块体纳米铝晶体材料的组织与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用低温球磨结合真空热压烧结技术制备了块体纳米Al晶体材料,并加入硬质Al2O3颗粒来进一步提高该材料的强度和硬度。利用X射线衍射以及透射电镜对材料的微观组织进行了分析和观察,对所制备块体纳米材料的密度、显微硬度和拉伸性能进行了测定。研究结果表明,当球磨时间从8 h增加到14 h时,纳米Al粉末颗粒的晶粒尺寸从55 nm减小到43 nm,微观应变从0.0272 %增至0.0759 %。经致密化处理后,该材料的晶粒尺寸从115 nm减小到71 nm。热挤压后的块体纳米Al及Al-Al2O3晶体材料的相对密度都达99.4 %以上。其中,两种材料的最高显微硬度分别为1.02和1.22 GPa,比粗晶Al的显微硬度分别提高了3和3.6倍。块体纳米Al的最高屈服和抗拉强度分别为165和243 MPa,比粗晶1050纯Al的屈服和抗拉强度分别提高了7.5和3.2倍。块体纳米Al-Al2O3的最高和抗拉强度分别为242和305 MPa,比在相同工艺条件下制备的块体纳米Al分别提高了47和20 %。当平均晶粒尺寸小于223 nm时,块体纳米Al晶体材料的屈服强度与晶粒尺寸之间的关系为σ’= 71.8 + 1.8D?1/2。块体纳米Al的最大弹性模量为71.8 GPa,比粗晶Al的弹性模量提高了4 %。在相同工艺条件下,块体纳米Al-Al2O3的最大弹性模量为76.8 GPa,比块体纳米Al提高了7 %。块体纳米Al及Al-Al2O3晶体材料的最小延伸率分别为6.4和5.8 %,只有粗晶Al延伸率的16和15 %。两种材料的相对密度、显微硬度、强度以及弹性模量均随着晶粒尺寸的减小而增大,而延伸率随着晶粒尺寸的减小逐渐减小。
Bulk nanocrystalline Al are fabricated by cryomilling, compacting, vacuum sintering and extrusion with hard particle addition to improve the strength and hardness of the material. Microstructure of the materials are observed and analyzed by TEM and XRD. Density, microhardness and tensile property of the materials are measured. Experiment results demonstrate that grain size of the aluminum powder is reduced from 55 to 43 nm, and microstrain of the crystalline materials is increased from 0.0272 to 0.0759 % when the cryomilling time is increaseed from 8 to 14 h. Grain sizes of the bulk nanocrystalline Al is reduced from 115 to 71 nm. The relative densities of the bulk nano Al and Al-Al2O3 crystalline materials are more than 99.4 % after hot extrusion. The maximum microhardness of the two kinds material are 1.02 and 1.22 GPa, which are 3.0 and 3.6 times higher than that of coarse-grained Al. The maximum yield and tensile stress of the bulk nano Al reach 165 and 243 MPa which are 7.5 and 3.2 times higher than that of commercial 1050 pure aluminum. The maximum yield and tensile stress of the bulk nano Al-Al2O3 reach 242 and 305 MPa which have a 47 and 20 % stress of increase compared with the bulk nano Al under the same processing condition. When the grain size is below 223 nm, the relationship between yield stress and grain size of the bulk nano Al material is expressed asσ’= 71.8 + 1.8D?1/2. The maximum elastic mould of the bulk nano Al is 71.8 GPa which is 4 % improvement on the elastic mould of the coarse-grained Al. Under the same processing condition, the maximum elastic mould of the bulk Al-Al2O3 is 76.8 GPa which is 7 % improvement on the elastic mould of the bulk nano Al. The minimum elongations of the bulk nano Al and Al-Al2O3 crystalline materials are 6.4 and 5.8 % which account for 16 and 15 % of he coarse-grained Al. The relative densities, microhardness, strength and elastic mould of the two kinds of material are increased with reducing of grain size, but the elongations are decreased.
引文
[1]卢柯.纳米晶体材料的研究进展[J].中国科学基金.1994, 4: 245-251.
    [2]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2005: 1-65.
    [3]程军胜,陈汉宾,杨滨,樊建中,田晓风,张济山.低温球磨制备高热稳定性纳米晶Al-Zn-Mg-Cu合金块体材料[J].中国有色金属学报.2006, 16 (7): 1196-1199.
