短时间冰冻低温处理对桃芽自然休眠解除的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验于2005年~2007年在泰安群星果品示范园进行;以七年生曙光油桃(Prunus persica var. Nectarina.cv.Shuguang)为试材对不同温度梯度短时间冰冻低温处理对桃芽自然休眠解除的影响及生理生化机制进行了研究。主要结果如下:
     1、短时间冰冻处理对解除曙光油桃芽休眠有显著作用。当油桃植株进入休眠后,只要休眠达到一定程度,短时间冰冻处理可有效解除芽休眠;并且短时间冰冻处理对芽休眠的解除效果随处理时期的推迟、处理温度的降低及处理时间的延长而增强。-4℃和-7℃短时间冰冻处理对曙光油桃芽自然休眠解除的影响不大;-10℃以后短时间冰冻处理较为显著促进曙光油桃芽自然休眠的解除,但是随着短时间冰冻低温处理温度的降低、处理时期的推迟和处理时间的延长,出现部分桃芽因冰冻处理而死亡的现象,尽管如此,在存活芽中短时间冰冻处理对桃芽休眠解除的效果明显增强。
     2、11月30日短时间冰冻处理中,-4℃和-7℃处理桃芽的自由水/束缚水比值及相对电导度与对照差别不大;而-10℃以后处理的自由水/束缚水比值和相对电导度与对照相比明显升高。12月10日和20日短时间冰冻处理变化趋势与11月30日基本一致,只是前者对桃芽自然休眠解除的促进效应明显优于后者,相同处理芽的自由水/束缚水比值和相对电导度明显高于11月30日处理。不同短时间冰冻处理的萌芽级数和自由水/束缚水比值及相对电导度的相关分析表明,短时间冰冻处理可有效解除芽休眠,并显著促进了水分由束缚态向自由态的转变以及膜透性的增加。
     3、11月30日短时间冰冻处理中,-4℃和-7℃处理桃芽中淀粉含量和可溶性糖含量与对照相差不大;而-10℃以后各处理中,其芽内可溶性糖含量与对照相比升高,淀粉含量降低。12月10日和20日短时间冰冻处理中,-4℃和-7℃处理桃芽中可溶性糖含量和淀粉含量与对照相差无几;但-10℃以后各处理桃芽内可溶性糖含量不仅与对照相比升高,而且明显高于11月30日的相同处理,淀粉含量则显著低于对照和11月30日处理。不同短时间冰冻处理的可溶性糖含量及淀粉含量和萌芽级数的相关分析表明,短时间冰冻处理可有效解除芽自然休眠,促进淀粉向可溶性糖的快速转化。
     4、11月30日短时间冰冻处理中,-4℃和-7℃处理桃芽中O2-产生速率、H2O2含量和·OH产生速率及POD、CAT和SOD活性与对照相比差异不大;但-10℃以后各处理芽内O2-产生速率、H2O2含量和·OH产生速率及POD、CAT活性与对照相比明显升高,而SOD活性显著降低。12月10日和20日短时间冰冻处理变化趋势与11月30日基本一致;只是-10℃以后各处理芽内O2-产生速率、H2O2含量和·OH产生速率及POD、CAT活性显著高于对照和11月30日短时间冰冻处理,SOD活性则显著低于对照和11月30日冰冻处理。过氧化氢(H2O2)含量、超氧阴离子自由基(O2-·)和羟基自由基(·OH)产生速率的显著增加表明短时间冰冻处理可有效解除芽自然休眠,并且活性氧的迅速增加很可能是短时间冰冻处理解除芽自然休眠的部分原因。
     5、11月30日短时间冰冻处理中,-4℃、-7℃和-10℃处理,与对照相比,总酚含量、PAL活性与PPO活性变化不大,而POD活性则在-10℃处理时有所升高;-13℃以后各处理芽中PPO和POD酶活性与对照相比明显升高,而总酚含量和PAL酶活性显著降低。12月10日和20日冰冻处理变化趋势与11月30日基本一致,只是-13℃以后各处理芽中PPO和POD酶活性显著高于11月30日相同处理,而总酚含量和PAL活性则显著低于11月30日相同处理。冰冻处理可能是通过使PAL酶活性降低,PPO和POD酶活性的升高,加速酚类物质的氧化,从而使桃芽中总酚含量快速下降。不同短时间冰冻低温处理桃芽的萌芽级数和总酚含量之间的相关性分析表明,短时间冰冻处理可有效解除芽自然休眠,促进总酚含量降低。
The experiment had been carried out in Taian Qunxing orchard from 2005 to 2007 with 7-year-old nectarine trees of cv Shuguang(Prunus persica var. Nectarina.cv.Shuguang). The effects of short-term freezing at different temperature on the endodormancy breaking of peach buds were studied. The main results were as follows:
     1. Short-term freezing at the rest temperatures significantly released the peach bud endodormancy. When the plants were entering dormancy, an effect of short-term freezing was observed only if a sufficient level of dormancy had been reached, which appeared to be when chilling reached two-thirds of chilling requirement or more for P. persica. Short-term freezing at -4℃and -7℃showed little effect on the endodormancy release in P. persica, but short-term freezing at the rest temperatures efficiently released the peach bud endodormancy. Effects of short-term freezing on the release of dormancy were advanced by the postponement of treatment date, the decrease of treatment temperature and the prolonging of treatment time. Some buds died in the short-term freezing treatment, whereas the effects of short-term freezing on the dormancy breaking in the survival buds were significantly advanced.
