烧结多孔介质材料发汗冷却的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空航天技术的飞速发展,近空间、长航时、高超声速飞行器的研究成为热点。高超声速飞行器的工作热环境极其恶劣,如推进系统内燃烧导致的超高温环境,在近空间飞行时飞行器前缘面临的极高气动热。因此,发汗冷却作为一种最有效的主动热防护技术成为航空航天领域的热门课题。
     在无冷却介质相变的发汗冷却中,以空气作为冷却介质,采用红外测温的方法,分别对不锈钢和金属-陶瓷烧结多孔平板试验件的发汗冷却特性开展实验研究。在不锈钢多孔平板在低温下发汗冷却实验中,通过对沿主流方向的下游温度的测量,分析了冷却介质边界层沿着主流方向的发展规律;在金属-陶瓷多孔平板的高温发汗冷却实验中,通过对平板热端面的温度测量,给出了沿主流方向温度的发展规律,并分析了主流工况、冷却流的注入率对于平板发汗冷却效率的影响规律。
     为研究非均质多孔介质的渗透特性,以烧结多孔介质为实验基体,分别以纯净的空气、水和乙醇作为流通介质,实验研究流体穿过多孔介质平板的驱动力与其运动特性之间的关系,分析非均质多孔介质在单相流状态下的渗透特性,并重点展示和研究了三种非达西现象,通过对经典渗透率公式拟合实验数据的偏差分析,提出完善达西公式的建议。
     液态冷却介质具有高相变潜热、存储空间小、输送代价低的特点,开展具有液体冷却工质相变的发汗冷却基础实验研究,根据主流参数的变化,通过调节冷却水的注射量将相变位置控制在烧结多孔介质结构内部,研究高温气流横掠烧结多孔介质平板结构时的发汗冷却特性。探讨了具有相变发汗冷却的力学特性,分析了受毛细力影响的驱动压力降不同于常温下的变化规律;在考量相变发汗冷却效果时,引入平板表面的冷却效率作为评价标准,分析了热流密度对冷却效率的影响规律。
     在相变发汗冷却基础问题实验研究的基础上,模拟真实工况,在主流马赫数2.19,总压0.14Mpa,热流密度1.4MW/m2电弧加热风洞中,以水为发汗冷却工质,开展烧结多孔介质平板的相变发汗冷却模拟实验研究,讨论发汗冷却过程出现传热恶化现象时,冷却水的温度、平板底温以及腔内压降的相互作用机理,并分析在极高热流密度条件下,冷却腔内压降在驱动力和相变毛细力共同作用下的变化规律。
With the development of aero-space technology, near space aero-craft system, long-endurance navigation, hypersonic vehicles are becoming the focuses of current research. However this development of aero-vehicles has to face huge challenges of thermal environment, especially for the hypersonic vehicles. When the vehicles pass through the near space, they have to protect their thermal structures from the high temperature of the combustion in propulsion system, extremely high aerodynamic heating in the front of the vehicles. In these situations, transpiration cooling technique, as the most effective approach of active thermal protections, is widely studied.
     In this dissertation, several transpiration cooling experimental investigations carried out by stainless steel and metal-ceramic sintering porous specimens are presented. At first, clean air was used as cooling medium, and infrared thermal imaging technique was adopted to measure the surface temperature distribution exposed in high temperature mainstream. The generation and development performances of cooling air boundary layer in the high temperature surface are measured and analyzed. In the experiments, clean air was used as cooling medium, the specimen was made of the metal-ceramic powder sintered material, and the influence factors on the cooling effectiveness, such as mainstream temperature and velocity, cooling injection rate and temperature, were analyzed and discussed.
     In order to investigate the penetration performances of fluid flow passing through heterogeneous porous media, a sintered porous alloy plate was used as specimen in this dissertation. The relationships of the mass flow rate of different fluids with the corresponding driving force were measured in the experiment. Single phase alcohol, pure water and clean air were used as penetrating fluids. Through this experiment, three non-Darcy phenomena, the transient pressure of liquid flow penetrating porous media, pre-force to open all pores and viscosity interaction between fluid and solid, were discovered and discussed. Based the discussions, a relatively perfect Darcy's equation, in which the transient pressure, pre-force to open all pores and viscosity interaction between fluid and solid wall are considered, was suggested.
