9Ni钢轧制工艺和热处理工艺的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境保护意识的日益提高,LNG(液态天然气)作为一种清洁能源,占据的比重将越来越大,因此开发具有我国自主知识产权的LNG结构材料——9Ni低温钢已经迫在眉睫。本文以9Ni钢的力学性能为评价指标,通过成分设计、热模拟和轧制工艺、热处理工艺等实验,分析各工序对其组织和力学性能的影响,优化了工艺参数。研究的内容和结果包括:
     1.参考国内外有关9Ni钢的成分标准,优化其成分参数,为工业生产提供有效依据;
     2.采用热力模拟试验机开展9Ni钢的高温热变形实验。通过单道次压缩试验,建立了不同温度、不同变形速率条件下的9Ni钢奥氏体的应力—应变关系,推导变形抗力模型;通过连续冷却试验测定9Ni钢静态与动态CCT曲线,结果表明:在1℃/s-30℃/s的冷却条件下仅存在贝氏体转变区域,同静态相比,动态贝氏体转变温度较低,转变结束温度较高,转变速度较高,即贝氏体区域较小;
     3.模拟模铸和连铸连轧奥氏体区终轧工艺,为达到减量化生产的目的,在其基础上尝试两种新工艺:连铸连轧的双相区终轧工艺和在线热处理工艺。试验结果表明:经两种新的轧制工艺生产出的9Ni钢都表现出良好的力学性能;
     4.探讨了9Ni钢成分以及终轧温度对其力学性能的影响,结果表明:Ni含量影响显著,过高和过低时力学性能都较差;终轧温度为730℃时,组织细小,力学性能较好;
     5.通过热处理试验改变各阶段温度参数,优化热处理方案,同时研究分析热处理各阶段温度参数对组织和低温韧性的影响。结果表明:优化调质热处理(QT)工艺参数为800℃淬火+580℃回火,淬火温度影响晶粒度,回火温度影响回转奥氏体的析出量和稳定性;优化两相区热处理(QLT)工艺参数为800℃淬火+670℃中间淬火+580℃回火,淬火温度影响作用不明显,回火温度影响回转奥氏体的析出量和稳定性;经QLT后,9Ni钢的低温韧性更好。
With the enhancement of protecting the environment consciousness, the LNG (Liquefied Natural Gas) is used more and more because of being a variety of clean energy. Consequently, it is a critical thing to develop 9Ni constructional material with self-owned intellectual property rights. The mechanical property of 9Ni steel was focused. And the influence of each process on the microstructure and mechanical property was investigated by means of component design, thermal simulation, rolling process and heat treatment process. Moreover, parameters optimization was achieved. The main experiments and conclusions were as follows:
     1. Referred to domestic and overseas standards of 9Ni steel, effective component scheme was provided though optimizing component parameters.
     2. The hyperthermia deformation experiments were done by use of the thermal simulation machine. The relationship of austenitic stress-strain under different temperatures and speeds was established by single-pass compression experiment. In addition, model of the resistance to deformation was deduced. And the static and dynamic CCT curves of 9Ni steel were drawn by continuous cooling transformation experiment. The conclusions were as follows:there are only bainite transformation zone. Compared with static CCT curve, the temperature of bainitic starting transformation is lower, conversely its finishing transformation is higher. So it means that the speed of dynamic bainite transformation is higher.
     3. The die-casting and continuous casting-rolling process were repeated. In order to get 4R(Reduce, Reuse, Recycle, Remanufacture) target, rolling process of finishing temperature at two-phase region and heat treatment online was tried. And mechanical properties of 9Ni steel under both processes were excellent.
     4. The influences of component of 9Ni steel and finishing rolling temperature on mechanical property were analyzed. The conclusions were as follows:the content of nickel is significant to its mechanical property. Neither lower nor higher of the nickel content is benefit to its mechanical property. Additionally, the microstructure is fine when the finishing rolling temperature is 730℃.
     5. The parameters of heat treatment processes were optimized by changing the temperature parameters in every stage. Moreover, the relationship among temperature, microstructure and hypothermia impact toughness was studied. The conclusions were as follows:in the process of quenching and tempering (QT) heat treatment, the optimized temperature parameters are quenching at 800℃and tempering at 580℃. Additionally, the temperature of quenching has a great effect upon grain size, and the temperature of tempering has a great influence on the precipitation and stabilization of reverted austenite. Then in the process of quenching, intermediate quenching and tempering (QLT) heat treatment, the optimized temperature parameters are quenching at 800℃, intermediate quenching at 670℃and tempering at 580℃. But the temperature of quenching has no obvious influence in QLT heat treatment. Similarly, the temperature of tempering has the same effect. Compared two heat treatment process, the hypothermia impact toughness of 9Ni steel is improved by the QLT heat treatment.
引文
1. Naoki Saitoh, Ryouta Yamaba, Hirohide Muraoka, Osamu Saeki. Development of Heavy 9% Nickel Steel Plates with Superior Low-Temperature Toughness for LNG Storage Tanks[J], Nippon Steel Technical Report,1993(7), No.58:9~16.
    2.徐烈,李兆慈,张洁等.我国液化天然气的陆地存储与运输[J],天然气工业,2002,22(3):89~90.