     2. On November 30, compared with non-freezing treatment (CK), the effects of -4℃and -7℃freezing treatment were almost the same as CK, the bud burst, the ratio of free water to bound water and membrane permeability were nearly the same as CK. But the rest freezing treatments advanced the date of endodormancy release, the bud burst, the ratio of free water to bound water and membrane permeability were higher than CK. On December 10 and December 20, the effects of the freezing treatment on endodormancy release were the same as the treatment on November 30, and the effect was better as the treatment was later. The correlation between the rate of bud burst, the ratio of free water to bound water, and membrane permeability of the different freezing treatments indicated that the change from bound water to free water and the increase of membrane permeability were probably the signal of dormancy release.
     3. On November 30, the chang of content of soluble sugar and the content of starch were almost the same as CK on -4℃and -7℃-freezing treatments. Whereas the rest-freezing treatments had the significant effects that the content of soluble sugar was higher and the content of starch was lower. On December 10 and December 20, the effects of rest-freezing treatments on dormancy release were the same as the treatment on November 30, and the effect of the former was superior to the latter. The correlation between the content of soluble sugar, the content of starch and the rate of bud burst of the different freezing treatments indicated that the transition of starch to soluble sugar was probably the charctristic of dormancy release.
     4. On November 30, -4℃and -7℃-freezing treatment nearly had the same results as CK on the following factors, including the rate of production in O2-·and·OH, the content of H2O2 , the activity of CAT ,SOD and POD enzyme .But all of them were higher than CK on the rest-freezing treatments except that the activity of SOD enzyme was lower. On December 10 and December 20, the effects of freezing treatments on dormancy release were the same as the treatments on November 30, and the effect of the former was superior to the latter. The significant increase of reactive oxygen content and production rate were probably the cause of dormancy release.
     5. On November 30, compared with CK, the content of total phenolics , the activity of PPO and PAL enzyme showed little difference at -4, -7 and -10℃, but the activity of POD enzyme became higher from -10℃-freezing treatment. The rest freezing treatments had the significant effects on them, and the activity of PPO and POD enzyme were higher than CK while the content of total phenolics and the activity of PAL were lower. On December 10 and December 20, the effects of the freezing treatment on dormancy release were the same as the treatment on November 30, and the effect of the former was superior to the latter. The correlation of the bud burst rate and the content of total phenolics of the different treatments indicated that short-term freezing significantly released the peach bud endodormancy and played down the content of total phenolics through reducing the activity of PAL enzyme and increasing the activity of PPO and POD enzyme.