     Liquid coolant has the advantages for the aero-space vehicles, for example, high latent heat of vaporization, smaller storage space and lower transportation cost. Therefore it is important to carry out the basic experimental investigations on the transpiration cooling with liquid-coolant phase change. In the experiments, the injection mass flow rate of liquid water was adjusted to keep the phase change position inside sintered porous structure at different mainstream temperatures and velocities. The transpiration cooling characteristics of high-temperature mainstream across the sintered porous plate are studied, the mechanical properties of the transpiration cooling with liquid phase change are analyzed, and the interaction of the driving pressure drop of the coolant with the capillary force is discovered. To analyze the influence rules of heat flux on the cooling efficiency with liquid phase change, a minimal coolant mass injection rate was introduced as evaluation criterion.
     On the basis of the experimental investigations on the phase change transpiration cooling, this dissertation presents a feasibility test using the sintered porous media and liquid water. To create a relatively real condition of supersonic aircraft, the stainless sintered porous specimen was put in an electric arc heating wind tunnel, and the experiments were conducted at a mainstream Mach number of2.19, a total pressure of0.14Mpa and a heat flux of1.4MW/m2. With heat transfer deterioration phenomena appeared in the process of transpiration cooling, the interaction mechanism of the liquid water temperature with the cavity pressure drop and temperature of the specimen was discussed. Under the conditions of extremely high heat flux, the relationship of the coolant cavity pressure drop, the diving force of coolant and capillary force is discussed.
引文
[1]Peter J S.1999. The History of Aircraft Gas Turbine Engine Development in the Unite State...A Tradition of Excellence. ASME The international Gas Turbine Institute, US.
    [2]Young J B, Wilcock R C.2002. Modeling the Air-Cooled Gas Turbine:Part 1-General Thermodynamics. ASME Journal of Turbo machinery,124(2):207-213.
    [3]Han J C, Dutta S, Ekkad S.2000. Gas Turbine Heat Transfer and Cooling Technology. London: Taylor & Francis.
    [4]Ciliford R J.1985. Rotating heat transfer investigations on a multipass cooling geometry. AGARD CP 390.
    [5]Iacoides H.1998. The computation of flow and heat transfer through rotating ribbed passage[R]. International Journal of Heat and Fluid Flow.
    [6]Lakshminarayana B.1996. Turbine cooling and heat transfer, in Fluid Dynamics and Heat Transfer of Turbomachinery. New York:John Wiley, Chap.7,597-721.
    [7]Glass D E, Arthur D.1999. Numerical analysis of convection/transpiration cooling[R]. NASA/TM-1999-209828.
    [8]Keener D, Lenetz J, Bowersox R.1995. The effect of transpiration cooling on nozzle heat transfer and performance at low blowing ratio[R]. AIAA 95-2497.
    [9]马忠辉.2004.可重复使用运载器热防护系统性能分析研究[D]:[博士].西安:西北工业大学,1-10.
    [10]杨卫华.2003.层板发汗冷却技术基础理论及应用研究[D]:[博士].上海:上海交通大学,1-11.
    [11]Bouchez M, Falempin F, Cahuzac G, et al.2002. PTAH-SOCAR Fuel-Cooled Composite Materials Structure. AIAA 2002-5135.
    [12]Jackson T A, Eklund D R, Fink A J, High speed propulsion:Performance advantage of advanced materials, Journal of Materials Science,39:5905-5913.
    [13]Norgren C T. Riddlebaugh S M.1985. Advanced Liner-cooling techniques for gas turbine combustors[R]. NASA Technical Memorandum 86952, Jul 1.
    [14]Lacy B P, Varghese P L, Wilson D E.1998. Unsteady Effects of Dissociative Cooling under High-Stagnation-Point Heat Loads[J]. Spacecraft and Rockets,35(5).
    [15]Lacy B P, Wilson D E, Varghese P L.1995. Dissociative Cooling Effect on Stagnation Heat Transfer of Gas Mixture Injection[J]. Spacecraft and Rockets,32(5):777-782.
    [16]Lacy B P, Wilson D E, Varghese P L. June 1994. The Dissociative Cooling Concept, Part Two:The Effectiveness of Dissociation as Internal Cooling for Porous Medium[M]. AIAA 84-1991.
    [17]Champion J L, Deshaies B.1995. Experimental Investigation of the wall flow and cooling of Combustion Chamber Walls[M]. AIAA 95-2498.