    [4]李颖,王光祖.纳米材料的表征与测试技术[J].超硬材料工程.2007, 19 (2): 38-41.
    [5] R. Klemm, E. Thiele. Microstructure of nanocrystalline materials[J]. Scripta Materialia., 2002, 456: 685-657.
    [6] H. Gleiter. Nanostructured materials: basic concepts and microstructure[J]. Acta Materialia., 2000, 48 (1): 1-23.
    [7] H. Gleiter. Nanostructured materials: state of the art and perspectives[J]. Nanostructured Materials., 1995, 6 (1): 3-14.
    [8]程军胜,陈汉宾,崔华,杨滨,樊建中,田晓风,张济山.低温球磨制备纳米晶Al-Zn-Mg-Cu合金[J].北京科技大学学报.2006, 28 (7): 654-657.
    [9] V. V. Zakharov, T. D. Rostova.Technology of metal heat treatment[J]. Met Sci Hea Treat., 1995, 37 (8): 203-206.
    [10]程军胜,郝斌,孙淼,陈汉宾,杨滨,张济山.低温球磨和真空热压技术制备的纳米晶纯铝块体的强化机理[J].材料热处理学报.2006, 27 (5): 1-4.
    [11]田晓风,樊建中,肖伯律,杨滨,程军胜,万志永.纳米晶Al-Cu-Mg合金的微观组织与力学性能研究[J].稀有金属.2007, 31:168-171.
    [12]程军胜,崔华,陈汉宾,杨滨,张济山.液氮球磨制备Al-Zn-Mg-Cu纳米晶粉末及组织分析[J].北京科技大学学报.2006, 31: 849-852.
    [13]杨滨,程军胜,樊建中,田晓风,陈汉宾,张济山.低温球磨纳米晶Al-Zn-Mg-Cu合金组织的演变[J].金属学报.2005, 41 (11): 1198-1201.
    [14]万志永,樊建中,田晓风,程军胜,杨滨.低温球磨法制备块体纳米晶Al-Zn-Mg-Cu系铝合金[J].稀有金属.2005, 29 (6): 828-832.
    [15]程军胜,郝斌,陈汉宾,孙淼,杨滨,张济山.低温球磨制备纳米晶Al-Zn-Mg-Cu合金粉末的热稳定性研究[J].金属热处理.2006, 31 (12): 19-20.
    [16] Jichun Ye, Bing Q. Han, Zonghoon Lee, Byungmin Ahn. A tri-modal aluminum based composite with super-high strength[J]. Scripta Mater., 2005, 53 (3): 482-484.
    [17] B. Huang, R. J. Perez, E. J. Lavernia. Grain growth of nanocrystalline Fe–Al alloys produced By cryomilling in liquid argon and nitrogen[J]. Materials Science and Engineering., 1998: 124-130.
    [18] Feng Tang, Masuo Hagiwara, Julie M Schoenung. Microstructure and tensile properties of bulk nanostructured Al-5083/SiCp composites prepared by cryomilling[J]. Materials Science and Engineering A., 2005, 407: 306–314.
    [19] Jichun Ye, Zonghoon Lee, Bing Q. Han, Byungmin Ahn. A tri-modal aluminum based composite with super-high strength[J]. Scripta Mater., 2005, 53(3):485
    [20] C. C Koch. Optimization of strength and ductility in nanocrystalline and ultrafine grained metals[J].Scripta Mater., 2003: 657-662.
    [21]钱聪,昊希俊,罗伟,周宇松,林良道.纳米金属块体材料力学性能研究进展[J].材料导报. 2003, 17 (7): 1-7.
    [22]李安敏,张喜燕,赵新春,张津,李聪,邱绍宇,张鹏程.纳米晶金属块体材料制备技术与力学性能研究进展[J].材料导报.2007, 28 (4): 111-116.
    [23] R. Birringer, H. P. Synthesis of nanocrystalline materials Gleiter[J]. Klein. Phys Lett., 1984, 102: 365-369.
    [24]张立德,牟季美.纳米材料和纳米结构[M],北京:科学出版社,2005: 316.
    [25]周宇松,吴希俊.纳米晶体材料力学性能研究进展[J].金属学报.2002, 31 (1):62-63.
