 624-26
    [37] Shoichiro N. Ceramics for microwave dielectric resonator. Ferroelectrics, 1983, 49: 61-70
    [38] Takada T, Wang S F, Syoshikawa S, et al. Effect of glass additions on BaO-TiO2-WO3 microwave ceramics. J. Am. Ceramic. Soc., 1994, 77(7): 1909-1916
    [39]杨秋红, Eung Soo Kim,徐军等. Pb-B2O3基玻璃对(Pb, Ca, La)(Fe, Nb)陶瓷微波介电性能影响.功能材料与器件学报, 2002, 8(4): 374-377
    [40] Kim H T, Kim S H, Nahm S, et al. Low-fired (Zn, Mg)TiO3 microwave dielectrics [J]. J. Am. Ceram Soc., 1999, 82(11): 3043-3048
    [41] Okawa T, Imaeda M, ohsato H. Microwave dielectric properties of Bi-added Ba4Nd9+1/3Ti18O54 solid solutions. Jpn. J. Appl Phys. 2000, 39(9B): 5645-5649
    [42]舒新兴,饶平根,陈大博.低温烧结微波介质陶瓷的研究现状及展望.中国陶瓷, 2005, 41(1): 43-48
    [43] Hirotaka O, P L, Kim E S, et al. Low-temperature sintering and microwave dielectric properties of Ca(Li1/3Ta2/3)O3?δ?CaTiO3 ceramics. Journal of the European Ceramics Society., 2003, 23: 2417-2421
    [44] Lee H J, Kim I T, Hong K S. Dielectric propertiesof AB2O6 compouns at microwave frequencies. Jpn. J. Appl. Phys. 1997, 36(10A): L1318-L1320
    [45] Lee H J, Hong K S, Kim S J. Dielectric Properties of MNb2O6 compounds. Materials Research Bulletin, 1997, 32(7): 847-855
    [46] Pullar R C, Breeze J D, Alford N M. Characteraction and microwave dielectric properties of M2+Nb2O6 ceramics. J Arn. Ceram. Soc., 2005, 88(9): 2466-2471
    [47] P L, Hirotaka. O, Kim E S, Akninori Kan Microwave dielectric properties of Low-temperature sintered Ca[(Li1/3Nb2/3), Ti]O3?δceramics. Journal of the European Ceramics Society., 2004, 24: 1761-1764
    [48] Ohsato H, Imaeda M, Takagi Y, et al. Proceedings of the I lth IEEE International Symposium on Applications of Ferroelectrics, Montreux, Switzxrland, 1998: 509
    [49] Kagata H, Inone T, Kato J, et al. Low fired bismuth-based dielectric ceramics. Jpn. J Appl. Phys. Part I, 1992, 31(9B): 3152-3155
    [50] Cheng C M, Lo S H, Yang C F. The effect of Cu0 on the sintering and properies of BiNbO4 microwave ceramics. Ceram Int., 2000, 26: 113-117
    [51] TZou W C, Yang C F, Chen Y C, et al. Improvements in the sintering and microwave properties of BiNbO4 microwave ceramics by V2O5 addition. J Eur Ceram Soc., 2000, 20: 991-996
    [52] Yang C F. Improvements of quality and shift ofτf of BiNbO4 ceramics with addition CuO-V2O5 mixtures. Jpn. J APPL. Phys. Part 1, 1999, 38(12A): 6797-6800
    [53] Huang C L, Weng M H, Wu C C, et al. Low fire BiNbO4 microwave dielectric modified by Sm2O3 addition. Mater Res Bull., 2001, 35: 827-835
    [54] Huang C L, Weng M H. Low firable BiNbO4 based microwave dielectric ceramics. Ceram. Int., 2001, 27: 343-350
    [55] Nino J C, Michael T, Lanagan, et al. Phase Formation and Reactions in the Bi2O3-ZnO-Nb2O5-Ag Pyrochlore System. J Mater. Res., 2001, 16(5): 1460-1464
    [56] Shim K B, Cho N T, et al. Silver diffusion and microstructure in LTCC multilayer couplers for high frequency applications. J. Mater. Sci., 2000, 35: 813-820
    [57] Kim H T, Bylin J D, Kim Y H. Microstructure and microwave dielectric properties of modified zinc titanates (I). Mater. Res. Bull., 1998, 33(6): 963-973
    [58] Kim H T, Bylin J D, Kim Y H. Microstructure and microwave dielectric properties of modified zinc titanates (II). Mater. Res. Bull., 1998, 33(6): 975-986
    [59] Golovchansk A, Kim H T, Kim Y H. Zinc titanates dielectric ceramics prepared bySol-Gel Process. J. Koren. Phys. Soc., 1998, 32(2): 51167-1169
