Metal(Li和Mg)-N-H储氢材料的制备工艺及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日益严峻的能源危机和环境污染,使得发展清洁的可再生能源备受关注。氢能源以其可再生性和环保性好成为未来最具发展潜力的能源载体。在氢能的应用中最关键的问题是氢气的存储。在固态储氢材料中,碱金属和碱土金属-氮-氢体系拥有储氢容量高、可逆性好等优点,被认为是最有前景的储氢材料之一。本文对球磨和球磨-加热法制备高纯度LiNH2和Mg(NH2)2储氢材料的工艺进行了系统的研究,并测试了它们的热分解性能以及探讨了Mg(NH2)2-LiH储氢系统的储氢性能,得出以下结论:
     (1)球磨法合成LiNH2时,提高球磨罐内氨气压力和延长球磨时间均能提高合成产物LiNH2的相对纯度,最佳合成工艺为球磨罐内氨气压力0.3MPa,球磨时间为2h;按最佳工艺合成的LiNH2红外光谱图显示LiNH2的两个N-H键红外吸收峰的位置在波数为3259cm-1和3312 cm-1;XRD图谱未显示出反应物LiH的衍射峰,且其相对纯度已达到98%;其初始分解温度约在340—370℃之间,分解反应的活化能为75 kJ/mol左右。
     (2)球磨法+热处理合成Mg(NH2)2时,加热时氨气压力、温度、保温时间对Mg(NH2)2的合成没有明显的影响作用,而球磨时间对Mg(NH2)2的合成具有显著影响,最佳合成工艺为球磨时氨气压力为5atm,球磨8h,后处理为在3atm氨气压力下300℃热处理3h使其晶化;按最佳工艺合成的Mg(NH2)2红外光谱图显示Mg(NH2)2的两个N-H键的红外吸收分别在波数为3274cm-1和3700 cm-1处与XRD的结果相吻合。其初始分解温度在350—360℃。
     (3)PCT测试仪研究表明Mg(NH2)2+2.2LiH储氢系统的初始脱氢温度约为150℃,200℃以上的可逆储氢量为4.6wt%。随着温度的升高,该系统的脱氢平衡压增大,平衡压与系统组成满足范特霍夫公式,并计算其脱氢焓变和熵变分别为ΔH=42.8kJ/molH2和ΔS=149.2JK-1/molH2,自由能为ΔG=(42800-149.2×T) J/molH2。
     (4)吸放氢动力学研究表明该储氢系统具有较快的动力学,特别是脱氢反应在200℃以上时可在1h内结束,脱氢产物为Li2Mg(NH)2,从脱氢反应动力学可计算得到其活化能约为Ea=51.7kJ/mol。
Due to serious problems caused by energy crisis and environmental pollution, much attention is focused on developing clean renewable energy. Hydrogen, for its renewable and pollution free characteristics, has become the most potential energy carrier. An important issue for the utilization of hydrogen energy is the hydrogen storage and transportation. In the solid hydrogen storage materials, alkali metals and alkaline earth metals-nitrogen-hydrogen (metal-N-H) systems possess quite high hydrogen storage capacity and good reversibility so that they are viewed as one of the most promising hydrogen storage materials. In this study, we carried out a systematic study of LiNH2 and Mg(NH2)2 prepared by ball milling, and TG analysis were employed to investigate thermo-decomposition of the two amides. Additionally, hydrogen storage properties of Mg(NH2)2-LiH system were also investigated. the results showed that:
     (1) When LiNH2 was synthesized by ball milling, with increasing the milling tank NH3 pressure and extending the ball milling time, the relative purity of ball milling product LiNH2 is increased. The optimization technique of synthesis Lithium amide is in condition of 0.3Mpa milling tank NH3 pressure,2h milling time. FTIR analysis showed that infrared absorption wave numbers of LiNH2 two N-H bonds are 3259cm-1 and 3312 cm-1 respectively, and no LiH but LiNH2 diffraction peak is detected in final synthesis product. At last, initial decomposition temperature of LiNH2 is within the limits of 340-370℃, and the apparent activation energy of the decomposition reaction is calculated and the value is about 75 kJ/mol;
     (2) When Mg(NH2)2 was prepared by two step method (ball milling then post heat-treatment), NH3 pressure, temperature and heating time in the post heat-treatment have not obvious influence on the synthesis of magnesium amide, but ball milling time has a obvious influence on the final product amide. The optimization technique of synthesis magnesium amide is in condition of 5atm primal milling NH3 pressure,8h primal milling time, and in 3atm NH3 pressure at 300oC for 3h post heat-treatment to crystallization. FTIR analysis showed that infrared absorption wave numbers of Mg(NH2)2 two N-H bonds are 3274cm-1and 3700 cm-1 respectively and this is consistent with XRD results. Finally, initial decomposition temperature of the magnesium amide is within the limits of 350-360℃.