    [18]Wang J H, Dez.2002. An Experimental Investigation on Transpiration Cooling. Shaker Publishing House, printed in Aachen, Germany, ISBN3-8322-1099-7.
    [19]时骏祥.2009.发散冷却基础问题的理论研究[博士学位论文].合肥:中国科学技术大学热科学与能源工程系.
    [20]Caras G J, Terry J E.1966. Transpiration and film cooling of liquid rocket nozzles. AD 98-486409.
    [21]吉洪亮,张长瑞,曹英斌.2008.发汗冷却材料研究进展.材料导报.22(1):1-3.
    [22]Carton E P, Stuivinga M, Keizers H.1999. Shock wavefabricated ceramic-metal ozzles. Appl Comp Mater,6(3):139.
    [23]洪长青,张幸红,韩杰才等.2005.热防护用发汗冷却技术的研究进展(Ⅰ)—冷却方式的分类、发汗冷却材料及其基本理论模型.宇航材料工艺,6:7-12.
    [24]Swann R T.2001. Numerical analysis of the transient response of advanced thermal protection systems for atmospheric entry[J]. J Spacecraft Rockets,38(4):15.
    [25]Lezuo M, Haidn O J.1997. Transpiration cooling using gaseous hydrogen[C]//33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Seattle, WA, USA, AIAA-1997-2909.
    [26]Haidn O J.1996. Transpiration cooling in H2/O2 combustion devices.32nd AIAA Joint Propulsion Conference, Lake Buena Vista, Florida, July 1-3,1996, AIAA-1996-2581.
    [27]Blubaugh A L, Labotz R L.1999. Liquid rocket demonstration of an advanced transpiration-cooled thrust chambers. AD 99-380029;
    [28]Martiny M, Schulz A, Witting S.1995. Full-Coverage Film cooling investigation:Adiabatic wall temperature and flow visualization. ASME International Mechanical engineering congress & Exposition San Francisco-November 12-17, Vol.95-WA/HT-4, ASME, New York.
    [29]Ekkad S V, Zapata D, Han J C.1997b. Film Effectiveness over a flat surface with air and CO2 injection through compound angle holes using a transient liquid crystal image method. ASME Journal of Turbomachinery,119:587-593.
    [30]Ekkad S V, Du H, Han J C.1995. Local heat transfer coefficient and film effectiveness distributions on a cylindrical leading edge model using a transient liquid crystal image method. ASME winter annual meeting, San Francisco, CA.
    [31]Wear J D, Trout A M. July 1978. Design an Preliminary results of a Semi-Transpiration Cooled(Lamilloy) Linner for a High-Pressure, High-Temperature Combustor, AIAA/SAE 14th Joint Propulsion Conference, Las Vegas, Nov.
    [32]何家德等.1999.“用瞬态测试技术研究多孔层板的换热特性”.燃气涡轮试验与研究,12(1):21-24.
    [33]刘伟强,陈启智等.1998.“液体火箭发动机层板式预燃室液氧发汗冷却热控制”.推进技术,19(5):10-14.
    [34]吴慧英,程惠尔.2000.“层板室壁无相变流动时的冷却性能”.热能动力工程,15(85):18-19.
    [35]Nguyentat T, Hayes W A, Meland T O, et al.2006. Fabrication of a liquid rocket combustion chamber liner of advanced copper alloy grcop-84 via formed platelet liner technology.42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, California, AIAA 2006-5129.
    [36]Mignon Thames, et al.2001. Thermal/fluid study of perforated plates for transpiration cooling. Spacecraft Rockets,38(4):15.
    [37]Mayer W.2000. TEKAN-research on cryogenic rocket engines at DLR Lampoldshausen. AIAA 2000-3219.
    [38]Elam S, Effinger M, Holmesetal R.2000. Lightweight chambers for thrust cell applications. AIAA 2000-3131.
    [39]Steffen Bayer, Georges Cahuzac. Piah-socar fuel-cooled composite materials structure for dual-mode ramjet and liquid rocket engines. AIAA 2004-3653
    [40]Greuel D, Herbertz A, Haidn O J, et al.2004. Transpiration Cooling Appllied to C/C Liners of Cryogenic Liquid Rocket Engines[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, Florida, July 11-14,2004.Reston:AIAA, c2004: 2004-3682.