    [60] Chang Y S, Chang Y H, Chen I G, et al. Synthesis and characterization of zinc titanate nano-crystal Powders by Sol-Gel technique. J. Cryst. Growth, 2002, 243: 319-326
    [61] Wang S F, Gu F, Meng K L, et al. Preparation and characterization of Sol-Gel derived ZnTi03 nanocrystals. Mater. Res. Bull., 2003, 38: 1283-1288
    [62] Kim H T, Kim S H, Kim H T, et al. Low-temperature sintering and microwave dielectric properties of zinc metatitanate-rutile mixtures using boron. J. Am. Ceram. Soc., 1999, 82(11): 3043-3048
    [63] Kim H T, Kim H T, Nahm S, et al. Low-fired (Zn, Mg) TiO3 microwave dieleetrics. J. Arn. Ceram. Soc, 1999, 82(12): 3476-3480
    [64] Li B, YUE Z X, Li L T, et al. Low-fired microwave dielectrics in ZnO-TiO2 ceramics doped with CuO and B203. J. Mater. Sci., 2002, 13(7): 415-418
    [65] Pullar R. C, Breeze J D, Mcn N A. Characterization and Microwave dielectric properties of M2+Nb2O6 ceramics. J. Am. Ceram. Soc., 2005, 88(9): 2466-2471
    [66] Lee H J, Kim I T, Hong K S. Dielectric propertiesof AB2O6 compound sat microwave frequencies. JPn. J. APPL. Phys., 1997, 36(10A): L1318-L1320
    [67] Dayal R C. The binary system ZnO-Nb2O5. Journal of the Less-Common Metals., 1972, 26: 381-390
    [68] Elisabeth H, Yvonne R, Nguyen Q D, et al. Characterization of different bondings in some divalent metal niobates of columbite structure. Materials Research Bulletin, 1977, 12: 1199-1206
    [69] Kim D W, Ko K H, Hong K S. Inluence of copper oxide additions to zinc niobate microwave ceramics on sintering temperature and dielectric properties. J. Am. Ceram. Soc., 2001, 84(6): 1286-1290
    [70] Kim D W, Ko K H, Hong K S. Structural transition and microwave dielectric properties of ZnNb2O6-TiO2 sintered at low temperatures. Jpn. J. Appl. Phys., 2002,41: 1465-1469
    [71] Kim D W, Kmn D Y, Hong K S. Phase relations and microwave dielectric properties ofpZnNb2O6-TiO2. Journal of Materials Research, 2000, 15(6): 1331-1335
    [72] Kim D W, Ko K H, Kmn D Y, et al. Origin of microwave dielectric loss in ZnNb2O6-TiO2. J. Am. Ceram. Soc., 2002, 85(5): 1169-1172
    [73]张启龙,杨辉,王家邦等.低温烧结ZnNb2O6/TiO2复合陶瓷的制备及介电性能的研究.材料科学与工程学报, 2003, 21(5): 694-696
    [74] Huang C L, Lin R J, Wang J J. Effect of B203 additives on sintering and microwave dielectric behaviors ofCuO-doped ZnNb2O6 ceramics. Jpn. J. Appl. Phys., 2002, 41(ZA): 758-762
    [75] Zhang Y C, Li L T, Yue Z X, et al. Microwave dielectric properties of CaF2-doped ZnNb2O6 ceramics. Key Engineering Materials, 2002, 224-226: 5-8
    [76] Zhang Y C, Yue Z X, Gui Z L, et al. Effects of CaF2 addition on the microstructure and microwave dielectric properties of ZnNb2O6 ceramics. Ceramics Intrnational, 2003, 29: 555-559
    [77] Zhang Y C, Wang J, Yue Z X, et al. Effects of Mg2+ substitution on microstructure and microwave dielectric properties of (Znl-xMgx)Nb2O6 ceramics. Ceramics Intrnational, 2004, 30(l): 87-91
    [78] Zhang Y C, Yue Z X, Gui Z L, et al. Microwave dielectric properties of (Znl-xMgx)Nb2O6 ceramics. Materials Letters, 2003, 57: 4531-4534
    [79] Zhang Y C, Yue Z X, Qi X W, et al. Microwave dielectric properties of Zn(Nbl-xTax)2O6 ceramics. Materials Letters, 2004, 58: 1392-1395
    [80] Wee S H, Kim D W, Yoo S I. Microwave Dielectric Properties of Low-Fired ZnNb2O6 ceramics with BiVO4 Addition. J. Am. Ceram. Soc., 2004, 87(5): 871-874
