B-Ni复合添加的低合金高强度钢调质工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低合金高强度钢(High Strength Low Alloy Steel)是典型的低碳低合金结构钢,它是通过微量合金元素的添加,利用细晶强化和沉淀析出强化等原理而生产的具有较高的强度、韧性和良好的焊接性能的一种钢材。它在建筑、桥梁、船舶、管线、海洋石油平台等领域有着广泛的应用。但是,目前生产的热轧低合金高强钢的低温冲击韧性较低,韧脆转变温度较高,尚不能满足高寒、高纬度地区的使用要求。热处理作为提高材料性能的重要手段,广泛应用于钢铁材料的生产中。因此通过适当的热处理方法,提高低合金高强度钢的冲击韧性,特别是低温冲击韧性,对于扩展该钢材的使用范围具有重要的意义。
     本课题研究了淬火以及回火工艺对硼镍复合添加的含铌HSLA钢组织性能的影响规律,确定了最佳的调质处理方案,得到了强度500MPa左右,伸长率25%左右的具有良好强韧性配合的钢材。特别是在低温冲击韧性方面,通过调质处理后的试验钢,其韧脆转变温度下降到-70℃以下,在-90℃时,其冲击功仍在100J左右。利用硼(10ppm)和镍(0.5%)在热处理中的复合作用,在成本增加不大的情况下,达到了3.5Ni钢的性能水平。
     本文首先通过热物理模拟试验得到试验钢的相变温度及CCT曲线;并通过淬透性试验确定了淬透层深度。然后通过对淬火温度、淬火保温时间以及回火温度三个工艺参数的调整,通过大量试验,利用金相法研究了各个工艺参数对钢材组织的影响规律,制定了最佳的热处理工艺方案。最后实施具体方案,通过硬度试验、拉伸试验以及系列温度冲击试验对调质后的钢材进行了力学性能检验。利用光学显微镜、扫描电镜、X射线衍射、高分辨透射电镜以及能谱分析等方法,对调质后试验钢的组织、相组成以及二相粒子的分布、形貌和成分进行了分析。结果发现,回火后在晶界析出的复杂碳化物对于抑制再结晶晶粒长大有重要影响,细小弥散的晶界碳化物没有使韧性降低,反而可能抑制裂纹在晶粒之间的传播,提高钢材的韧性。
High Strength Low Alloy Steel is a type of low-carbon low-alloy structural steel, which, as a result of grain boundary hardening and precipitation hardening with micro alloying, exhibits high strength, high impact toughness, good weld-ability, and great resistance to corrosion. HSLA steel is widely used in structures that are designed to handle large amounts of stress or need a good strength-to-weight ratio, such as offshore drilling platforms, bridges and large ships. However, most hot-rolled HSLA steels can not provide high impact toughness at low temperature due to their relatively high fracture appearance transition temperature (FATT), and thus do not perform well in extremely cold regions. Heat treatment is often associated with increasing the strength of material, especially steels, since they respond well to change of temperature. Our research group has used heat treatment on a novel HSLA steel to increase its impact toughness, specifically the low-temperature-impact-toughness. Therefore, the improvement significantly extends the scope of applications of the steel.
     In our research, we have discovered the relationship between heat treatment process and the properties of the niobium added HSLA steel. Eventually, with an optimized quenching-tempering schedule, we have produced a new type of steel with a tensile strength at about 500Mpa, elongation at about 25%. The overall performance of the steel, especially the low-temperature-impact-toughness has significantly improved, as the FATT of the steel is below -70℃, and impact toughness is about 100J at -90℃. Along with the help of compound effect of boron (10ppm) and Nickel (0.5%), the new type of steel is able to replace 3.5Ni steel in certain circumstances since it is much more cost efficient.
     In this paper, we first built up a CCT (continuous cooling transformation) diagram using thermal simulation technology. Based on the analysis of the diagram, we are able to determine the phase transition temperature of the steel. After a quenching test and a hardness test, the depth of hardening was measured. By varying parameters of quenching and tempering, we studied how quenching temperature and time of maintaining, and tempering temperature influenced the microstructure of the steel. So an optimum quenching and tempering process control was obtained. Hardness tests, tensile tests and impact toughness tests at a series of low temperatures were performed afterwards to further examine the result. Several characterization techniques were used to analyze the microstructures, phase composition, and distribution of second phase particles of the sample, including SEM, TEM, XRD and photoelectron spectroscopy. The results indicate that complicated ingredient carbides generated along grain boundaries after tempering considerably inhibit grow of grains during recrystallization. Those fine distributive carbides do not damage the toughness of the steel. However, they have prevented fractures from spreading. Consequently, the toughness of the steel is enormously increased.
引文
[1]于晗,孙刚.金属材料及热处理[M].冶金工业出版社,2008.
    [2]王笑天.金属材料学[M].北京:机械工业出版社,1996.
    [3]刘永铨.钢的热处理[M].北京:冶金工业出版社,1981.
    [4]那顺桑,姚青芳.金属强韧化原理与应用[M].北京:化学工业出版社,2006,6.
    [5]Dhua, S. K., Mukerjee, D., Sarma, D. S. Influence of tempering on the microstructure and mechanical properties of HSLA-100 steel plates [J]. Metallurgical and materials transactions A,2001,32(2259-2270).
    [6]Hwang B, Lee C. Influence of thermalmechanical processing and heat treatments on tensile and Charpy impact properties of B and Cu bearing high-strength low-alloy steels [J]. Materials Science and Engineering A,2010,527(16-17) 4341-4345.
    [7]Palmiere E J, Garcia C I, Deardo A J. Compositional and microstructural changes which attend reheating and grain coarsening in Steels containing niobium [J]. Metal Trans,1994,25A(2),277.