引文
1. 陈登文, 王飞, 高爱琴. 休眠期间低温累积对杏枝条生理生化的影响. 西北植物学报,2000,20(2):212~217
    2. 陈登文. 杏品种的低温需求量研究. 西北植物学报, 1999, (2): 297~331
    3. 高东升, 束怀瑞, 李宪利等. 桃自然休眠过程中外源激素对花芽碳水化合物的调控效应. 果树学报,2002,19(2):104~107
    4. 高东升, 夏宁, 王兴安. 休眠桃树枝条中碳水化合物的含量变化和外源生长调节剂对破除休眠的效应. 植物生理学通讯,1999,35(1):10~12
    5. 高东升,束怀瑞,李宪利. 几种适宜设施栽培果树需冷量的研究. 园艺学报,2001,28(4):283~289
    6. 高东升,束怀瑞,李宪利. 几种落叶果树 H2O2 含量变化与自然休眠关系的研究. 园艺学报. 2002, 29(3): 209~213
    7. 高东升. 设施果树自然休眠生物学研究:[博士论文]. 山东泰安:山东农业大学,2001
    8. 简令成,卢存福,邓江明等. 木本植物休眠的诱导因子及其细胞内 Ca2+水平的调节作用.应用与环境生物学报,2004,10 (1):001~006
    9. 江泽平. 栓皮栎叶芽休眠解除的模拟. 地理研究, 1994, 13 (1): 43~50
    10. 江泽平. 温带木本植物芽休眠的解除与温度. 林业科学, 1995, 2 (31):160~168
    11. 李合生,孙群,赵士杰等. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000, 213~214
    12. 李宪利,袁志友,高东升. 影响落叶果树芽休眠的因素. 山东农业大学学报(自然科学版),2001, 32(3): 386~392
    13. 林植芳,李双顺,林桂株等. 衰老叶片和叶绿体中 H2O2 的累积与膜脂过氧化的关系. 植物生理学报, 1988, 14(1): 16~22
    14. 刘永军,郭守华,刘贵荣等. 马铃薯块茎发芽过程中酚类物质含量及其相关酶活性的变化. 植物生理学通讯,2002,38(4):347~348
    15. 罗晓芳,田砚亭,姚洪军. 组织培养过程中 PPO 活性和总酚含量的研究. 北京林业大学学报, 1999, 21(1): 92~95
    16. 任宪威等. 北京树木物候谱. 北京林业大学学报,1981,(1):1~7
    17. 任宪威等. 北京树木物候研究. 北京林业大学学报,1983,(1):1~13
    18. 沈元月,郭家选,祝军等. 早熟桃品种需冷量和需热量的研究初报. 中国果树, 1999,2:20~21
    19. 束怀瑞. 苹果学. 北京: 中国农业出版社,1999,245~249
    20. 孙远明,刘佩瑛,赵玉英等. 花魔芋球茎发芽抑制物质的提取、分离与鉴定. 植物生理学报,1996,22(3):277~283
    21. 陶大立等. 东北几个树种苗木的休眠深度. 生态学杂志,1989,8(1):11~13
    22. 汪振儒等译. 木本植物生理学. 北京:中国林业出版社,1985,231~236
    23. 王爱国,罗广华. 植物的超氧物自由基与羟氨反应的定量关系. 植物生理学通讯,1990(6):55~57
    24. 王力荣, 朱更瑞, 方伟超等. 桃品种需冷量评价模式的探讨. 园艺学报, 2003, 30 (4): 379~383
    25. 王力荣,朱更瑞,左覃元. 中国桃品种需冷量的研究. 园艺学报,1997,24(2):194~196
    26. 危常州. 酚类物质在植物体内的生理作用. 石河子农学院学报,1996,34(2):77~80
    27. 韦军. 苹果叶芽和花芽在生长期和休眠期内源多胺的变化. 园艺学报,1995,22(1):99~101
    28. 肖纯,张凯农. Folin 试剂测定茶中酚类化合物. 茶叶通讯, 1995, 3: 29~31
    29. 徐向荣,王文华,李华斌. 比色法测定 Fenton 反应产生的羟自由基及其应用. 生物化学与生物物理进展, 1999, 26(1): 67~69
    30. 杨晓玲,张培玉,郭明军. 山楂种子酚类物质含量与休眠的关系. 园艺学报, 1997, 24(4): 393~394
    31. 耶兴元. 植物热激蛋白研究进展. 西北农业学报,2004,13(2): 109~114
    32. 郁香荷. 改进果树保护地栽培技术的几个问题. 烟台果树, 1996(4) : 2 5~2 7
    33. 张福春. 物候学. 北京:气象出版社,1985
    34. 赵世杰. 植物生理学实验指导. 北京: 中国农业科技出版社, 1998
    35. 赵世杰. 植物生理学实验指导. 北京: 中国农业科技出版社, 1998, 152~154
    36. 赵永灵, 武绍波, 李文祥等. 人工低温对滇中砀山酥梨休眠芽和枝的效应. 西北植物学报,2000,20(4):596~603
    37. 竺可桢,宛敏渭. 物候学(修订本). 北京:科学出版社,1983
    38. Allan P, Hattingh H. Supplementing winter chilling in table grapes in substropical areas by evaporative cooling. J Southern Africa Society for Horticultural Science, 1998, 8(2): 91~93
    39. Allan P. Measuring winter chilling in areas with mild winters. Deciduous Fruit Grower, 1999, 49(10 ): 1~10
    40. Amling H.J., and Amling K.A. Onset, intensity, and dissapation of rest in several pecan cultivars. J. Amer. Soc. Hort. Sci., 1980, 105: 536~540
    41. Anderson JL. Modelling strategy in pomology: development of the Utah Models. Acta. Hort., 1992, 313: 297~306