    [41]Hald H, Herbertz A, Kuhn M, et al.2009. Technological Aspects of Transpiration Cooled Composite Structures for Thrust Chamber Applications[C]//16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, Bremen, Germany, Oct.19-22,2009.Reston:AIAA, c2009:2009-7222.
    [42]Soller S, Kirchberger C, Kuhn M, et al.2009. Experimental Investigation of Cooling Techniques and Materials for Highspeed Flight Propulsion Systems[C]//16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, Bremen, Germany, Oct.19-22,2009.Reston:AIAA, c2009:2009-7374.
    [43]Green L, Duwez P.1950. Fluid Flow Through Porous Metals. Semi-Annual Meeting, St. Louis, Mo., June 19-23,1950, of The American Society of Mechanical Engineers.
    [44]Bellettre J, Bataille F, Lallemand.1999. A. Prediction of thermal protection of walls by blowing with different fluids[J]. International Journal of Thermal Sciences,38(6):492-500.
    [45]Kuhn M, Hald H.2008. Application of Transpiration Cooling for Hot Structures [J]. RESPACE-Key Tech for Reusable Space Sys,98:82-103.
    [46]Langener T, von Wolfersdorf J, Kuhn M, et al.2010. Transpiration Cooling with Supersonic Flows and Foreign Gas Injection[C]//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Nashville, TN, July 25-28,2010.Reston:AIAA, c2010:2010-6794.
    [47]Formalev V F, Kolesnik S A, Chipashvili A A.2006. An Analytical Investigation of Heat and Mass Transfer under Conditions of Film Cooling of Bodies[J]. High Temperature,44(1): 108-114.
    [48]Luikov A V, Vasiliev L L, Mayorov V A.1975. Static characteristics of equilibrium two-phase transpiration cooling systems[J]. Int. J. Heat Mass Transfer,18(7-8):863-874.
    [49]Luikov A V, Vasiliev L L, Mayorov V A.1975. Determination of the region of stable and reliable operation of equilibrium two-phase transpiration cooling system[J]. Heat Mass Transfer, 18(7-8):885-892.
    [50]Naik A S, Dhir V K.1982. Forced flow evaporative cooling of a volumetrically heated porous layer[J]. Heat and Mass Transfer,25(4):541-552.
    [51]Udell K S.1983. Heat transfer in porous media heated from above with evaporation, condensation, and capillary effects[J]. Heat and Mass Transfer,105:485-492.
    [52]van Foreest A, Gulhan A, Esser B, et al.2007. Transpiration cooling using liquid water.39th AIAA Thermophysics Conference, Miami, FL, United States, AIAA-2007-4034.
    [53]van Foreest A, Sippel M, Gulhan A, Esser B, et al.2009. Transpiration Cooling Using Liquid Water[J]. Thermophys. Heat Transf,23(4):693-702.
    [54]Fand, et al.1987. Resistance to flow of fluids through simple and complex porous media whose matrices are composed of randomly packed spheres[J]. Journal of Fluids Engineering, 109:268-274.
    [55]Fand, et al.1986. Natural convection heat transfer from a horizontal cylinder embedded in a porous media[J]. International Journal of Heat and Mass Transfer,29:119-133.
    [56]Macdonald I F, et al.1979. Flow through porous media-the Ergun equation revisited. Industrial Engineering Chemistry,18(3):199-208.
    [57]Irmay S.1965. Theoretical model of flow through porous media. Transfer of Water in Porous Media,29:36-43.
    [58]Rumpf H, Gupte A R.1971. Effect of porosity and particle size distribution in theresistance law of porous flow. Chimerical Engineering Technology,43:367.
    [59]Ifiyenia, Kececioglu.1994. Flow through porous media of packed spheres saturated with water. Journal of Fluids Engineering.116:164.
    [60]Ergun S.1952. Fluid flow through packed columns. Chemical Engineering Progress,48: 89-105
    [61]Baleo J N, Subrenat A, Cloirec P L.2000. Numerical Simulation of Flows in Air Treatment Devices Using Activated Carbon Cloths Filters[J]. Chemical Engineering Science,55: 1807-1816.
    [62]Jiang P X, Si G S, Li M, et al.2004. Experimental and Numerical Investigation of Forced Convection Heat Transfer of Air in Non-Sintered Porous Media[J]. Experimental Thermal and Fluid Science,28:545-555.
