低温烧结六角晶系铁氧体电磁特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要介绍了多层片式电感用低温烧结六角晶系铁氧体的晶体结构、制备工艺及电磁特性。一般情况下单相的铁氧体具有很高的烧结温度,从而不能与Ag电极共烧来制做多层片式电感,因此如何在不明显降低六角晶系铁氧体材料电磁性能的前提下如何降低其烧结温度也就是本文主要的研究内容。
     使用在超高频范围内的多层片式电感不能使用传统的低温烧结尖晶石铁氧体材料,由于特殊的晶体结构六角晶系铁氧体具有相对尖晶石铁氧体较高的Snoek积和自然共振频率,这些特点使其适于作为高频多层片式电感的磁性介质材料。为降低其烧结温度需采用两个步骤来实现:其一就是配方中加Cu,其二就是掺杂少量Bi_2O_3。
     因为Y型六角晶系铁氧体具有相对较高的自然共振频率,本文选作Co_2Y为主要的研究材料。用Cu离子置换Co_2Y中的部分Co离子成为Co_(2-X)Cu_XY型六角晶系铁氧体,再掺杂少量的Bi_2O_3能够有效降低其烧结温度。改变Cu离子的置换量X和Bi_2O_3的掺杂量得到25种不同的实验样品,这些样品都是用传统的固相反应法来制备,对制备好的样品进行电磁参数的测试和分析可以选出具有较低的烧结温度和最优的Cu离子置换量X及Bi_2O_3的掺杂量的样品,实验证明在Cu离子置换量X=1.0及掺杂5.0wt%的Bi_2O_3的情况下样品的烧结温度低至930℃,但总体来说这些样品的磁导率都不超过4.0。用Zn离子来置换部分Co离子和Cu离子可以提高材料的磁导率至11.3,这是用来调节材料磁导率的可行办法。
The crystal-structure, fabricating process and electronic-magnetic properties of the low-temperature-sintered hexagonal ferrites applied in Multilayer Chip Inductor(MLCI) are introduced in this paper. Usually the sintering temperature of the single phase of hexagonal ferrites is very high. So the main task of the paper is to lower the sintering temperature of hexagonal ferrites without largely degenerating the electronic magnetic properties.
     The spinel ferrites cannot be used as the inner magnetic dielectric in the MLCIs working in Ultra High Frequency(UHF) range. Due to special crystal-stucture the hexagonal ferrites has higher Snoek products and resonance frequency than the spinel ferrites. These advantages make it adapt to used as the inner magnetic dielectric in high frequency MLCIs. In order to decrease the sintered temperature of hexagonal ferrites two steps must be introduced: the first one is to add Cu in the formula, the last one is to mix it with some Bi_2O_3.
     The Co_(2-X)Cu_XY type hexagonal ferrites was chosen to research because of its relative high nature resonance frequency. It is an effective way to decrease the sintering temperature that replacing the Co ion with Cu ion and mingle with some Bi_2O_3 in the Co_2Y type hexagonal ferrites. Twenty-five samples were prepared by changing the content of the Cu ion and the Bi_2O_3. All these samples were manufactured by the traditional solid-state reaction method. The sample which has a lower sintering temperature and optimal contents of the Cu ion and the Bi_2O_3 can be selected by analyzing the measured electronic-magnetic properties of all the samples. It is testified that the sintering temperature of the sample was decreased to 930℃by the Cu ion content X=1.0 and 5.0 wt% Bi_2O_3. In general all the relative permeabilities of these samples don’t exceed 4.0. The relative permeability can reach at 11.3 by replacing some Co ion and Cu ion with Zn ion in the materials. It is a practicable method to tailor the permeability of hexagonal ferrites.