    [26] C. J. Youngdahl, P. G. Sanders. Technology of powder[J]. Eastman. Seripta Mater. 1997, 37 (6): 809-811.
    [27] H. Hahn. Nanocrystalline powders by Inert Gas Condensa-tion[J]. Nanost ruct Mater., 1997, 9: 3-5.
    [28]陈君平,施雨湘,张凡,韩钰.高能球磨中的机械合金化机理[J].机械工程材料.2004, 31 (3):51-58.
    [29] C. C. Koch. Mechanism of nanocrystalline materials by Mechanical Alloying[J]. Nanost ructured Mater., 1997, 9: 13.
    [30] Perez R J, Huang B, Lavernia E J. Thermal stability of nanocrys-talline Fe- wt %10 Al produced by cryogenic mechanical alloying[J]. Nanostruct. Mater., 1996, 7 (5): 565-571.
    [31] R. J. Perez, H. G. Jiang, C. P. Dogan, E. J. Lavernia. Grain growth of nanocrystalline cryomilled Fe-Al powders[J]. Metall Mater Trans., 1998: 2469-2475.
    [32] T. P. Yadav, N. K. Mukhopadhyay, R. S. Tiwari, O. N. Srivastava. Studies on the formation and stability of nano-crystalline Al50Cu28Fe22 alloy synthesized through high-energy ball milling[J]. Materials Science and Engineering., 2005: 366-373.
    [33]訾炳涛,王辉.块体纳米材料的制备技术概况.中国有色金属学会第五届学术年会论文集, 2003, 118 (6): 257-263.
    [34] R. Brenier, J. Mugnier, E. Mirica. Preparation technology of nanocrystalline materials[J]. Appl Surf Sci., 1999, 14: 385-389.
    [35] Z. Lee, F. Zhou. Microstructure and microhardness of cryomilled bulk nanocrystalline Al–7.5%Mg alloy consolidated by high pressure torsion[J]. Scripta Mater., 2004, 51 (3): 210-216.
    [36]李来风,陈兆甲,李依依.Fe-C纳米合金材料的制备[J].材料研究学报.1999, 13 (2): 210-211.
    [37]张凤林,王成勇,宋月贤.纳米块体材料烧结技术进展[J].硬质合金.2002, 19 (3) :177-179.
    [38]陈汉宾,程军胜,杨滨,张济山,樊建中,田晓风.放电等离子烧结制备Al-Zn-Mg-Cu纳米晶合金的组织[J].北京科技大学学报,2007, 29 (3): 293-298.
    [39] C.Suryanarayana. Microstructure of nanocrystalline materials[J]. Inter Mater Rev., 1995: 40-41.
    [40]赵永好.博士学位论文.沈阳:中国科学院金属研究所,2001: 3.
    [41]楚广,唐永建,刘伟,罗江山,杨天足.纳米金属固体材料硬度及强度研究进展[J].湖南有色金属.2005, 21 (6): 21-23.
    [42] S. S. Dong, G. T. Zou. Thermal stability of the bulk nano-Al crystalline material[J]. Scripta Mater., 2001, 44: 171.
    [43]卢磊.博士学位论文.沈阳:中国科学院金属研究所,2000, 5: 2.
    [44] R. W. Siegel, G. E. Fougere. Mechanical properties of nanophase metals[J]. NanostructuredMaterials., 1995, 6: 205-216.
    [45]卢柯,刘学东,胡壮麒.纳米晶体材料的Hall-Petch关系[J].材料研究学报.1994, 8 (5): 385-386.
    [46]卢柯,卢磊.金属纳米材料力学性能的研究进展[J].金属学报.2000, 36 (8): 785-788.
    [47] Geng Zhongyi. Mechanical properties of ultrafine grained aluminum, PhD thesis, Materials Science and Engineering, Zhongshan University, Taiwan, 2003.
    [48]唐建成,黄伯云,贺跃辉,刘文胜,周科朝.Ti-Al基合金中的Hall-Petch关系及影响因素分析[J].金属学报.2002, 38 (4): 365-368.
    [49]朱文辉,周光泉,程经毅.纳米晶体材料屈服应力与晶粒尺寸的依赖关系[J].金属学报.1996, 32 (9): 959-962.
    [50] V. L. Tellkamp, E. J. Lavernia. Processing and mechanical properties of nanocrystalline 5083 Al alloy[J]. Nanostruc Mater., 1999, 12: 249-252.
