铌和热处理工艺对低温钢组织和性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳钢及低合金钢在低温工况下的开裂问题与钢材的强度和低温韧性有关,而材料的强度与低温韧性与材料的化学成分、显微组织和钢液质量有关,目前世界各国通过合金化、热处理及控轧控冷等措施来开发高强高韧性低温钢。课题在LCC基础上,优化主要合金元素、添加0~0.08%的微合金元素铌,设计淬火+调质、退火+调质、正火+调质三种热处理工艺,通过金相组织观察、SEM扫描及能谱分析、XRD分析、低温冲击试验和拉伸试验,研究了铌和热处理工艺对低温钢组织和性能的影响规律。
     本课题低温钢化学成分为C0.17%~0.19%,Si0.5%~0.6%,Mn1.1%~1.2%, P≤0.02%,S≤0.02%,Cr0.5%~0.6%,Ni0.98%~1.00%,Mo0.5%~0.6%, Nb0.03%~0.05%.
     该低温钢铸态组织为片状珠光体+少量块状铁素体,随着铌含量的增加,珠光体片间距逐渐减小,块状铁素体减少,组织细化。热处理后的试样组织均为回火索氏体,淬火+调质态回火索氏体中铁素体基本为多边形状,大小均匀;退火+调质态回火索氏体中铁素体多为板条状,多边形铁素体较少;正火+调质态为多边形铁素体加少量板条铁素体,板条长度比退火+调质态的短。
     该低温钢淬火+调质态低温冲击功随着含铌量的增加先升高后降低,-40℃比-20℃下降的程度更快。含铌0.039%时,-20℃、-40℃AKv达最高值,分别为45.7J和29.9J。试样-40℃冲击断口形貌以解理为主,同时有少量的准解理,解理台阶上主要为扇状花样,内部有撕裂岭。随着含铌量的增加,撕裂岭的长度和数量也逐渐增加,韧窝带加大,当含铌量超过0.039%时,解理面上出现河流花样。
     该低温钢三种热处理状态低温冲击功的变化规律基本相似,含铌量相同时淬火+调质态低温冲击功最高,正火+调质态次之,退火+调质态较低。含铌0.039%时三种热处理状态试样AKV均达最高值,-20℃时分别为45.7J、42.3J和44.4J,-40℃分别为29.9J、27.6J和28.4J。淬火+调质态和正火+调质态-40℃冲击断口形貌中撕裂岭数量明显大于退火+调质态,退火+调质态断口形貌解理台阶上为扇状花样,解理面上为河流花样。低温冲击功和断口形貌均表明含铌0.039%时淬火+调质、退火+调质和正火+调质工艺均能满足低温钢对组织和性能的要求,生产上可采用正火+调质工艺。
     该低温钢正火+调质态的抗拉强度、屈服强度以及断后伸长率均随着含铌量的增加呈现先增加后降低的变化规律。抗拉强度和屈服强度的变化规律非常相似,含铌量为0.057%时抗拉强度和屈服强度达到最大值1110MPa和990MPa,含铌量为0.039%时断后伸长率达到最大值17.0%。拉伸试样断口宏观形貌为典型的杯锥状断口,微观断口形貌为等轴韧窝,呈现韧性断裂的典型特征。随着铌含量的增加,粗大韧窝数量先减少后增加。
     该低温钢含铌0.039%经正火+调质工艺处理后,获得了强度、塑性和低温冲击韧性的较好匹配,-20℃、-40℃的冲击功为44.4J、28.4J,抗拉强度和屈服强度分别为995MPa、885MPa,断后伸长率为17.0%。
     该低温钢综合性能良好,可应用于石油天然气管道输送系统中的低温阀门零部件上,具有良好的发展前景。
The cracking problems of carbon steels and low alloy steels at low temperature conditions are relevant to strength and low temperature toughness of steels, whereas the properties of the materials depend on the composition, microstructure and quality of liquid steel, and therefore all countries in the world develop high strength and high toughness cryogenic steels by optimizing the composition and microstructure. In this paper,0~0.08% weight percentage of niobium was added into LCC steel, the main alloying elements were optimized, and quenching+quenching and tempering, annealing+quenching and tempering, and normalizing+quenching and tempering three heat treatment processes were designed to develop high strength and toughness cryogenic steels. Microstructure observasion, scanning electron microscopy, spectrum analysis, X-ray diffraction analysis, low-temperature impact toughness test, and tensile strength test were done to research the effect of niobium and heat treatments on microstructure and mechanical properties of cryogenic steels.