引文
[1] 梅田秀信,村濑琢,野村武史.Y 型六方晶フエライトの低温烧成化及び高透磁率化.粉体ぉよび粉末冶金.2004,51(3):172-177
    [2] Jen-Yan Hsu,Hon-Chin Lin,Hon-Dar Shen,et al.High Frequency Multilayer Chip Inductor.IEEE Transactions on Magnetic.1997,33(5):3325-3327
    [3] 中野敦之,铃木孝志,桃井博.低温烧结 NiZnCu フエライト材料の開发と積層型チツプフエライトの高性能化に関する研究. 粉体ぉよび粉末冶金.2002,49(2):77-86
    [4] Hongguo Zhang, Ji Zhou, Yongli Wang, et al. Microstructure and Magnetic Characteristics of Low-temperature-fired Modified Z-type Hexaferrite with Bi2O3 Additive. IEEE Transactions on Magnetic. 2002, 38(4): 1797-1802
    [5] 远藤真视,中野敦之.Z 型六方晶フエライトの低温烧结化及び電磁気特性. 粉体ぉよび粉末冶金.2002,49(2):124-128
    [6] Smit J, Wijn H P J, Braun P B. Philips Technical Review. 1956, 18(6): 145-156
    [7] Smit J, Wijn H P J. Philips Technical Library Eindhoven, The Netherlands. 1959: 278-280
    [8] 木村修,松本雅史,坂仓光男.超高周波用 Sr 置换 Co2Z グネトプラムバイトの磁気特性.粉体ぉよび粉末冶金.1995,42(3):27-33
    [9] 池田亮,柿崎浩一,平塜信之.Fe3+置换による超高周波 Co2Z 六方晶フエライトの研究.粉体ぉよび粉末冶金.1999,46(5):610-614
    [10] Matsumoto M, Sakakura M.. Enhanced Dispersion Frequency of Hot-pressed Z-type Magnetoplumbite Ferrite with the Composition 2CoO·3Ba0.5Sr0.5O·10.8Fe2O3. Journal of American Ceramic Society. 1995, 78(10): 2857-2860.
    [11] NakamuraT, Hatakeyama K. Complex Permeability of Polycrystalline Hexagonal Ferrites. IEEE Transactions on Magnetic. 2000, 36(5): 3415-3417
    [12] David Cruickshank. 1-2GHz Dielectrics and Ferrites: Overview and Perspectives. Journal of the European Ceramic Society. 2003, 23(2): 2721-26
    [13] Mitsuo, Sugimoto. The Past, Present and Future of Ferrites. Journal of American Ceramic Society. 1999, 82(2): 269-80
    [14] 张国荣.微波铁氧体材料与器件.北京:电子工业出版社,1999.36-145
    [15] 魏克珠.微波铁氧体新器件.北京:国防工业出版社,1995.25-152
    [16] Zeina N, How H, and Vittoria C. Self-biasing Circulators Operating at K-band Ultilizing M-type Hexagonal Ferrites. IEEE Transactions on Magnetic. 1992, 28(5): 569-574
    [17] 何作霖.结晶体构造学.北京:地质出版社,1955.101-197
    [18] Wohlfarth E P. Ferromagnetic Materials. North-Holland Publishing Company Amerstetdam, New York, Oxford 1982, 3: 339-342
    [19] 宛德福,马兴隆.磁性物理学.成都:电子科技大学出版社,1994.12-300
    [20] 张有纲,黄永杰,罗迪民.磁性材料.成都:电子科技大学出版社,1988.45-180
    [21] 林其任.铁氧体工艺原理.上海:上海科技出版社,1987.35-98
    [22] 《正交试验法》编写组.正交试验法.上海:国防工业出版社,1976.25-77
    [23] 南京化工学院,华南工学院,武汉建筑材料工业学院等合编.陶瓷工艺学.北京:中国建筑工业出版社,1981.100-130
    [24] И·К·土鲁宾涅尔,М·Д·依比茨.密度计量技术.北京:机械工业出版社,1957.10-157
    [25] 宛德福,罗世华.磁性物理.北京:电子工业出版社,1987.201-353
    [26] Muzykov P G. High Resistivity Measurement of SiC Wafers Using Different Techniques. Journal of Electronic Materials. 2003, 32(6): 505-510
    [27] Rosenow, Ken. Overview of Automating Low, High Resistance Measurement. Electronics. 1985, 31(13): 57-63