     (3) Hydrogen storage performance of Mg(NH2)2-LiH (mol ratio 1:2.2) materials system was studied by an equipment of PCT(pressure-composition-Temperature).The results showed that initial dehydrogenation temperature of Mg(NH2)2-LiH Hydrogen Storage system is at about 150℃and its reversible hydrogen storage capacity is 4.6wt.% at above 200℃. Dehydrogenation equilibrium pressure of the hydrogen storage system is increasing with the increase of temperature. Equilibrium pressures and system compositions at different temperature meet the Van't Hoff equation, therefore, enthalpy and entropy of the dehydrogenation reaction could be calculated based on the Van't Hoff equation, and their value areΔH=42.8kJ/molH2,ΔS=149.2JK-1/molH2, and Gibbs free energyΔG= (42800-149.2×T) J/molH2 respectively.
     (4) Kinetics of hydrogen absorption and desorption showed that the Mg(NH2)2-LiH hydrogen storage system possess relatively fast kinetics, especially in dehydrogenation process desorption can be completed within 1 hour at above 200℃, and XRD result showed that hydrogenation products is Li2Mg(NH)2. Based on principle of kinetics, the apparent activation energy of the dehydrogenation reaction can be calculated by kinetics data of hydrogen desorption, and its value is 51.7kJ/mol.
引文
[1]李庆生.未来的常规能源—氢能.松辽学刊自然科学版,1991,13(1):60-61.
    [2]关荐伊,王世震.氢能—未来理想的新能源.化学世界,2001,56(8):447-448.
    [3]张轲,刘述丽,刘明明等.氢能的研究进展.材料导报,已接收未待发表.
    [4]Schlabach L,Zttel A.Hydrogen storage materials for mobile applications. Nature,2001,414:353-358.
    [5]陈军,朱敏.高容量储氢材料的研究进展.中国材料进展,2009,28(5):2-3.
    [6]江泽民.对中国能源问题的思考.上海交通学学报,2008,42(3):345-359.
    [7]陶占良,彭博,梁静等.高密度储氢材料研究进展.中国材料进展,2009,28(7-8):26-27
    [8]刘君芳Mg-N-H储氢材料的制备研究:[硕士学位论文].武汉理工大学:材料复合新技术国家重点实验室.2007
    [9]Satyapal S, Petrovic J, Read C, et al. The U.S. Department of energy's national hydrogen storage project:Progress towards meeting hydrogen-powered vehicle requirements. Catalysis Today,2007,120 (3-4):246-256
    [10]Sakintuna.B,. Lamari-Darkrim.F, Hirscher.M. Metal hydride materials for solid Hydrogen storage:A review. International Journal of Hydrogen Energy,2007,32(9):1121-1140.
    [11]Ross D K.Hydrogen storage:the major technological barrier to the development of hydrogen fuel cell cars. Vacuum,2006,10(80),1084-1089.
    [12]Sakata K, Mizutani E,Fukuda K. A review of topics in hydrogen-related innovative materials in Japan. Power Sources,2006,159,100-106.
    [13]第十届全国氢能学术会议暨第二届两岸三地氢能研讨会论文摘要集前言,中国,天津,南开大学,2009年9月.
