多分枝非离子表面活性剂的合成、改性及在破乳方面的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油是工业的血液,随着工业飞速的发展,世界对石油的需求量越来越大。提高石油采收率,充分利用有限的石油资源对整个世界具有特别重要的意义。本课题的主要研究目标就是针对原油的采出液乳化体系,合成一系列具有不同分枝数的非离子表面活性剂,并对其交联改性,研究了这一系列多分枝非离子表面活性剂的结构与物理化学性能的关系,最后将表面活性剂用以原油破乳,研究了表面活性剂结构、分子量等性质对其破乳能力的影响。
     实验利用核磁共振(NMR)、质谱以及GPC等方法对非离子表面活性剂的起始剂以及表面活性剂进行了结构及分子量分析;考察了破乳剂起始剂分枝数、起始剂含量、环氧乙烷环氧丙烷嵌段比例对表面活性剂的分子量和破乳性能影响;测定了表面活性剂的表/界面张力、系列破乳剂的浊点、聚集体大小和破乳速率进一步讨论了破乳剂结构与性能的关系。
     本实验研究得出以下结论:(1)在一定范围内,随着起始剂含量的降低或分枝数的增加,非离子表面活性剂分子量增大,破乳剂脱水性能提高,当表面活性剂起始剂含量的降低到某一值时,其破乳能力最佳,起始剂再降低,破乳能力反而变差;(2)多分枝非离子表面活性剂的(m)EO/(m)PO在3:7~1:4之间,破乳脱水效果较好,m(EO)/m(PO)值为1:3时脱水效果最佳,表面活性剂的表面张力主要与EO/PO相关,受起始剂含量分子量或交联程度影响不大,浊点、界面膜强度、界面张力和聚集体大小等性质受起始剂含量、交联程度和分子量影响较大,酚胺树脂聚醚的聚集体尺寸可从交联前的20nm增长至465nm;(3)当多分枝非离子表面活性剂具有相同EO/PO时,它们的破乳能力主要与分子量相关,破乳剂的分子量与其起始剂分枝数并没有绝对关系,当起始剂分枝数增长到一定时,表面活性剂的分子量不再增长,交联可以有效增加表面活性剂的分子量,从而增强破乳效果。
Oil is the blood of modern industry. With the rapid development of our industry, our demand for oil is increasing. But when the water is inputted more and more, the water content ratio of outputted liquid form oil well is increasing high. So it has special significance to improve oil recovery ratio and make full use of limited oil resources. We synthesized some kinds of highly branched nonionic surfactants to deal with the outputted liquid form oil well. Finally, we try to improve the capability of the surfactants by crosslinking. We studied the physics and chemistry properties of the surfactants to find their rules.
     We use the gel permeation chromatography and nuclear magnetic resonance to analyze the structure and molecular weight. The highly branched nonionic surfactants was synthesized through varieties of initiators which have lots of branches with propylene oxide (PO) and ethylene oxide (EO). The influence of EO/PO、initiator and crosslink on the surface and interfacial properties, size of aggregates, turbidity properties and demulsification of the surfactants were investigated.
     The results indicated that, first, With the reduction of the initiator, or with the increase in quantity of initiator branch, the demulsifiers had larger molecular weight, dehydration rate of the demulsifier increased. When the ratio of the ethylene oxide and propylene oxide was between 3:7 to 1:4, the demulsifiers had good dehydration rate, and the demulsifier had the best dehydration effect when m (EO)/m (PO) value was 1:3. Second, With the degree of crosslink increase, the interfacial tension, the size of aggregates become larger, meanwhile it nearly has no influence on the surface tension and makes the cloud point decrease. Noteworthy, the radius of aggregates grow from 20 nm to 465 nm, as the crosslinker-polyether ratio increases from 0 to 0.04(wt); lastly, the increasing amount of the initiator branch could increase the molecular weight of nonionic surfactants and the ability of the emulsion breaking in some incrosslinking range. With the degree of crosslink increase, the molecular and the extent of demulsification become larger.