    42. Anwar A. Khan. Quantification of plant dormancy: Introduction to the workshop. HortScience, 1997, 32(4):608~609
    43. Arnold C Y. The determination and significance of the base temperature in a line heat unit system. Proc. Amer. Soc. Hort. Sci., 1959, 74:430~445
    44. Arora R., Rowland L.J., and Panta G. R. Chilling-responsive dehydrins in blueberry: Are they associated with cold hardiness or dormancy transitions? Physiol. Plant, 1997, 101: 8~16
    45. Arora Rajeev, Rowland Lisa J,Tanino Karen. Induction and release of bud dormancy in woody perennials: A science comes of age. HortScience, 2003, 38(5): 911 ~ 921
    46. Arora Rajeev, Rowland Lisa J., Tanino Karen. Induction and release of bud dormancy in woody perennials: A science comes of age. HortScience, 2003, 38(5): 911~921
    47. Arora R., Wisniewski M.E., and Rowland L.J.. Cold acclimation and alterations in dehydrin-like and bark storage proteins in the leaves of sibling deciduous and evergreen peach. J. Amer. Soc. Hort. Sci., 1996, 121: 915~919
    48. Balchin W G and Pye N. Observation on local temperature variation and plant response. Ecology, 1950, 38:116-127
    49. Bassett T J etal. Phenology of several plant species at Ottawa, Antario, and estimation of the influences of air temperature. Can. J. Plant Sci., 1961, 41(3): 643~652
    50. Baz A L O. Some physiological studies on endodormancy in Mitchamr peachcultivar ⅡDeteermination of some endogenous growth substances in relation to bud endodormancy and burst. Ann. Agric. Sci., 1984, 22(1): 297~306
    51. Bigras F.J, and D Aoust A.L. Influence of photoperiod on shoot and root frost tolerance and bud phenology of white spruce seedlings. Can. J. For. Res., 1993, 23: 219~228
    52. Buban, T, and Faust M. New aspects of bud dormancy in apple trees. Acta Hort., 1995, 395: 105 ~ 109
    53. Champagnat P. Rest and activity in vegetive buds of trees. Ann Sci For, 1989, 46 (suppl):9~26
    54. Champagnet P. Bud dormancy, correlations between organs, and morphogenesis. Fiziol Rastenii., 1983, 30: 587~601
    55. Chandler, W. H. Some studies of rest in apple trees. Proc. Amer. Soc. Hort. Sci., 1960, 76:1~10
    56. Couvillon BA, and Erez A. Effect of level and duration of high temperatures on rest in the peach. J. Amer.Soc.Hort. Sci., 1985, 110(4): 579~581
    57. Crabbe J. Correlative effects modifying the course of bud dormancy in woody plants. Z. Pflanzenphysiology, 1984, 113: 463~469
    58. Crabbe J. Dormancy. Encycl. Agr. Sci., 1994, 1: 597~611
    59. Crimoto C H, Lombard P B, and Fuchigami L H. Fall ethephon delays bloom in ‘Redheaven’ peach by delaying differentiation and development during dormancy. J. Amer. Soc. Hort. Sci., 1989, 114:881~884