    [14]邓安强,樊静波,赵瑞红等.储氢材料的研究进展.化工新型材料,2009,37(12):8-9.
    [15]高林辉.镁基储氢合金的改性及其催化有机液体吸放氢性能研究:[博士学位论文].浙江大学:材料与化学工程学院.2006.
    [16]张春香,石广新,关绍康等.储氢材料的研究进展.汽车工艺与材料,2005,(5):10-12.
    [17]龚金明,刘道平,谢应明.储氢材料的研究概况与发展方向.天然气化工,2010,35(5):71-78.
    [18]许炜,陶占良,陈军.储氢研究进展.化学进展,2006,18(Z1):200-210.
    [19]McCarty.R.D,Hord.J, Roder.H.M.Selected properties of hydrogen (engineering design data), Center for chemical engineering, national engineering laboratory, national bureau of standards, Boulder, Colorado NBS Reports No.168, Feb.1981.
    [20]张瑞英.稀土储氢材料的发展与应用.内蒙古石油化工,2010,36(10):109-111.
    [21]Corre S, Bououdina M, Fruchart D,et al. Stabilization of high dissociation pressure hydrides of formula La1-xCexNi5 with carbon monoxide. J Alloys Compds.,1998,275-277:99-104.
    [22]Kuriiwa T, Tamura T, Amemiya T,et al. New V-based alloys with high protium absorption and desorption capacity. J Alloys Compds,1998,293-295:433-436.
    [23]Yu X B, Yang Z X,Feng L S,etal.Influence of Fe addation on hydrogen storage characteristics of Ti-V-based alloy. Int. J Hydrogen energy,2006,31(9):1176-1181.
    [24]Imamura H., Masanari K, Kusuhara M,et al.High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling. J Alloys Compds,2005,386:211-216.
    [25]Vajo J J, Skeith S, Mertens F.Reversible storage of hydrogen in destabilized LiBH4. J. Phys. Chem. B, 2005,109:3719-3722.
    [26]Chen P, Xiong Z T, Luo J Z, et al. Interaction of hydrogen with metal nitrides and imides.Nature, 2002,420:302-304.
    [27]Gross K J., Thomas G J. and Jensen C M. Catalyzed alanates for hydrogen storage J Alloys Compds,2002,330-332:683-216.
    [28]Ichikawa T, Leng H Y, Isobe S, et al. Recent development on hydrogen storage properties in metal-N-H systems. Journal of Power Sources,2006,159(1):126-131.
    [29]Shi S Z, Hwang J Y. Research frontier on new materials and conceptions for hydrogen storage. International Journal of Hydrogen Energy,2007,32(2):224-228.
    [30]Fichtner M.Nanotechnological aspects in materials for hydrogen storage.Adv Eng Mater,2005,(7): 443-455.
    [31]朱兴华,王荣明.储氢材料的载氢功能研究.新技术新工艺,2000,22(1):30-32.
    [32]李玲,向航.功能材料与纳米技术.北京:化学工业出版社,2002,173-178.
    [33]胡子龙.储氢材料.北京:化学工业出版社,2002,1-2.
    [34]Ordaz QPetrovic J,Reed C,et al.Hydrogen storage. The 2005 annual DOE hydrogen program merit review presentation (ST1),Washington, DC; 2005, May 23-25.
    [35]陈玉安,唐体春,张力.镁基储氢材料的研究进展.重庆大学学报(自然科学版),2006,29(12):72-75.
    [36]朱治彦,王从增,张连宝.镁基储氢材料的研究进展.电子工艺技术,2007,28(3):130-134.
    [37]房文斌,张文丛,于振兴等.镁基贮氢材料的进展.中国有色金属学报,2002,12(5):853-860.
    [38]Zaluska A, Zaluski L, Strom-olsen JO. Structure, catalysis and atomic reactions on the nanoscale:a systematic approach to metal hydrides for hydrogen storagestorage. Appled physics A:materials science & processing,2001,72(2):157-16.
    [39]Oelerichw.Metal oxides as catalysts for improied hydrogen sorption in nanocrystalline Mg-based material.Alloys and Compounds,2001,315(1-2):237-242.