    3.范存淦,钱百年,李东法.石油工业低温用钢[J],石油化工腐蚀与防护,1999,
    16(2):31-32.
    4.邱正华,张桂红,吴忠宪.低温钢及其应用[J],石油化工设备技术,2004,25(2):41-43.
    5.顾钰熹.特种工程材料焊接[M],沈阳:辽宁科学技术出版社,1998.43-46.
    6.周振丰.金属焊接性[M],北京:机械工业出版社,1996.122-155.
    7. Jang, Jae-I lee, Baik-Woo, Kwon, Dongi etal. Effects of microstructural change on steel[J], Materials Science and Engineering A, Jan 15,2003,68.
    8. Andreas kern, Udo Schriever, Joachim Stumpfe. Development of 9% nickel steel for LNG applications[J], Materials Technology-Modern Steel Design,2007,78 (3): 189~194.
    9. ASTM standard A841/A841 M-8:596~598.
    10.唐荻.新形势下对轧钢技术发展方向和钢材深加工的探讨[J],中国冶金,2004(8):14-21.
    11.王占学.控制轧制与控制冷却[M],北京:冶金工业出版社,1988.
    12.何肇基.金属的力学性质[M],北京:冶金工业出版社,1982:100.
    13.王占学.塑性加工金属学[M],北京:冶金工业出版社,1991.
    14.张树松,仝爱莲.钢的强韧化机理与技术途径[M],兵器工业出版社,1995:60~61.
    15. Cotrell AH. Trans AIME[M],1958(212); 192.
    16.尚纪美.金属的韧性与韧化[M],上海:上海科学技术出版社,1982:254-257.
    17.张树松,仝爱莲.钢的强韧化机理与技术途径[M],兵器工业出版社,1995; 60-61.
    18. Shgeru SUZUKI, Yoshimi NAKANO, Keisuke HIROSE etal. Production of 9%Ni Steel Plates for Liquefied Natural Gas Tanks[R], KAWASAKI STEEL TECHNICAL REPORT.1982:31-32.
    19. Crafft J M. Appl Mat Res[M],1964:88.
    20. Hahn GT, Rosenfield AR, ASTM CTP,1968 (432):5.
    21. Hahn GT, Rosenfield AR, Trans ASM,1966 (59):909.
    22.刘振宇,许云波,王国栋.热轧钢材组织—性能演变的模拟和预测[M],沈阳:东北大学出版社,2004:88-89.
    23. Esaka K, Wakita J, Takahashi M, Kawamo O, et al. Development of the precise model predicting and controlling mechanical properties, Seitetsu-Kenkyu,1986,321: 197-206.
    24. K.Hickmann, A.Kern, U.Schriever and J. Stumpfe. Production and Properties of High-Strength Nickel-Alloy Steel Plates for Low Temperature Applications[J],1986, 321:197~206.
    25.铁军,刘战英,刘相华,王国栋.30MnSi钢金属塑性变形抗力的数学模型[J],塑性工程学报,2001(3):17~20.
    26.胡湘红.9Ni钢固态相变规律探讨[J],宽厚板,2007,13(6):33~39.
    27. Takahiro Kubo, Akio Ohmori, Osamu Tanigawa. Proerties of High Toughness 9% Ni Heavy Section Steel Plate and It's Applicability to 200000K1 LNG Storage Tanks[J], Kawasaki Steel Technical Report,1999,40:72~79.
    28. Shi Shu XIE, Joo Dong LEE, U-Sok YOON and Chang Hee YIM. Compression Test to Reveal Surface Crack Sensitivity between 700 and 1100℃ of Nb-bearing and High Ni Continuous Casting Slabs[J], ISIJ International,2002,42 (7):708~710.
    29.崔忠圻.金属学与热处理,北京:机械工业出版社[M],2000.
    30. R.L.Bodnarnad, Hnasen. Eeffet of Austenite Grain Sizenad Cooling Rateon Widmnasttten Ferrite Fomration in Low-Alloy Steels[J], Metall. Trans,1994,25A: 665~676.
    31.程饴萱,陈继勤,卜万龙等.9%Ni低温钢的回火相变[J],浙江大学学报,1980,(5):29~36
    32.M.L.H.SCHWARTZ. On the Effect of Interstitial Tempering on the Impact Energy of Fe-9Ni-0.1C[J], Materials Science and Engineering,1978,33:5~20.
    33.刘彦明,石凯,周勇等.9Ni钢的热处理及低温韧度[J],材料热处理,2007,36(16):77~83.
    34.李国明,符中欣,高聪.调质热处理对9Ni钢低温韧性的影响[J],热加工工艺,2006,35(20):52~55.
    35.张伟,李隆盛,程骥等.热处理对Ni9铸钢77K冲击韧性的影响[J],热加工工艺,1991,(1):7-10.
    36.李峰,张义顺,尚丽娟等.9%Ni钢低温韧性的研究[J],沈阳工业大学学报,1997,19(2),103-105.
    37.张伟,李隆盛,程骥等.热处理对Ni9铸钢77K冲击韧性的影响[J],热加工工艺,1991,(1):7-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700