奥氏体不锈钢应变强化焊接接头的力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
奥氏体不锈钢应变强化技术通过冷拉伸产生一定的塑性变形来提高材料的屈服强度,实现了低温压力容器轻型化、减薄容器壁厚、节约制造成本的目的。
     本文将通过小冲杆实验技术研究奥氏体不锈钢应变强化容器焊接接头的力学性能。由于小冲杆实验技术所需试样很小,可以做到在不同部位取样,可分别在焊缝、母材部位取样,单独研究其力学性能。从而可为合理评价焊接接头提供第一手资料,同时可研究不同的焊接接头强弱匹配情况,为选择合理的焊缝材料提供科学依据。
     本论文主要的研究内容及取得的成果如下:
     1.本研究创新的将小冲杆技术运用于焊接接头力学性能的研究中。结果表明,本文所研究的应变强化焊接接头具有较好的冲击韧性、弯曲、延伸性能,此时焊缝屈服强度比母材高、抗拉强度比母材低;
     2.对于现在比较流行的两种应变强化控制方法,即9%应变控制以及σk应力控制,进行了有限元模拟研究。通过研究发现,当采用应变控制进行预拉伸时,焊缝处的名义应变量会随着拉伸试样标距的变大而变小;与应力控制相比较,在9%应变控制的情况下,焊缝处的名义应变要高出很多;
     3.通过有限元模拟分析了焊缝与母材在不同屈服强度匹配的情况下,应变强化过程对焊接接头变形量的影响。研究表明焊缝处的应变量会随着屈服强度匹配系数M的变大而减小。对带有余高的焊接接头进行了预拉伸模拟,研究表明焊余高能在一定程度上减少焊缝处材料的变形量。
The light-weight of cryogenic pressure vessels from austenitic stainless steels can be carried out by using coldstretching technology, which may reduce the production costs. The yield strength of austenitic stainless steels can be significantly increased by coldstretching, thusing thinning the wall thickness of pressure vessels.
     The small punch technology was used to study the mechanical properties of coldstretched welding joints in this paper. Because the small punch specimen is very small, sampling from different parts of welding joint such as the weld or the base material can be got, which are used to study the mechanical properties of welding joint respectively.The reasonable evaluation of welding joint can be got, meanwhile, the strength match situation of the welding joint can be evaluated, which is benefit to selecting proper welding material.
     The main content and conclusions of the study are summarized as follows:
     1. The small punch test is innovatively used to study the mechanical properties of welded joints. The result shows that weld got good impact toughness, bending and elongation properties in the paper, while the welding material have high yield strength and low tensile strength;
     2. Finite element analysis method was used to analyze the specimen stretched by the stress control method and strain control method. It is found that when using the strain control method, the strain of the welding seam become smaller with a longer gauge. Compared with the stress control method, the strain of the welding seam is much higher than that with the 9% strain control method;
     3. Finite element analysis method is used to study the effect of stain strengthening on the deformation of welding seam with different yield strength matching factor M. It shows that the larger the factor M, the smaller the stain of welding seam. And to a certain extent, weld reinforcement can reduce the amount of deformation of the welding seam.
引文
[1]邓阳春、陈钢、杨笑峰、徐彤.奥氏体不锈钢压力容器的应变强化技术[J].化工机械.2008,35(1):54-59
    [2]黄嘉珀,王为国,寿比南等.各国压力容器用材确定许用应力方法的比较[J].压力容器.2008,25(4):38-44
    [3]陈国邦.低温工程材料[M].浙江大学出版社.1998
    [4]吕广庶,张远明.工程材料及成形技术[M].高等教育出版社.2005
    [5]那顺桑 陈斌锴.18-8型不锈钢的应变硬化特性研究[J].理化检验-物理分册.2007,43(2):67-69
    [6]GB/T 5028—1999金属薄板和薄带拉伸应变硬化指数(值)试验方法[S].
    [7]Ludwigson.Dc.Modified Stress-Strain Relation For FCC Metals and Alloys[J].Metall Trans.1977,2(10):2825-2828
    [8]王亚辉,王学生,王定标,郭茶秀,李静.常温奥氏体不锈钢容器的超压强化处理研究[J].郑州工业大学学报.2001,22(3):92-94
    [9]Jonson J. Coldstretched Austenitic Stainless Steel Pressure Vessels.Seond International Conference on Pressure Vessel Technology, Part Ⅱ Materials, Fabrication and Inspection.1973.1157-1165
    [10]EN 13530-2:2002, Cryogenic Vessels-Large Transportable Vacuum Insulated Vessels Part 2:Design, Fabrication, Inspection and Testing [S].
    [11]ISO20421-1:2006, Cryogenic Vessels-Large transportable vacuum-insulated vessels[S].
    [12]ASME Cold Case 2596--2008, Coldstretching of Austenitic Stainless Steel Pressure Vessels[S].
    [13]AS 1210 Supplement2-1999, Pressure Vessels-Cold-strthched austenitic stainless steel vessels [S].