     The chemical composition of the cryogenic steels were, carbon 0.17%~0.19%, silicon 0.5%~0.6%, manganese 1.1%~1.2%, phosphatides≤0.02%, sulphur≤0.02%, chromium 0.5%~0.6%, nickel 0.98%~1.00%, molybdenum 0.5%~0.6%, niobium 0.03%~0.05%.
     The as-cast microstructure of the cryogenic steels were pearlite+blocky ferrite. With the increase of the content of niobium in the samples, the interlamellar spacing of pearlite decreased gradually, and the microstructure was refined. The microstructure was tempered sorbite after three heat treatment processes. The microstructure was mainly homogeneous and fine polygon ferrite after quenching+ quenching and tempering, mostly lath ferrite and little polygon ferrite after annealing +quenching and tempering, and polygon ferrite and little lath ferrite and the length of lath was short after normalizing+quenching and tempering.
     The impact works of the cryogenic steels after quenching+quenching and tempering changed from increase to decrease with the increase of the content of niobium in the samples, and decreased faster at-40℃.When the content of niobium was 0.039%, the impact works peaked, respectively,45.7J at-20℃,29.9J at -40℃.The impact fracture morphology was brittle cleavage and little quasi-cleavage, composed of cleavage plane, tearing ridge and dimple with small size. When the content exceeded 0.039%, river pattern existed on the cleaved surfaces.
     The change of the impact works after three heat treatments was similar. The low-temperature impact toughness of the steels containing the same amount of Nb was best after quenching+quenching and tempering and better after normalizing+ quenching and tempering. The impact works peaked at 0.039% niobium, respectively, 45.7J,42.3J,44.4J at -20℃, and 29.9J,27.6J,28.4J at -40℃. The impact works and impact fracture morphology showed that the microstructure and mechanical properties of the cryogenic steels containing 0.039% niobium could be met after three heat treatment processes. The process of normalizing+quenching and tempering could be used in practice.
     The tensile strength, yield strength and percentage elongation after fracture of the cryogenic steels after normalizing+quenching and tempering first increased then decreased with the increase of the content of niobium. The variation between tensile strength and yield strength was very similar. When the content of Nb was 0.057%, tensile strength and yield strength had the maximum value 111 OMPa and 990MPa. When the content of Nb was 0.039%, percentage elongation after fracture was 17.0%. Macroscopic fracture morphology of tensile specimens was typical cup cone fracture, micro-fracture morphology was equiaxed dimples. With the increase of the content of niobium, the amount of coarsed individual dimples first decreased and then increased.
     When the cryogenic steels contained 0.039% niobium after normalizing+ quenching and tempering, the steels had good comprehensive performance. The impact works were 44.4J at -20℃, and 28.4J at -40℃, and tensile strength, yield strength and percentage elongation after fracture were 995MPa,885MPa,17.0%. The steels might be widely applied to the valve parts of petroleum and natural gas transmission pipeline system, with good development prospects.