引文
[1]杜巧云,葛虹.表面活性剂基础及应用[M].北京:中国石化出版社,1996,41~43.
    [2]赵国玺,朱王步瑶.表面活性剂作用原理[M].北京:中国轻工业出版社,2003,38~48.
    [3]杨树良.非离子型高分子表面活性剂及其应用[J].日用化学工业.1990,(5):16~20.
    [4]黄卫东,王佩璋,孙慧.非离子系高分子表面活性剂的研究进展[J].日用化学工业,2002,32(5):30~34.
    [5]苑世领,徐桂英.原油破乳剂发展的概况[J].日用化学工业,2000,(1):16~20.
    [6]王文德,陈关玲,王正武.非离子表面活性剂构效关系的研究[J].日用化学品科学,2008,31(12):21~37.
    [7]徐燕莉.表面活性剂的功能[M].北京:化学工业出版社,2000,164~189.
    [8]李秋小,张高勇.中国表面活性剂/洗涤剂领域技术进展[J].中国洗涤用品工业.2004,(1):59~63.
    [9]蒋惠亮,殷福珊,邓丽等.表面活性剂对超细碳酸钙的防团聚作用研究[J].无机盐工业,2006,38(10):36~38.
    [10]姜英涛.乳液聚合中的表面活性剂[J].上海涂料,2007,46(10).
    [11]赵秉臣,闫峰,李栋林等.高粘原油降粘剂[J].沈阳化工学院学报,1998,12(10),299~303.
    [12]魏立新,王锦秀,侯进才等.原油低温破乳剂的研究与应用综述[J].内蒙古石油化工,2009,23,5~8.
    [13]李学文,康万利.原油乳状液的稳定性与界面膜研究进展[J].油气田地面工,2003,22(10):7-8.
    [14]李明远,甄鹏,吴肇亮,等.原油乳状液稳定性研究Ⅵ:界面膜特性与原油乳状液稳定性[J].石油学报(石油加工),1998,14(3):125.
    [15]Joseph D. Mclean. Effects of asphaltene solvency on stability of water-in-crude oil emulsions[J]. J. Colloid Interface Sci.,1997,189:242-253.
    [16]Friberg S.,Mandell L.,Larsson M. Mesomorphous phases, a factor of importance for the properties of emusions[J]. J.Colloid Interfaces Sci.,1969,29(1):155~156.
    [17]Friberg S.,Jansson P.O.,Cederberg E. Surfatant association structure and emusion stability[J]. J.Colloid Interfaces Sci.,1976,5593):614~623.
    [18]罗伟,赵永鸿,林梅钦等.固体颗粒对油水界面性质及乳状液稳定性的影响[J].应用化工,2009,38(4):483⒍493.
    [19]Tambe D.E., Sharma M.M., Factors controlling the stability of colloid-stabilized emulsion [J]. J. Colloid Interface Sci.,1993.157(1):244~253.
    [20]Van den Tempel M., Stability of oil-in-water emulsions I The electrical double layer at the oil-water interface[J].Rec. Trav. Chim.,1953,72,419~432.
    [21]王任芳,李克华,楚军.无机盐对W/O型原油乳状液稳定性的影响[J].油田化学,1992,9(4):366~369.
    [22]严方,谢永杰.大庆原油四组分分析及界面性质研究[J].化学分析计量,2009,18(4):20~23.
    [23]徐明进,李明远,彭勃等.油包水乳状液中胶质和沥青质的界面剪切黏度和乳状液稳定性的关系[J].石油学报(石油加工),2007,23(3):107~110.
    [24]段友智,李阳,范维玉等.石油磺酸盐组成及其油水体系界面张力的关系研究[J].石油化工高等学校学报,2009,22(3):46~50
    [25]丁德馨,孙在春,杨国华.原油乳状液的稳定与破乳[J].油田化学,1998,15(1):82~86.