    [8]沈莲.机械工程材料[M].机械工程出版社,2007,9.
    [9]贺祖武,胡小鹏.试论低温钢低温韧性的改善[J]. Hongdu science and technology 2004(3):37-42.
    [10]韩威,刘小林.Q345C低合金刚强度结构钢板的开发[J].江西冶金,2003,23(5):3-7.
    [11]刘嘉禾,王祖滨.低合金高强度钢生产工艺技术的发展[J].钢铁,1996,31(10):72-80.
    [12]齐俊杰.微合金化钢[M].冶金工业出版社,2006,5.
    [13]李长龙,陈言俊,梁如国,窦杰,孔令泉.Q345钢在低温下的力学性能研究[J].山东建筑工程学院学报,2003,18(1):80-83.
    [14]李慧琴,邢淑清,简方,麻永林,包喜荣.含铌微合金钢冷却过程热模拟研究[J].包头钢铁学院学报,2005,24(3):264-276.
    [15]衣海龙,杜林秀,王国栋,刘相华.含铌微合金低碳钢的连续冷却过程的相变[J].东北大学学报,2005,26(8):741-742.
    [16]林文松.微量溶质元素在金属晶界的偏聚[J].热处理,2004,19(2):18-21.
    [17]周兰聚,李成军,郭洪涛.铌高性能结构钢相变规律的研究[J].山东冶金,2007,29(3):2-4.
    [18]韩孝勇.铌、钒、钛在微合金钢中的作用[J].宽厚板,2006,12(1):39-41.
    [19]冶金部钢铁研究总院.硼钢研究文集[M].北京:冶金工业出版社,1981,3.
    [20]Z. C. Wang, G. T. Cui, T. Sun, W. M. Guo, X.L. Zhao, J. Q. Gao and CX. Dong: Int. J. Mod. Phys. B Vol.23 (2009) 1885
    [21]H J Jun, J S Kang, D H Seo, K B Kang, C G Park. Effects of deformation and boron on microstructure and continuous cooling transformation in low carbon HSLA steels [J]. Materials Science and Engineering. A 422 (2006) 156-161.
    [22]霍光瑞,张俊旭,付学满.微量B对440MPa级焊条熔敷金属低温冲击韧性的影响[J].材料开发与应用,2006,21(2):17-24.
    [23]孙珍宝,朱谱藩.合金钢手册[M].北京:冶金工业出版社,1984,9.
    [24]Roberts, W. et al., HSLA steel technology and applications [J], ASM,1984,67
    [25]章星华.国产0.5Ni低温用钢在大型合成氨装置中的应用[J].大氮肥,1998,21(5):308-312.
    [26]张希旺.微合金钢Q345的CCT曲线及断裂韧性研究[D].硕士论文,长沙:中南大学,2008.
    [27]郑芳,宋红梅Gleeble 3800热模拟试验机在宝钢的典型应用与功能开发[J].宝钢技术,2003,5:29-32.
    [28]胡克迈Gleeble 3500数控热机模拟试验系统[J].物理测试,2006,24(5):34-36.
    [29]刘文艳,袁桂莲,刘吉斌,张彦文,缪凯Gleeble2000热模拟试验机的典型应用[J].武汉工程职业技术学院学报,2007,19(4):1-3.
    [30]Gleeble3500热模拟试验机测定材料高温强度和绘制CCT曲线的实验方法[EB/OL].
    [31]梁皖伦,方金凤,曹军.热模拟试验在金属热变形研究中的应用[J].理化检验-物理分册,2001,37(11):470-473.
    [32]许天已.钢铁热处理实用技术(第二版)[M].北京.化学工业出版社.2008,1
    [33]李书常.热处理实用淬火介质精选[M].北京:化学工业出版社,2009,1.
    [34]于程歆,刘林.淬火冷却技术及淬火介质.辽宁科学技术出版社,2010,1.
    [35]W. E. Jominy, A. L. Boegehold. A hardenability test for carburizing steel [J]. Trans. of ASM.1938,26-1,574.
    [36]W. E. Jominy. Standardization of hardenability tests [M]. Metal Progress,1941, 12,911.
    [37]史美堂.金属材料及热处理[M].上海:上海科学技术出版社,1984.
    [38]M. A. Grossmann, Elements of hardenability [J]. Cleveland, ASM,1952.
    [39]M. A. Grossmann, E. C. Bain, Principles of heat treatment Ed 5 [M], ASM,1964.
    [40]D. J. Carney, Another look at quenchants, cooling rates, and hardenability [J]. Trans. of ASM,1952,46,882-927.
    [41]吴季恂,周光裕,荀毓闽.钢的淬透性应用技术[M].机械工业出版社,1994.
    [42]E. P. Dahlberg, Proceeding of 7th annual SEM symposium[M],1974.
    [43]陆家和,陈长彦,表面分析技术[M],电子工业出版社,1987.
    [44]廖乾初,蓝芬兰,扫描电镜分析技术与应用[M],机械工业出版社,1990.
    [45]J. D. Braun, H. W. Arrowsmith, J. L. He Call, Microstructure Science [J], 5(1977),413.
    [46]陈世朴,王永瑞,金属电子显微分析[M],北京:机械工业出版社,1982.
    [47]周玉,武高辉.材料分析测试技术-材料X射线衍射与电子显微分析[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [48]郭素枝,扫描电镜技术及其应用[M],厦门大学出版社,2006.
    [49]大和久重雄,淬透性(测定方法和应用)[M],新时代出版社,1984.5.
    [50]郭达人.50B钢中的晶界析出物及脆化机理的初步探讨[J].金属热处理,1996,10:35-37
    [51]廖波,肖福仁.针状铁素体管线钢组织及强韧化机理研究[J].材料热处理学报,2009,30(2):55-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700