引文
[1]刘宝.机械零部件的失效分析技术[J].兵工自动化,2008,(10),53
    [2]中国机械工程学会材料学会.钢脆性和工程结构脆性断裂[M].北京:机械工业出版社,1993:1
    [3]周顺深.钢脆性和工程结构脆性断裂[M].上海:上海科学技术出版,1983:1
    [4]肖纪类,李敏华,陈南平.材料微观结构与力学性能研究[J].中国科学基金,1989,(3),65
    [5]武延民,王元清,石永久等.低温下结构钢材脆性断裂发生条件下的试验分析[J].低温建筑技术,2003,(4):5-6
    [6]武延民,王元清,王晓哲.低温对结构钢材强度与韧性指标影响分析[J].低温建筑技术,2002,(3):1-3
    [7]邱正华.低温钢及其应用[J].石油化工设备技术,2004,25(2):43-46
    [8]朱亮广.低温用钢的开发与应用[J].上海煤气,2010,(2):42-43
    [9]姚正耀,张仲秋,罗通国等.铸造手册第2卷铸钢[M].北京:机械工业出版社,2004:23-35,234-235
    [10]王祖滨,东涛.低合金高强度钢[M].北京:原子能出版社,1996:261
    [11]束德林.金属力学性能[M].北京:机械工业出版社,1995:30
    [12]金属材料力学性能试验[J].理化检验-物理分册,1994,30(5):59
    [13]唐华.超高强度钢40CrNi2Si2MoVA强韧化工艺研究[D][硕士学位论文].成都:西南交通大学,2006
    [14]周莲.低碳微合金钢的强韧化[J].机械工程材料,1988,(2):2
    [15]陆匠心.700MPa级高强度微合金钢生产技术研究[D][博士学位论文].沈阳:东北大学,2004
    [16]万伦.CSP微合金高强度钢工艺及组织性能研究[D][硕士学位论文].武汉:武汉科技大学,2008
    [17]薛春芳,王新华,辛义德.含铌微合金钢强韧化机理[J].金属热处理,2003,28(5):16
    [18]雍岐龙,马鸣图,吴宝榕等.微合金钢-物理和力学冶金[M].北京:机械工业出版社,1989:102
    [19]郑云海,于国良.钢制阀门常用主体材料[J].阀门,2004,(3):20-21
    [20]陈祥,李言祥,李强.硅铬系合金铸钢的组织与性能[J].铸造,2005,54(5):434
    [21]杨文涛.低合金耐磨铸钢的应用研究[J].铸造·锻压,2006,35(9):23
    [22]陆文华,李隆盛,黄良余.铸造合金及其熔炼[M].北京:机械工业出版社,2002:200-203
    [23]张怀肚.提高洒钢Q345B板材屈服强度研究[D][硕士学位论文].西安:西安建筑科技大学,2003
    [24]王景德.LCC钢的生产及其缺陷预防[J].机械工人,2004,(12):68
    [25]高泽平.低合金高强度钢的强化机理及生产工艺的探讨[J].湖南冶金,2001,(1):19-20
    [26]王祖滨.低合金钢和微合金钢的发展[J].中国冶金,1999,(3):23-24
    [27]DeArdo A J. Fundamental Metallurgy of Niobium in Steel [M]. Beijing:The Metallurgical Industry Press,2003
    [28]雍岐龙,裴和中,田建国等.铌在钢中的物理冶金学基础数据[J].钢铁研究学报,1998,10(2):66
    [29]宋斌,金恒阁,王长生.低温钢国内发展状况[J].黑龙江冶金,2009,29(1):51
    [30]杨文峰.低温压力容器的选材[J].中国特种设备安全,2007,(8):31
    [31]张勇.低温压力容器用钢的现状与发展概况[J].压力容器,2006,23(4):31
    [32]杨汗青.天然气工程中低温钢的选用[J].天然气与石油,2008,26(5):22-23
    [33]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T
    18984-2003,低温管道用无缝钢管[S].北京:中国标准出版社,2005
    [34]仲蕾.透视阀门市场[J].质量跟踪,2003,(12):86
    [35]荆峰.汇华阀业有限公司ERP系统分析与规划[D][硕士学位论文].大连:大连理工大学,2008
    [36]API. ANSI/API Specification 6D-08 Twenty-Third Edition. Specification for PiPeline Valves[S]. Washington, API,2008
    [37]修贤芝,邹帆,黄燮康.API 6D管道阀门(第23版)解读[J].阀门,2009,(1):33-34
    [38]翟霄,俞树荣.阀体应力分类与强度评定[D]]硕士学位论文].兰州:兰州理工大学,2010
    [39]蔡惠君.低温阀门[J].阀门,1996,(2):34
    [40]ASTM Committee on Standards. ASTM A352/A352M-06. Standard Specification for Steel Castings, Ferritic and Martensitic, for Pressure-Containing Parts, Suitable for Low-Temperature Service[S]. West Conshohocken:ASTM International,2006