    60. Dennis F.G. Jr. Two methods of studying rest: temperature alteration and genetic analysis. HortScience, 1987, 22(5): 820~824
    61. Erez A, and Lavee S. Recent advances in breaking the dormancy of deciduous fruit trees. Proc 19th Intl. Hort.Congress. Warsaw, 1974, 3:69~78
    62. Erez A, Fishman S, Linsley-noakes GC, et al.The dynamic model for rest completion in peach buds. Acta. Hort., 1990, 276: 165~174
    63. Erez A, Benderr J, Petri JL, et al. First experiences with chill-unit models in southern Brazil. Acta. Hort., 1986, 184: 79~86
    64. Erez A, and Couvillon G.A. Characterization of the influence of moderatetemperature on rest completion in peach. J. Amer. Soc. Hort. Sci., 1987, 112(4): 677~680
    65. Erez A., and Lavee S. The effect of climate condition on dormancy development of peach buds.ⅠTemperature. J. Amer.Soc.Hort. Sci., 1971, 112(4):677~680
    66. Erez A., Couvillon G.A., and Hendershott C.H.. The effect of cycle length on chilling negation by high temperature in dormant peach leaf buds. J. Amer. Soc. Hort. Sci., 1979, 104: 573~576
    67. Erez A., Faust M., and Line M.J. Changes in water status in peach buds on induction, development and release from dormancy. J. Scientia Hort., 1998, 73: 111 ~ 123
    68. Erez. A, and G. A. Couvillon. A characterization of the influence of moderate temperatures on rest completion in the peach. J. Amer. Soc. Hort. Sci., 1986, 112: 677~680
    69. Faust M., Liu D., Line M.J., and Stutee G.W. Conversion of bound to free water in endodormant buds of apple is an incremental process. Acta. Hort, 1995, 395: 113~118
    70. Faust M., Liu D., Millard M.M., and Stutte G.W. Bound versus free water in dormant apple buds-A theory for endodormancy. HortScience, 1991, 26: 887~890
    71. Faust M., Wang S.Y. Biochemical events associated with resumption of growth in temperature zone fruit trees. Acta Hort., 1993, 329: 257~264
    72. Faust, M., D.Liu, S.Y.Wang, and G.W.Stutte. Involvement of apical dominance in winter dormancy of apple buds. Acta Hort., 1995, 395: 47~56
    73. Faust. M., Erez. A., Rowland. L.J., Wang. S.Y. and Norman. H.A.. Bud dormancy in perennial fruit trees: Physiological basis for dormancy induction, maintenance, and release. HortScience, 1997, 32(4): 623~629
    74. Fennel A., and E. Hoover. Photoperiod influences growth, bud dormancy and cold acclimation in Vitis labruscana and V.riparia. J. Amer. Soc.Hort.Sci., 1991, 116: 270~273
    75. Fennel A., Wake C., and Molitor P. Use of 1H-NMR to determine grape bud water state during the photoperiodic induction of dormancy. J. Amer. Soc. Hort. Sci., 1996, 121: 1112~1116
    76. Fennel. A., and Line.M.J. Identifying differential tissue response in grape during induction of endodormancy using nuclear magnetic resonance imaging. J. Amer. Soc. Hort. Sci, 2001, 126: 681~688