    [63]Murilo D M, Innocentini, Mauricio G S, et al.2001. Permeability of Refractory Castables at High Temperatures, J. Am. Ceram. Soc.,84(3):645-47.
    [64]Murilo D M, Innocentini, Vania R S, et al.1999. Prediction of Ceramic Foams Permeability Using Ergun's Equation. Materials Research,2(4):283-289.
    [65]Murilo D M, Innocentini, Arturo R F, et al.2000. Influence of Air Compressibility on the Permeability Evaluation of Refractory Castables, J. Am. Ceram. Soc.,83(6):1536-38.
    [66]Tsai G L, Lin Y C, Wang H W, et al.2009. Cooling Transients in a Sudden-expansion Channel with Varied Rates of Wall Transpiration, International Journal of Heat amd Mass Transfer,52:5990-5999.
    [67]Wang J H, Wang H N, Sun J G, et al.2007. Numerical Simulation of Control Ablation by Transpiration Cooling, Heat Mass Transfer,43:471-478.
    [68]Jolls K R, Hanratty T J.1966. Transition to turbulence for flow through a dumped bed of spheres. Chemical Engineering Science,21:1185-1190.
    [69]Wegner T H, Karabelas A J, Hanratty T J.1971. Visual studies of flow in a regular array of spheres. Chemical Engineering Science.26:59-63.
    [70]Gascoin N, Fau G, Gillard P.2011. Indirect Infra-Red Determination of Darcian permeability for cooling applications[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, San Francisco, California, Apr.11-14,2011.Reston:AIAA, c2011:2011-2371.
    [71]林瑞泰.1995.多孔介质传热传质引论.北京:科学出版社.
    [72]Slattery J C.1969. Single-Phase Flow through Porous Media[J]. AICHE J.,15:866-872.
    [73]Whitaker S.1969. Advances in Theory of Fluid Motion in Porous Media[J]. Ind. Eng. Chem., 61:14-28.
    [74]Wang Z H, Chen G H.1999. Heat and Mass transfer during low intensity convection drying[J]. Chemical Engineering Science,54(17):3899-3908.
    [75]Saez A E, Carbonell R G.1985. Hydrodynamic parameters for gas-liquid co-current flows in packed beds[J]. AIChE J.,31:52-62.
    [76]孙纪国,王建华.2008.烧结多孔结构的渗透和流阻特性研究.航空动力学报.2(1):130-133.
    [77]Aerov M E, Tojec O M.1968. Hydraulic and thermal basis on the performance of apparatus with stationary and boiling granular layer[M]. Leningrad:Himia Press.
    [78]Haeseler D, Mading C, Rubinskiy V, et al.1998. Experimental investigation of transpiration cooled hydrogen-oxygen subscale chambers[C]//34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland, OH, July 13-15,1998.Reston:AIAA, c1998: 1998-3364.
    [79]Wang J H, Messner J, Casey M V.2004. Performance Investigation of Film and Transpiration Cooling[C]. Proc. of ASME Turbo Expo 2004, June 14-17,2004, Vienna, Austria, GT2004-54132.
    [80]Wang J H, Messner J, Stetter H.2004. An Experimental Investigation on Transpiration Cooling Part Ⅱ:Comparison of Cooling Methods and Media, International Journal of Rotating Machinery,10(5):355-363.
    [81]贾闪.2009.曲面发散冷却边界层特性研究[硕士学位论文].合肥:中国科学技术大学热科学与能源工程系.
    [82]余磊,姜培学.2003.发汗冷却湍流换热过程的数值模拟.清华大学学报(自然科学版).43(12):1668-1671.
    [83]Castiglone L A, Northam G B, Baker N R, et al.1997. Wall drag in an internal Mach 2 flow with simulated cavity and transpiration fuel injection[C]//33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Seattle, WA, July 6-9,1997.Reston:AIAA, c1997: 1997-2891.
    [84]Nowak R, Holden M, Wieting A,1990. Shock/shock interference on a transpiration cooled hemispherical model[C]//21st Fluid Dynamics, Plasma Dynamics and Lasers Conference, Seattle, WA, June 18-20,1990.Reston:AIAA, c1990:1990-1643.