    [41]郑云海,于国良.钢制阀站常用主体材料[J].阀门,2004,(3):21-22
    [42]中华人民共和国国家发展和改革委员会.JB/T 72482008.阀门用低温钢铸件技术条件[S].北京:机械工业出版社,2008
    [43]ASTM Committee on Standards. ASTM A351/A351M-10. Standard Specification for Castings, Austenitic, for Pressure-Containing Parts[S]. West Conshohocken:ASTM International,2010
    [44]塞文哲,杨小典,邱惠康等.阀门用CF类不锈钢铸件性能分析[J].阀门,2004,(4):19
    [45]中华人民共和国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T12230-2005.通用阀门 不锈钢铸件技术条件[S].北京:中国标准出版社,2005
    [46]ASTM Committee on Standards. ASTM A350/A35OM-10. Standard Specification for Carbon and Low-Alloy Steel Forgings, Requiring Notch Toughness Testing for Piping Components[S]. West Conshohocken:ASTM International,2010
    [47]国家机械工业局,国家石油和化学工业局.JB 4727-2000.低温压力容器用低合金钢锻件[S].北京:机械工业出版社,2000
    [48]ASTM Committee on Standards. ASTM A203/A203M-97. Standard Specification for Pressure Vessel Plates, Alloy Steel, Nickel[S]. West Conshohocken:ASTM International, 1997
    [49]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB3531-2008.低温压力容器用低合金钢板[S].北京:中国标准出版社,2008
    [50]ASTM Committee on Standards. ASTM A333/A333M-10. Standard Specification for Seamless and Welded Steel Pipe for Low-Temperature Service[S]. West Conshohocken:ASTM International,1997
    [51]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T19672-2005.管线阀门技术条件[S].北京:中国标准出版社,2008
    [52]张清双.清管阀在石油和天然气行业的应用[J].通用机械,2007,(1):73
    [53]段克润.管道阀门的应用及缺陷性分析[J].科技情报开发与经济,2007,17(36):270
    [54]陈绍荣.LNG(液化天然气)低温阀门的研制[C].空分设备技术交流会论文集,2005
    [55]张华,找勇辉,罗金恒等.天然气管道阀门断裂原因的三维有限元分析[J].管道技术与设备,2007,(1):32-33
    [56]蔡暖姝,蔡惠君.石化工程常用阀门的选用及故障分析[J].石油化工设备技术,2008,29(5):15-16
    [57]刘荣.低合金钢耐磨材料组织和性能的研究[D][硕士学位论文].郑州:郑州大学,2006
    [58]施长坤.采用中频炉冶炼LCC低温钢的实践与应用[J].铸造设备研究,2002,(5):53-54
    [59]贺祖武,胡小鹏.试论低温钢低温韧性的改善[J].洪都科技,2004,(3):34
    [60]王景德.化学成分与热处理工艺对LCC钢低温冲击值的影响[J].中国铸造装备与技术,2004,(4):37-38
    [61]于广文.含钨高铬铸铁组织及性能研究[D][硕士学位论文].郑州:郑州大学,2007
    [62]万荣春,赵星明,斯松华等.Nb含量对低碳微合金钢热处理组织与性能的影响[J].安徽工业大学学报,2007,24(2):135
    [63]刘粤惠,刘平安.X射线衍射分析原理应用[M].北京:化学工业出版社,2003:85
    [64]姜锡山,赵晗.钢铁显微断口速查手册[M].北京:机械业出版社,2010:18,27
    [65]黄振东.钢铁金相图谱[M].北京:中国科技文化出版社,2005:1275
    [66]饶添荣,李杰,成国光等.DH36高强度船板拉伸断口分离缺陷分析[J].钢铁研究,2000,(1):23
    [67]崔凤平,房柯,丁秀琴.连铸板坯心裂纹对钢板分层形成的影响[J].山东冶金2007,29:68-70
    [68]崔凤平,赵乾,唐愈.铸坯内部缺陷对钢板分层形成的影响[J].中国冶金,2008,18(2):14-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700