    [51] Mingjiu Zhao, Yue Liu. On the Strength of Silicon Carbide Particulate reinforced aluminium alloy matrix composites[J]. Mater Sci Technol., 2004, 20 (4): 452-458.
    [52]訾炳涛,王辉,周洲,曾克里,于光月.块体纳米材料的结构性能及应用[J].天津冶金.2003, 117 (5): 5-9.
    [53] S. C. Jang, C. C. Koch. Processing of nanocrystalline Fe by mechanical alloying[J]. Seripta Metall Mater., 1990, 24: 1599.
    [54] G. W. Nieman, J. R. Weertman, R. W. Siegel. Structure and tensile properties of nanocrystalline materials[J]. Scripta Metall Mater., 1990, 24 (11): 145.
    [55] Yung-Chang Kang, Sammy Lap-Ip Chan. Tensile properties of nanometric Al2O3 particulate-reinforced aluminum matrix composites[J]. Materials Chemistry and Physics., 2004, 85: 438-443.
    [56] B. Q. Han, Z. Lee, S. R. Nutt. Mechanical properties of an ultrafine-grained Al-7.5 pct Mg alloy[J]. Metal Mater Trans., 2003, 34: 603-613.
    [57] Sang-Shik Kim, Michael J. Haynes, Richard P. Gangloff. Localized deformation and elevated-temperature fracture of submicron-grain aluminum with dispersoids[J]. Materials Science and Engineering., 1995, 203: 256 -271.
    [58] R. L. J. Coble. Physics property of nanocrystalline materials[J]. Appl Phys., 1963, 34: 1679-1683.
    [59]卢柯.纳米晶体材料的研究进展[J].中国科学基金.1994, 4: 248-249.
    [60] J. H. Driver. Stability of nanostructured metals and alloys[J]. Scripta Materialia. 2004, 51 (8): 819-823.
    [61] Y. W. Xun, J. Lavernia, A Mohamed. Grain growth in nanocrystalline Zn-22% Al[J]. Materials Science and Engineering., 2004, 371 (1): 135-140.
    [62] L. Lu, L. B. Wang, B. Z. Ding. High-tensile ductility in nanocrystalline copper[J]. Mater Res., 2000, 15: 270-273.
    [63] E. Bonetti, L. Pasquini, E. Sampaolesi. The influence of grain size on the mechanical properties of nanocrystalline aluminium[J]. Nanostructured Materials., 1997, 9: 611-614.
    [64]金属维氏硬度试验方法GB/T 4340.1-1999.国家标准局,1999: 275-278.
    [65]金属材料室温拉伸方法GB/T 228-2002.国家标准局,2002: 297-332.
    [66]王尔德,胡连喜.机械合金化纳米晶材料研究进展[J].粉末冶金技术.2002, 6: 135-136.
    [67] A. W. John, X. X. Huang, W. Grethe, P. Wolfgang, F. P. Henning.揭示变形中的微结构[J].今日材料.2007, 12: 24-32.
    [68]张泽南.X射线衍射在纳米材料物理性能测试中的应用[J].浙江工业大学学报.2002, 30 (1): 31-35.
    [69] H. P. Klug, L. Alexander. X-ray diffraction procedures for polycrystalline and amorphous materials[J]. New York: Wiley., 1974: 665.
    [70] B. D. Cullity. Elements of X-Ray Diffraction[J]. Reading MA., 1978: 359.
    [71] L. T. Victoria. Synthesis and behavior of a thermally stable bulk nanostructured aluminum alloy, PhD thesis, Doctorial dissertation, University of California, Irvine. 2000.
    [72]柳林,李兵,丁星兆.机械合金化法制备超高熔点金属碳化物纳米材料[J].科学通报.1994, 39 (5): 471.
    [73] Yang Delin, Mo Jiong, Lu Hongxia, Guo Yiqun, Gao Zhishunag, Hu Xing. Studies on oxygen characteristics of Ba2Cu3O7 and its applications to air Separation and gas purification[J]. Journal of Rare Earths., 2005, 23 (l): 112-115.
    [74] R. Hayes, V. Tellkamp, E. J. Lavernia. A Preliminary creep study of a bulk nanocrystalline Al-Mg alloy[J]. Scripta Mater., 1999, 41: 743-748.