    [81] Wee S H, Kim D W, Yoo S I, et al. Low-temperature sintering of V2O5-added and -substituted ZnNb2O6 microwave ceramics. Jpn. J. APPL. Phys., 2004, 43(6A):3511-3515
    [82] Choi J W, Kang C Y, Yoon S J, et al. Microwave dielectric properties of Ca[(Li1/3Nb2/3)1-XMX]O3?δ(M=Sn, Ti)ceramics. J. Mater. Res., 1999, 14(9): 3567-3570
    [83] Choi J W, Ha J Y, Yoon S J, et al. Microwave dielectric properties of Ca [(Li1/3Nb2/3)1-XZrX]O3?δceramics. Jpn. J. APPL. Phys., 2004, 43(1): 223-225
    [84] P L, Kim E S, Yoon K H. Low-temperature sintering and microwave dielectric properties of Ca(Li1/3Nb2/3)O3?δceramics. Jpn. J. APPL. Phys., 2001, 40(9B): 5769-5773
    [85]张启龙,杨辉,童建喜.中温烧结CaLNT微波介质陶瓷.电子元件与材料, 2005, 24(5): 33-36
    [86] Choi J W, Kang C Y, Yoon S J, et al. Microwave dielectric properties of B2O3 doped Ca[(Li1/3Nb2/3)0. 9Ti0. 1]O3?δeramics. Ferroelectrics, 2001, 262: 167-172
    [87] P L, Kim E S, P L, Kang S G, et al. Microwave dielectric properties of Ca[(Li1/3Nb2/3)1-XTi3X]O3?δceramics with B2O3. Matericals Chemistry and Physics., 2003, 79: 270-272
    [88]童建喜,张启龙,朱玉良等.低温烧结Ca[(Li0. 33Nb0. 67)0. 7Ti0. 3] O3?δ陶瓷及微波介电性能.材料科学与工程学报, 2003, 21(6): 859-861
    [89] Ha J Y, Choi J W, Yoon S J, et al. Microwave dielectric properties of Bi2O3-doped Ca[(Li1/3Nb2/3)1-XTiX]O3?δceramics. Journal of the European Ceramics Society. 2003, 23: 2413-2416
    [90]杨辉,张启龙,王家邦等.微波介质陶瓷及器件研究进展.硅酸盐学报, 2003, 31(10): 965-973
    [91]赵梅瑜,王依琳.低温烧结微波介质陶瓷.电子元件与材料, 2002, 21(2): 30-33
    [92]王宁,赵梅瑜,殷之文.微波介质陶瓷的中低温烧结.无机材料学报, 2002, 17(5): 915-923
    [93]张绪礼.电介质物理与微波介质陶瓷.压电与声光, 1997, 19(5): 315-320
    [94] Roberts S. Polarizabilities of ions in perovskite-type crystals. Phys. Rev., 1951, 81(5): 865-868
    [95] Bosman A. J., Havinga E. E. Temperature dependence of dielectric constarts of cubic ionic compounds. Phys. Rev., 1963, 129: 1593-1601
    [96] Lichtenecker K. Dielectric constants of cubic ionic compounds. Physik Zeits., 1926, 27: 833-835
    [97]李婷,王筱珍,张绪礼.微波介质陶瓷相对介电常数的简易测量.电子元件与材料, 1996, 15(1): 41-45
    [98] Gurevich V L, Tagantsev A K. Intrinsic dielectric loss in crystals. Adv. Phys., 1991, 40(6): 719-767
    [99] Wersing W. High frequency ceramic dielectric and their application for microwave components. In: Electronic Ceramics. Edited by Steele $CH. London and New York: Elsevier Applied Science, 1991: 67-119
    [100] Kim E S, Park H S, Yoon K H. Porosity dependence of microwave dielectric properties of complex perovskite (Pb0. 5Ca0. 5)(Fe0. 5Ta0. 5)O3 ceramics. Mater. Chem. &Phys. 2003, 79: 213-217
    [101] Yang J I, Nahm Sahn, Choi C H, et al. Effect of Ga2O3 on Microstructure and Microwave Dielectric Properties of Ba(Zn1/3Ta2/3)O3 Ceramics. Jpn. J. Appl. Phys., 2002, 41: 702-706
    [102] Yoon K H, Jung B J, Kim E S, et al, Dielectric properties of ceramics of SMN-BMT solid solution. J. Mater. Sci. Lett., 1989(8): 819-822
    [103] Endo K, Fujimoto K, Murakawa K Dielectric properties of ceramics in Ba(Co 1/3 Nb 2/3)O3- Ba(Zn1/3 Nb 2/3)O3 solid solutions. J. Am. Soc., 1987, 70(9): C215-218
    [104] Huang C L, Weng M H, Chen H L, Effects of additives on microstructure and microwave dielectric properties of (Zr, Sn)TiO4 ceramics, Mater. Chem. Phys., 2001, 71: 17-22
    [105] Chou C C, Tsai D S, Lin L N, Steeds J, Microstructural defects in Ba(Mg1/3Ta2/3)O3.microwave dielectric materials. Mater. Chem. Phys., 2003, 79, 218-221
    [106] Kim I T., Kim Y H., Chung S J Order-disorder transition and microwave dielectric properties of Ba(Zn1/3Ta2/3)O3 ceramics. Jpn. J. Appl. Phys., 1995, 34: 4096-4101