    [14]丁大伟.压力容器用钢在应变强化过程中的宏观性能与显微结构研究[D].北京工业大学硕士论文.2009
    [15]周高斌.应变强化奥氏体不锈钢低温容器研究.浙江大学硕士论文.2007
    [16]Schmidt O.German design criteria including safety factors on tensile strength and yield strength.Criteria of Boilers and Pressure Vessels, Papers Presented at Frist International Conference on Pressure Vessel Technology[C].1969,9-13
    [17]马力,郑津洋,寿比南,缪存坚.奥氏体不锈钢制压力容器强度裕度研究[J].试验研究.2008,25(4):1-6
    [18]郑津洋,缪存坚,寿比南.轻型化-压力容器的发展方向[J].压力容器.2009,26(9): 42-48
    [19]艾芒,杨镇,王志文.小冲杆试验法的起源、发展和应用.机械强度.2000,22(4):279-282
    [20]艾芒,王志文.微试样小冲孔试验法概述于展望——未来失效预测与预防的有效手段.第三次全国机电装备失效分析预测与预防战略研讨会.北京,1998,405-410
    [21]Manahan M P, Argon A S, Harling O K, The development of a miniaturized disk bend test for the determination of postirradiation mechanical properties. Journal of Nuclear Materials.1981,103&104:1545-1550.
    [22]Manahan M P. A new postirradiation mechanical behavior test-the miniaturized disk bend test. Nuclear Technology.1983,63:295-315
    [23]章燕谋.锅炉与压力容器用钢.西安交通大学出版社.西安1997:93
    [24]Mao.X, Takahashi H. Development of a further-miniaturized specimen of 3mm Diameter for TEM disk small punch test. Journal of Nuclear Materials.1987,150(25):42-45
    [25]Mao X, Saito M, Takahashi H, et al. Small punch test to predict ductile fracture toughness JIC and brittle fracture toughness KIC. Scripa Metallurgica et Materialia. 1991,25:2481-2485
    [26]于启湛,丁成钢,史春元.低温用钢的焊接[M].机械工业出版社.2009
    [27]GB24511-2009,承压设备不锈钢钢板及钢带[S].
    [28]GB/T228-2002,金属材料 室温拉伸试验方法[S]
    [29]GB/T229-2007,金属材料 夏比摆锤冲击试验方法[S]
    [30]Irmae A, Fisher A M. "Specimen damage during cutting and grinding" in techniques of electron microscopy. diffraction and microprobe Analysis, ASTM STP 372.American Society
    [31]李雅娴.应变强化奥氏体不锈钢低温容器材料和成型工艺研究[D].浙江大学硕士论文.2010
    [32]周高斌.应变强化奥氏体不锈钢低温容器研究[D].浙江大学硕士学位论文.2007
    [33]李玉兰.真应力应变的定义及其力学特性[J].重庆大学学报.2001,24(3):58-60
    [34]刘瑞堂,刘文博,刘锦云等.工程材料力学性能[M].哈尔滨工业大学出版社.2001
    [35]翁文达,陈志国.不同应力状态下板材本构关系的试验研究[J].锻压技术.1993:27-31
    [36]邹增大,李亚江,尹士科.低合金调制高强度钢焊接及工程应用[M].化学工业出版社.2000.
    [37]邵国良,宗培,陈爱志,孙谦.高强度低合金结构钢焊缝与母材的强度匹配[J].2004,33(3):8-10
    [38]金仁喜,桂赤斌.焊接接头匹配性研究现状[J].海军工程学院学报.1998,2:74-80
    [39]霍立兴.焊接接头工程强度.机械工程出版社,1995
    [40]严鸢飞,毅力,印建正等.钢焊接接头的强韧性设计原则的研究[J].机械工程学报.1996,32(2):101-105
    [41]Defourny J, Haeyer R, Leroy V. A Metallurgical Approch of the Parameters Affecting the Fracture Behaviour of Base Metal and Welded components.1990
    [42]张玉风.静载下焊缝强度匹配对结构抗断裂性能影响的研究[J].天津大学学报.1985(3):13-18
    [43]Francois D, Burdekin F M.Draft Final Definitive Statement on Significance of Local Brittle Zones.1993
    [44]陈伯蠡.金属焊接性基础[M].机械工业出版社,1982,200—209.
    [45]李少华,尹士科,刘奇凡.焊接接头强度匹配和焊缝韧性指标综述[J].2008,1:24-27
    [46]Denys R M, Lefevre A. A Fracture behavior of high strength steel welds:effect of weld metal matching[J].1993
    [47]朱亮,陈剑虹.非等强焊接接头屈服行为及屈服强度预测[J].兰州理工大学学报.2004,(01)
    [48]荆洪阳,霍立兴,张玉凤.非均质焊接接头断裂行为预测研究[J].机械工程报.2000,36(9):48-51
    [49]林德超,史耀武.焊缝匹配影响焊接残余应力的研究[J].材料工程.1996,(6):24-26
    [50]沙鹏,贺定勇,田富强等.焊接接头力学不均匀体断裂力学参量的数值分析研究[J].北京工业大学学报.2000,26(12):93-98
    [51]邵国良,信世堡,胡毅军,宗培.低强匹配焊接接头匹配特性研究[J].船舶工程.2005,27(6):23-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700