    [85]刘元清.2010.发汗冷却基础问题的实验研究和数值模拟[博士学位论文].北京:清华大学动力工程及工程热物理系.
    [86]Mohamad A A,2000, Nonequilibrium natural convection in a differentially heated cavity filled with a saturated matrix, ASME Journal of Heat Transfer 122:380-384.
    [87]Wang J H, Wang H N.2006. A discussion of transpiration cooling problems through an analytical solution of local thermal nonequilibrium model[J]. Journal of Heat Transfer-Transactions of the ASME,128(10):1093-1098.
    [88]Ichimiya K.1999. A new method for evaluation of heat transfer between solid material and fluid in a porous medium. Trans. ASME, J. Heat Transfer,121(4):978-983.
    [89]Nield N A, Kuznetsov A V.1999. Local thermal nonequilibrium effects in forced convection heat transfer in porous medium channel. Int. J. Heat Mass Transfer,42(17):3245-3252
    [90]Wang H N, Wang J H.2006. A numerical investigation of ablation and transpiration cooling using the local thermal non-equilibrium model[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Sacramento, Caliornia,2006, AIAA-2006-5264.
    [91]Wang J H, Shi J X.2008. A Discussion of Boundary Conditions of Transpiration Cooling Problems Using Analytical Solution of LTNE Model[J]. ASME Journal of Heat Transfer, 130:1-5.
    [92]Landis J A, Bowman W J.1996. Numerical study of a transpiration cooled rocket nozzle[C]// 32th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Lake Buena Vista, FL, July 1-3,1996.Reston:AIAA, c1996:1996-2580.
    [93]时骏祥,王建华.发散冷却最小冷却介质注射量的数值研究.航空动力学报,2007,22(2):222-227.
    [94]Cheuret F, Steelant J, Langener T.2011. Numerical Investigations on Transpiration Cooling for Scramjet Applications using different Coolants[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, San Francisco, California, Apr.11-14, 2011.Reston:AIAA, c2011:2011-2379.
    [95]Shi J X, Wang J H.2009. A numerical investigation on the laminar boundary flow layer with transpiration cooling[J]. Transp. Porous Media,78(1):37-46.
    [96]Ramesh P S, Torrance K E.1993. Boiling in a porous layer heated from below:effects of natural convection and a moving liquid two-phase interface[J]. Fluid Mech,257:289-309.
    [97]Wang C Y, Beckermann C.1993. A two-phase mixture model of liquid-gas flow heat transfer in capillary porous media-I:formulation[J]. Int. J. Heat Mass Transfer,36(11):2747-2758.
    [98]Shi J X, Wang J H.2011. A Numerical Investigation of Transpiration Cooling with Liquid Coolant Phase Change[J]. Transp Porous Med,87:703-716.
    [99]Choi S H, Scotti S J, Song K D, et al.1997. Transpiring cooling of a scram-jet engine combustion chamber[C]//32nd Thermophysics Conference, Atlanta, GA, June 23-25, 1997.Reston:AIAA, c1997:1997-2576.
    [100]Fau G, Gascoin N, Gillard P, et al.2011. Fuel Pyrolysis through Porous Media:Coke Formation and Coupled effect on Permeability[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, San Francisco, California, Apr.11-14, 2011.Reston:AIAA, c2011:2011-2206.
    [101]Bouchez M, Falempin F, Cahuzac G, et al.2002. PTAH-SOCAR Fuel-Cooled Composite Materials Structure, AIAA-2002-5135.
    [102]于景元,许香敏,焦红兵.1999.发汗冷却系统的最优控制[J].控制与决策,14(5):398-402
    [103]Sozen M, Davis P A.2008. Transpiration Cooling of a Liquid Rocket Thrust Chamber Wall[C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Hartford, CT, July 21-23,2008.Reston:AIAA, c2008:2008-4559.
    [104]时骏祥,王建华.2007.发散冷却最小冷却介质注射量的数值研究[J].航空动力学报,22(2):222-227.
    [105]金韶山,姜培学,孙纪国.2008.发汗冷却喷管多孔壁面的分段设计分析[J].航空动力学报,23(12):230-233.
    [106]Davies G J, Shu Z.1983. Metallic foams:their production, properties and applications. Journal of Materials Science,18:1899-1911.
    [107]Liu P S, Liang K M.2001. Function materials of porous metals made by P/M, electroplating and some other techniques. Journal of Materials Science,36:5059-5072.