    [26]夏立新,曹国英,陆世维等.原油乳状液稳定性和破乳研究进展[J].化学研究与应用,2002,14(6):623~627.
    [27]张健,向问陶,韩明,等.原油破乳的化学破乳作用[J].油田化学,2005,22(3):283~288.
    [28]吴迪.化学驱采出液破乳剂的研究和应用进展[J].应用科技,2009,17(24):21~25.
    [29]王彪.原油破乳剂研究新进展[J].油田化学,1994,11(3):266~272.
    [30]梁保红.破乳剂及其改性技术的发展[J].化学工程与装备,2009,11:102~105.
    [31]魏国晟.原油破乳剂的研究与应用[J].油田化学,1995,12(2):188~190.
    [32]W.K. S. Alkoxylated vinyl polymer demulsifiers for crude oil emulsion[P]. US:4968449, 1990.
    [33]G. R. Polyoxypropylene triamine derives used in demulsification of oil in water[P]. US: 5152972,1993.
    [34]Stephenson W K. DeShazo J. D. Method of breaking crude oil emulsions using ethylene carbonate adducts of alkylphenol-formaldehyde resins[P].U S:205964,1993.
    [35]Bock. Hydrophobically functionalized cationic polymers[P].EP:0464957,1992.
    [36]P.R. H. Breaking water-in-oil emulsions in a crude oil desalting system[P]. US:5256305, 1992.
    [37]肖稳发.原油破乳剂的合成和应用[J].湖北化工,1999,(1):23~24.
    [38]檀国荣.注聚驱原油乳状液破乳剂的合成研究[D].中国矿业大学.21~24.
    [39]刑其毅,徐瑞英,周政等.基础有机化学(第二版)[M].北京:高等教育出版社,2000,106-109.
    [40]Sowada R and Mcgowal J. C. Calculation of HLB Values. Tensid[J].1992,29 (2):109~113.
    [41]魏国晟,张宗愚.原油破乳剂的研究与应用[J].油田化学,1995,12(2):188~190,170.
    [42]Tomalia D A, Baker H, Dewald J. A new class of polymers:starburst-dendritic macromolecules. Polymer Journal,1985,17(1):117~132.
    [43]Hawker C J, Frechet J M J. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc.,1990,112: 7638~7647.
    [44]Miller T M, Neenan T X. Convergent synthesis of monodisperse dendrimers based upon 1,3, 5-trisubstituted benzenes. Chem. Mater.,1990,2:346~349.
    [45]Uhrich K E, Beogeman S, Frechet J M J, Turner S R. The solid-phase synthesis of dendritic polyamides. Polym. Bull.,1991,25:551~558.
    [46]Hudson R H E, Damha M J. Nucleic acid dendrimers:novel biopolymer structures. [J] J. Am.Chem.Soc.,1993,115(6):2119~2124.
    [47]Garcia-Martinez J C, Wilson O M, Scott R W J, Crooks R M. Extraction of metal nanoparticles from within dendrimer templates. Metal-Containing and Metallosupramolecular Polymers and Materials, Chapter 16,2006,215~229.
    [48]GOLLER R,VORS J P,CAMINADE A M,et al.Phospho-rus dendrimers as new tools to deliver active substances[J].Tetrahedron Letters,2001,42(21):3587~3590.
    [49]B. Donnio, J. Barbera, R. Gimenez, D. Guillon, M. Marcos and J.L. Serrano, Controlled molecular conformation and morphology in poly(amidoamine) (PAMAM) and poly(propyleneimine) (DAB) dendrimers. Macromolecules,2002,35(2):370~381.
    [50]李翠勤,王俊,杨洪军等.树枝状大分子对原油的破乳与降粘作用[J].化学工程师,2005,120(9):16~18.
    [51]周继柱,张巍,檀国荣等.聚酰胺胺星形聚醚原油破乳剂的合成与性能[J].精细石油化工,2008,25(5):5~9.