    [75] H. J. Fecht. Nanostructure formation by mechanical attrition[J]. Nanostructured Mater., 1995, 6: 33-44.
    [76]程军胜,陈汉宾,杨滨,樊建中,田晓风,张济山.低温球磨制备高热稳定性纳米晶Al-Zn-Mg-Cu合金块体材料[J].有色金属学报.2006, 16 (7): 1196-1201.
    [77] F. Zhou, J. Lee, S. Dallek. High grain size stability of nanocrystalline Al prepared by mechanical attrition[J]. Mater Res., 2001, 16: 3451-3458.
    [78] Ghosh, Suresh, Mortensen, Needleman. Fundamentals of metal–matrix composites[J]. Scripta Materialia , 1993, 9: 23-25.
    [79] Z. Y. Ma, S. C. Tjong, Y. L. Li, Liang Y. High temperature creep behavior of nanometric Si3N4 particulate reinforced aluminium composite[J]. Mater Sci Eng., 1997, 225 (2): 125-134.
    [80] J. He, J. M. Schoenung. Nanostructure coatings[J]. Mater Sci Eng., 2002, 336: 274-319.
    [81] I. Bakony, E. Toth-kadar, J. G. C Eds, Toth. Nanophase Materials[J]. Nanostructured Materials., 1994: 423.
    [82]谭望,汪明朴,程建奕,李周.退火对纳米Al2O3粒子弥散强化铜合金显微组织与性能的影响[J].矿冶工程.2004, 24 (2): 75-80.
    [83] N. Hansen. The effect of grain size and strain on the tensile flow stress of aluminum at room temperature[J]. Acta Metall., 1977, 8 (25): 863-869.
    [84] D. J. Lloyd. Deformation of Fine-grained Al Alloys[J]. Metal Sci., 1980, 193: 14.
    [85] J. W. Wyrzykowski, M. W. Grabski. Effect of annealing temperature on structure and propeties of fine-grained Al[J]. Metal Science., 1983, 17: 445.
    [86] J. W. Wyrzykowski, M. W. Grabski. The Hall-Petch relation on Al and its dependence on the grain boundary structure[J]. Phil Mag., 1986, 53: 505-520.
    [87] C. Y.Yu, P. L. Sun, P. W. Kao, C. P. Chang. Mechanical properties of submicron-grained aluminum[J]. Scripta Materialia., 2005, 52: 359.
    [88] G. D. Hughes, S. D. Smith, C.S. Punde. Hall-petch strengthening for the microhardness of twelvenanometer grain diameter electrodeposited nickel[J]. Scripta Metall., 1986, 20 (1): 93-97.
    [89] C. C. Koch, D. G. Morris, Lu. Ductility of nanostructured materials[J]. MRS Bull, 1999, 24 (2): 54-58.
    [90] Lu Yulin, Peter K Liaw. The mechanical properties of nanostruc-tured materials[J]. Minerals Metals & Materials Society., 2001, 53 (3): 31-40.
    [91] X. Y. Qin, X. R. Zhang, G. S. Cheng. The elastic properties of nanostructured Ag measured by laser ultrasonic technique[J]. Nanostructured Mater., 1998, 10: 661-672.
    [92] P. G. Sandes, G. E. Fougere, L. J. ThomPson. Improve-ments in the synthesis and compaction of nanocrystalline materials[J]. Nanostructured Mater., 1997, 3: 243-252.
    [93] Y. Champion, K. Gue′rin-Mailly, T. Bonnentien. Fabri-cation of bulk nanostructured materials from metallic nanopow-ders: structure and mechanical behavior[J]. Scripta Mater., 2001, 44: 1609-1613.
    [94] T. D. Shen, C. C. Koch, T. Y. Tsui. On the elastic module of nanocrystalline Fe, Cu, Ni and Cu-Ni alloys prepared by me-chanical milling alloying[J]. Mater Res., 1995, 10: 2892-2896.
    [95]王权,丁建宁,何宇亮,薛伟,范真.氢化硅薄膜介观力学行为及其与微结构内禀关联特性[J].物理学报.2007, 56 (8): 4834-4841.
    [96] K. A. Padmanabhan. Mechanical properties of nanostructured materials[J]. Mater Sci Eng., 2001, 306: 200-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700