    [108]Liu P S, Yu B, Hu AM, et al.2002. Techniques for preparation of porous metals. J Mater Sci Technol,18(4):299-305.
    [109]Banhart J.2001. Manufacture characterization and application of cellular metals and metal foams. Progress in Materials Science,46:559-632.
    [110]刘培生,马晓明.2006.多孔材料检测方法.冶金工业出版社,122-124.
    [111]孔祥言.1999.高等渗流力学,中国科学技术大学出版社,31-32.
    [112]许祥在,瞿秋兰.1999.多孔材料的孔径分布与渗透性测定.分析仪器,48-52
    [113]Wang J H, Messner J, Stetter H.2003. An Experimental Investigation of Transpiration Cooling Part I:Application of an Infrared Measurement Technique[J]. International Journal of Rotating Machinery,9(3):153-161.
    [114]Darcy H.1856. Les Fontaines Publiques de la Ville de Dijon[M]. Paris:Victor Dalmont.
    [115]Dupuit J.1863. Etudes Theoriques et Pratiques sur le Mouvement des Eaus dans les Canaux Decouverts et a Travers les Terrains Permeables[M]. Paris:Dunod.
    [116]Forchheimer P.1901. Wasserbewegung durch Boden[J]. VDIZ,45:1782-1788.
    [117]Hsu C T, Cheng P.1990. Thermal Dispersion in a Porous Medium[J]. Heat Mass Transfer, 33(8):1587-1597.
    [118]Vafai K, Kim S J.1990. Fluid Mechanics of an Interface Region between a Porous Medium and a Fluid Layer-an Exact Solution[J]. Heat Fluid Flow,11(3):254-256.
    [119]Nield D A, Bejan A.1999. Convection in Porous Media (2nd edn)[M]. New York: S pringer-Verlag.
    [120]Reutter O, Sauerhering J, Fend T, et al.2008. Characterization of Heat and Momentum Transfer in Sintered Metal Foams[J]. Advanced Engineering Materials,10(9):812-815.
    [121]Mayerhofer M., Govaerts J, Parmentier N, et al.2011. Experimental Investigation of Pressure Drop in Packed Beds of Irregular Shaped Wood Particles[J]. Powder Technology, 205(1-3):30-35.
    [122]He F, Ding L, Zhang H, et al.2011. The Transportation Characteristics of Porous Media at High Temperature[C]//Proc. of Inter. Conference on RSETE, Nanjing:IEEE,2011.3545-3548.
    [123]Lage J L, Antohe B V.2000. Darcy's Experiments and the Deviation to Nonlinear Flow Region[J]. Journal of fluids Engineering-Transactions of the ASME,122:619-625.
    [124]Macini P, Mesini E, Viola R.2011. Laboratory measurements of non-Darcy flow coefficients in natural and artificial unconsolidated porous media[J]. Journal of Petroleum Science and Engineering,77(3-4):365-374.
    [125]Nield, D. A., Modelling high speed flow of an incompressible fluid in a saturated porous medium[J], Transport in Porous Media,1994; 14,85-88..
    [126]Yanovski L S.1996. Physical Basis of Transpiration Cooling for Engines of Flying Apparatus. Russia, Moscow:MAI Press.
    [127]Landis J A.2005. Numerical study of a transpiration cooled rocket nozzle. Wright-Patterson AFB, Ohio, USA:Air Force Institute of Technology Graduate School of Engineering.
    [128]Meinert J, Huhn J, Serbest E, et al.2000. Investigations on the effect of foreign gas transpiration on a turbulent boundary layer[C]//36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Huntsville, Alabama, USA,2000, AIAA-2000-3386.
    [129]Meinert J, Huhn J, Serbest E, et al.2001. Turbulent boundary layers with foreign gas transpiration. J. Spacecraft. Rockets,38(2):191-198.
    [130]Zhao T S, Liao Q.2000. On capillary-driven flow and phase-change heat transfer in a porous structure heated by a finned surface:measurements and modeling[J]. Int. J. Heat Mass Transfer,43:1141-1155.
    [131]Zhao T S, Cheng P, Wang C Y.2000. Buoyancy-induced flows and phase-change heat transfer in a vertical capillary structure with symmetric heating[J]. Chemical Engineering Science,55:2653-2661.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700