    [107] Davies P K, Tong J, Negas T Effect of ordering-induced domain boundaries on low-loss Ba(Zn 1/3Ta2/3)O3-BaZrO3 perovskite microwave dielectrics. J. Am. Ceram. Soc., 1997, 80(7): 1727-1740
    [108] Murota K. NTT DoCoMo, Mobile communications trends in Japan and NTT DoCoMo's activities towards 21th century, in ACTS Mobile Summit99, Sorrento, Italy, June 1999
    [109] Reaney I M., Colla E L, Setter N. Dielectric and structural characteristics of Ba- and Sr-based complex perovskites as a function of tolerance factor. Jpn. J. Appl. Phy., 1994, 33: 3984-3992
    [110] Kim E S, Yoon K H, Kim W S, "Effect of bond valence on microwave dielectric properties of Ca2/5Sm2/5TiO3-Li1/2Nd1/2TiO3 ceramics". Key Engi. Mater., 2002, 43: 228-229
    [111] Brese N E, O'Keeffe M. "Bond-valence parameters for solids". Acta. Cryst., 1991, B47: 192-197
    [112] Kobayashi Y, Katoh M. Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method. IRE Trans. Microwave Theory Tech., 1985, 33, 586-592
    [113] Shannon. R D. Revised effective ionic radii snd systematic study of interatomic distances in halides and chalcogenides Acta Crystallogr. (secA.), 1976, 32(9): 751-767
    [114] Galasso F, Pyle J. Ordering in compounds of the A(B'0. 33Ta0. 67)O3 type. MOT. Chem., 1963(2): 482-484
    [115] Desu S B, O'Bryan H M. Microwave loss quality of Ba(Znl/3Ta2/3)O3 ceramics. J Am Ceram. Soc., 1985, 68: 546-551
    [116] Shannon R D. Dielectric poparizabilities of ions in oxides and flucorides. J. Appl. Phys., 1993, 73: 348-366
    [117] Huang C L, Weng M H. Low-fire BiTaO4 dielectric ceramics for microwave application. Mater. Lett., 2000, 43: 32-35
    [118] Rossi G., Burke, Joseph E. Influence of additives on the microstructure of sintered Al2O3. J Am. Ceram. Soc., 1973, 56: 654-659
    [119] Wakino K, Murata M, Tamura H. Far infra-red reflection spectra of Ba(Zn, Ta)O3-BaZrO3 dielectric resonator material. J. Am. Ceram. Soc., 1986, 69: 34-37
    [120] Iddles D M, Bell A J, Moulson A J. Relationships between dopants, microstructure and the microwave dielectric properties of ZrO2-TiO2-SnO2 ceramics. J. Mater. Sci., 1992, 27: 6303-6309
    [121] Kawashima S, Nishida M, Ueda I, et al. Sol-Gel processing and microwave characteristics of Ba(Mg1/3Ta2/3)O3 dielectrics. J. Am. Ceram. Soc., 1983, 66: 421-424
    [122] Kim E S, Kim Y H, Chase J H. Dielectric properties of [(Pb0. 2Ca0. 8)1?xSrx] (Ca1/3Nb2/3)O3 ceramics at microwave frequencies. Mater. Chem. &Phys., 2003, 79: 230-232
    [123] Kingery W D. Densification during sintering in the presence of a liquid phase. I theory. J. Appl. Phys., 1959, 30(3): 301-306
    [124] Kingery W D, Narasimhan M D. Densification during sintering in the presence of a liquid phase. II experimenta. J. Appl. Phys., l960: 307-310
    [125] Kingery W D, Nikie, Narasimhan M D. Sintering of oxide and carbide-metal compositions in presence of a liquid phase. J. Am. Ceram. Soc., 196l, 44(1): 29-35
    [126] Singh V K. Sintering of alumina in the presence of liquid. Trans. Ind. Ceram. Soc., 1978, 37(2): 55-57
    [127] Wu J M, Lin H H. Microwave properties of zinc, barium and lead borosilicate classes. Journal of Non-crvstallines Solids., 1999, 260(1): 116-124
    [128]李标荣.电子陶瓷工艺原理.武汉:华中理工大学出版社, 1986: 110-113
    [129]周东祥,张绪礼,李标荣.半导体陶瓷及应用.武汉:华中理工大学出版社, 1991: 1-45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700