    [52]Zhiqing Zhang, Guiying Xu, Fang Wang, et al. Demulsification by amphiphilic dendrimer copolymers[J]. Journal of Colloid and Interface Science,2005,282,1~4.
    [53]Mieczysaaw Maciejewski, Michaa Kdzierskil, Elbieta Bednarek, et al:Highly branched melamine-phenolic novolaks[J]. Polymer Bulletin,2002 48,251~259.
    [54]李宗石,徐明新.表面活性剂合成与工艺[M].北京:轻工业出版社,1990.138~161,189~194.
    [55]龚惠娟,胡耿源,陈关喜.交联聚醚的合成及其在稠油破乳中的应用[J].精细石油化工,2000,4:1~4.
    [56]黄焱,秦炜,柳鹤,等.非离子表面活性剂C12 E10的浊点分相行为及其应用[J].化工学报,2007,58(5),1253~1258.
    [57]朱王步瑶,赵国玺.液体表(界)面张力的测定-滴体积法介绍[J].化学通报,1981,6,21~26.
    [58]吴有庭,梅乐和,朱自强旋转液滴法界面张力仪的建立以及液液界面张力的测定[J].化学学报,1996,47(4),510~514.
    [59]晁国胜.用GPC法测定环氧乙烷/四氢呋喃共聚醚分子量和官能度分布[J].黎明化工,1989,3,25~30.
    [60]康万利,岳湘安.聚合物对乳状液及液膜的稳定性.石油学报,1997,18(4):122~125.
    [61]SY5281-2000,破乳剂使用性能检验方法(瓶试法)[S].
    [62]王景霞,范晓东,周志勇等.双金属氰化物催化环氧化物开环聚合的研究进展[J].化工进展,2008,27(7),1012-1017.
    [63]Prasad K N, Luong T T, Florence A T, et al. Surface activity and association of ABA polyoxyethylene-polyoxypropylene block copolymers in aqueous solution[J]. Journal of Colloid and Interface Science,1979,69 (2),225~232.
    [64]Jiangying Wu, Yuming Xu, Tadeusz Dabros, et al. Effect of EO and PO positions in nonionic surfactants on surfactant properties and demulsification performance[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2005,252,79-85.
    [65]Marquez M L, Rogel E, Reif I. Molecular dynamics simulation of isopropyl naphthalene sulfonate at the water/heptane interface[J]. Colloids and surfaces A, Physicochemical and engineering aspects,1996,106,135-148.
    [66]Xia Xin, Guiying Xu, Zhiqing Zhang, et al. Aggregation behavior of star-like PEO-PPO-PEO block copolymer in aqueous solution[J]. European Polymer Journal,2007, 43,3106~3111.
    [67]高芒来,佟庆笑,孟秀霞.MD-1膜驱剂溶液的界面特性研究.油田化学,2003,20(1):74-77.
    [68]Balassa L L, Othmer D F. Demulsification of crude oils. Extractive and Azeotropic Distillation, Chapter 7,1974,108-121.
    [69]Zhang Z Q, Xu G Y, Wang F, Dong S L, Chen Y J. Demulsification by amphiphilic dendrimer copolymers. Journal of Colloid and Interface Science,2005,282(1),1-4.
    [70]Kim Y H, Wasan D T, Breen P J. A Study of Dynamic Interfacial Mechanisms for Demulsification of Water-in-Oil Emulsionsl [J]. Colloids and Surface A:Physicochem Eng Aspects,1995,95:235~247.
    [71]Taolei Sun, Lu Zhang, Yiyang Wang, et al. Influence of demulsifiers of different structures Interfacial dilational properties of an Oil-Water interface containing surface-Active fractions from crude oil[J]. Journal of Colloid and Interface Science,2002,255(2), 241~247.
    [72]Kim Y H, Wasan D T, Breen P J. A Study of Dynamic Interfacial Mechanisms for Demulsification of Water-in-Oil Emulsionsl [J]. Colloids and Surface A:Physicochem Eng Aspects,1995,95:235~247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700