    [40]张静,白晨光,潘复生等.配位氢化物储氢材料的研究进展.兵器材料科学与工程,2008,31(6):91-93
    [41]唐博合金.有机液体载体储氢催化剂的研究.上海化工,2007,32(1):22-26.
    [42]唐博合金,张佳乐,蒋子翰等.有机液体储氢技术的研究进展.电池,2007,37(4):325-327.
    [43]唐体春.镁基储氢合金的制备及其性能研究:[硕士学位论文].重庆大学:重庆大学材料科学与工程学院.2007.
    [44]胡秀颖,周仕学,林乐腾等.活化对镁基复合储氢材料结构及性能的影响.有色矿冶,2006,22(S1):112-113
    [45]王斌,马怀营,卢国俭.镁基复合储氢材料的研究进展.材料导报:纳米与新材料专辑,2010,8(2):297-299.
    [46]聂小武,邹灿.不同增强体对镁基复合材料的作用及其制备工艺研究进展.铸造工程,2010,34(6):15-22.
    [47]宁海青,陈嫚丽,王艳彬等.镁基复合材料力学性能与微观组织研究.精密成形工程,2011,2(1):27-29.
    [48]Xiong Z T, Wu G T, Hu J J, et al.Reversible hydrogen storage by a Li-Al-N-H complex. Advanced Functional Materials,2007,17:1137-1140.
    [49]Orimo S, Naamori Y, Kitahara G,et al. Destabilization and enhanced dehydriding reaction of LiNH2:an electronic structure viewpoint.Appl Phys A,2004,79:1765-1767.
    [50]Leng H Y, Ichikawa T, Hino S. Synthesis and decomposition reactions of metal amides inmetal-N-H hydrogen storage system.J ower Sources,2006,156:166-170.
    [51]Chen P, Xiong Z T,Luo J Z,etal.Interaction between lithium amide and lithium hydride.J Phys Chem B,2003,107:10967-10970.
    [52]杨卫,许泉.新型炭材料研究进展及应用前景.国防技术基础,2010,10(9):46-48.
    [53]尚福亮,杨海涛,韩海涛.多孔吸附储氢材料研究进展.化工时刊,2006,20(3):58-61.
    [54]闫晓琦,郭雪芹,王达,等.碳纳米管的储氢机理研究.实验室科学,2007,5(5):69-74.
    [55]李采临,陈云贵,吴朝玲等.金属-碳基储氢材料计算与实验研.化学进展,2009,.21(6):1101-1106
    [56]李雪松,朱宏伟,慈立杰等.结构与表面特性对碳纳米管储氢性能的影响.科学通报,2001,46(9):785-787.
    [57]朱宏伟;李雪松;慈立杰等.立式浮动催化裂解法大批量制备单层碳纳米管.科学通报,2001,46(19):1664-1667
    [58]尚福亮,杨海涛,韩海涛等.多孔吸附储氢材料研究进展.化工时刊,2006,20(3):38-41.
    [59]贾超,原鲜霞,马紫峰.金属有机骨架化合物(MOFs)作为储氢材料的研究进展.化学进展,2009,21(9):1954-1962.
    [60]杨勇,沈泓滢,邢航等.微孔配位聚合物作为新型储氢材料的研究.化学进展,2006,18(5):16-19.
    [61]陈兆旭,黄玉成,李哲等.理论化学与新能源.化学进展,2009,21(11):2271-2284.
    [62]洪茂椿,吴新涛,曹荣等.新型无机聚合物的设计合成、结构规律与性能研究.化学进展,2003,15(04):249-253.
    [63]荆煦瑛.付里叶变换红外光谱的应用研究.吉林:吉林大学出版社.1989.11-36
    [64]徐贵云,范金石,姚金水.红外光谱法在聚合物鉴别中的应用.山东轻工业学院学报,1999,13(3):39-41.
    [65]晋勇,孙小松,薛屺.X射线衍射分析技术.北京:国防工业出版社,2008,243-247.