    [28] 阚德鹏,周洁,丁高.EMI 滤波电感磁芯磁导率的测量方法研究.电子质量.2005,25(4):15-21
    [29] 李荫远,李国栋.铁氧体物理学.北京:科学出版社, 1978.352-369
    [30] 贾宝富,刘述章,林为于.颗粒媒质等效电磁参数的研究.电子与信息学报.1990,12(5):503-510
    [31] 邱明才,刘述章,林为于.含强散射体的随机混合媒质的等效电磁参数.电子学报,1993,21(6):6-12
    [32] Sihvola A H, Kong J A. Effective Permittivity of Dielectric Mixtures. IEEE Transactions on Geoscience and Remote Sensing. 1988, 26(4): 420-429
    [33] 葛副鼎,朱静,陈利民.吸收剂颗粒形状对吸波材料性能的影响.宇航材料工艺.1996,26(5):42-49
    [34] Lagarkov A N, Sarychev A K. Electromagnetic Properties of Composites Containing Elongated Conducting Inclusions. Physical Review B. 1996, 53(10): 6318-6333
    [35] Lagarkov A N, Panina L V, Sarychev A K et al. AC Dielectric Donstant of Insulator-conductor Systems. Proceedings of the 3rd International Conference on Properties and Applications of Dielectric Materials. 1991 (July 8-12, 1991, Tokyo, Japan): 1101-1103
    [36] 刘述章,邱明才,林为干.羰基铁类随机混合吸波材料等效电磁参数的计算.电子学报.1994,22(9):103-107
    [37] 吴明忠,赵振声,何华辉.层状多晶铁纤维吸波材料的等效电磁参数.磁性材料与器件.1998,29(1):31-35
    [38] Tsang L, Kong J A, Shin R T. Theory of Microwave Remote Sensing. New York: John Wiley & Sons Inc, 1985: 425-475
    [39] Choi H D, Shim H W, Cho K Y, et al. Electromagnetic and Electromagnetic Wave-absorbing Properties of the SrTiO3-epoxy Composite. Journal of Applied Polymer Science. 1999, 72(1): 75-83
    [40] Pullar R C, Appleton S G, Bhattacharya A K. The Microwave Properties of Aligned Hexagonal Ferrite Fibers. Journal of Materials Science Letter. 1998, 17(12): 973-975
    [41] Sihvola A H, Kong J A. Studies of Mixing Formulae in the Complex Plane. IEEE Transactions on Geoscience and Remote Sensing. 1991, 29(4): 679-686
    [42] Berthault A, Rousselle D, Zerah G. Magnetic Properties of Permalloy Microparticles. Journal of Magnetism and Magnetic Materials. 1992, 112(1-3): 477-480
    [43] Achour M E, Malhi M E, Miane J L, et al. Microwave Properties of Carbon Black-epoxy Resin Composites and Their Simulation by Means of Mixture Laws. Journal of Applied Polymer Science. 1999, 73(6): 969-973
    [44] Olmedo L, Chateau G, Deleuze C, et al. Microwave Characterization and Modelization of Magnetic Granular Materials. Journal of Applied Physics. 1993, 73(10): 6992-6994
    [45] Viau G, Ravel F, Acher O. Preparation and Microwave Characterization of Spherical and Monodisperse Co20Ni80 Particles. Journal of Applied Physics. 1994, 76(10): 6570-6572
    [46] Sihvola A H, Kong J A. Effective Permittivity of Dielectric Mixtures. IEEE Transactions on Geoscience and Remote Sensing. 1988, 26(4): 420-429
    [47] 吴明忠.介质材料和磁性材料的射频和微波电磁参数的测量方法研究.[博士学位论文].同济大学图书馆,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700