    [66]陈振华,陈鼎.机械合金化与固液反应球磨.北京:化学工业出版社,2006,457-496.
    [67]刘振学,黄仁和,田爱民.实验设计与数据处理.北京:化学工业出版社,2005,64-69.
    [68]朱伟勇.正交与回归正交试验法的应用.沈阳:辽宁人民出版社,1978,6-9.
    [69]刘红,李荣德.热处理对AB5型快淬态储氢合金组织结构及电化学性能的影响.材料科学与工艺,2006,14(1):56-61.
    [70]孙大林,陈国荣,江建军等.新型贮氢材料研究的最新动态.材料导报,2004,18(5):72-75.
    [71]肖明珠,张辉,张国英等.高密度储氢材料的研究发展.沈阳师范大学学报(自然科学版),2010,26(2):205-211.
    [72]严义刚,陈云贵等.贮氢技术在燃料电池汽车上的应用及展望.节能,2004,24(4):3-5.
    [73]胡子龙.储氢材料.北京:化学工业出版社,2002,1-2.
    [74]张春香,石广新,关绍康等.储氢材料的研究进展.汽车工艺与材料,2005,20(5):10-13.
    [75]许炜,陶占良,陈军.化学研究进展.化学进展,2006,18(2):200-210.
    [76]刘淑生,孙立贤,许芬.金属-氮-氢体系储氢材料.化学进展,2008,20(2/3):280-287.
    [77]周晶晶,陈云贵,吴朝玲等.钒基固溶体储氢材料弹性性质第一性原理研究.物理学报,2009,77(10):102-104.
    [78]童燕青,欧阳柳章.镁基储氢合金的最新研究进展.金属功能材料,2009,16(5):10-13.
    [79]Zaluski L,Zalsuka A, Strom-Olsen J O.Hydrogenation properties of complex alkali metal hydrides fabricated by mechano-chemical synthesis.J Alloys Comp,1999,290:71-78.
    [80]Zuttel A,Wenger P, Rentsch S,et al.LiBH4 a new hydrogen storage material. Journal of Power Sources,2003,118(1-2):1-7.
    [81]Xiong Z, Wu G, Chen P, et al.Ternary imides for hydrogen storage. Advanced Materials. 2004,16:1522-1524.
    [82]Ichikawa T, Hanada N, Isobe S, et al. Mechanism of novel reaction from LiNH2 and LiH to Li2NH and H2 as a promising hydrogen storage system. Journal of Physical Chemistry B,2004,108:7887-7892.
    [83]墨伟,孙洪亮,张海昌等Mg+x%Mm(NiCoMnAl)_5复合储氢材料吸放氢性能研究.南开大学学报(自然科学版),2006,52(3):34-38.
    [84]刘述丽,刘明明,张轲等.Li-N-H储氢材料的高能球磨制备工艺研究.沈阳师范大学学报(自然科学版),2011.
    [85]Xiong Z T, Yong C K, Chen P et al.High-capacity hydrogen storage in lithium and sodium amidoboranes.Nature Materials,2008,7(2):138-141.
    [86]周仕学,谭琦,马怀营等.储氢材料67Mg29C3NilAl的放氢动力学研究.功能材料,2009,40(3):410-412.
    [87]Weifang Luo,Ken Stewart.Characterization of NH 3 formation in desorption of Li-Mg-N-H storage system.Journal of Alloys and Compounds,2007,440:357-361.
    [88]熊伟,李平,谢东辉等.低温球磨制备镁基储氢材料及其性能研究.稀有金属材料与工程,2009,38(2):365-366.
    [89]周惦武,刘金水,卢远志等.镁基储氢材料的吸放氢性能.机械工程材料,2008,32(4):5-9.
    [90]Ichikawa T, Tokoyoda K, Leng H,et al. Hydrogen absorption properties of Li-Mg-N-H system.J Alloys Compd,2005,400:245-248.
    [91]Principi G, Torzo GA study of LiNH2-MgH2 system for solid state hydrogen storage. Journal of Alloys and Compounds,2008,459:343-347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700