    77. Fishman S., Erez A., and Couvillon G.A .The temperate dependence of dormancy breaking in plants: computer simulation of process stuied under controlled temperature. J. Theor. Biol., 1987a, 126(3): 309~321
    78. Fishman S., Erez A, and Couvillon G.A. The temperate dependence of dormancy breaking in plants: mathematical analysis of a two-step model involving a cooperative transition. J. Theor. Biol., 1987b, 124(4): 473~ 483
    79. Fuchigami L H, Wisniewski M. Quantifying bud dormancy: physiological approaches. HortScience, 1997, 32: 618 ~ 632
    80. Fumio T,Kenji T,Akiniro I,et al . Protein changes in the flower buds of Janpanese pear during breaking of dormancy by chilling or high temperature treatment. J Amer Soc Hort Sci., 1998,123 (4): 532~536
    81. Gilreath P.R, and Buchanan D.W. Rest prediction model for low-chilling ‘Sungold’ nectarine. J. Amer. Sco. Hort. Sci., 1981, 106(4): 426~429
    82. Guy C.L.Cold acclimation and freezing stress tolerance: Role of protein metabolism. Annu Rev. Plant Physiol. Plant Mol. Biol.,1990,41: 187~223
    83. Hanninen H. Effects of climatic change on trees from cool and temperate regions; an ecophysiological approach to modeling of bud burst phenology. Can. J. Bot., 1995, 73: 183~199
    84. Hanninen H. Modelling bud dormancy release in trees from cool and temperature regions. Acta Forest Fennica, 1990, 213: 1~47
    85. Heide O.M, and Prestrud A.K. Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiology, 2005, 25: 109 ~ 114
    86. Hobson G. Changes in mitochondrial composition and behavior in relation to dormancy. Ann Appl Biol, 1981, 5:541~544
    87. Honjo H., Kobayashi Y., Watanabe M., Fukui R., and Sugira T.. A new approach to controlling the flowering date for Japanese pear using reflective film technique. Acta.Hort., 2002, 587(2): 389~396
    88. Howe G.T., Davis J., Jeknic Z., Chen T.H.H., B.Frewen, Bradshaw H.D., Jr., and Saruul P. Physiological and genetic approaches to studying endodormancy-releated traits in Populus. HortScience, 1999, 34: 1174~1184
    89. Howe G.T., Saruul P., Davis J., and Chen T.H.H. Quantative genetics of bud phenology, frost damage, and winter survival in an F2 family of hybrid poplars. Theor. Appl. Genet., 2000, 101:390~394
    90. Jian LC, Li PH, Sun LH, Chen THH. Alteration in ultrastructure and subcellular localization of Ca2+ in poplar apical bud cells during the induction of dormancy. J Exp Bot, 1997, 48:1195~1270
    91. Jian LC, Li PH, Sun LH, Chen THH. Alteration in ultrastructure and subcellular localization of Ca2+ in poplar apical bud cells during the induction of dormancy. Exp Bot, 1997, 48: 1195~1270
    92. Kobayashi K.D, and Fuchigami, L.H. Modelling bud development during the quiescent phase in red-osier dogwood (Cornus sericea Li). Agric. Meteror., 1983,28: 75~84
    93. Kozlowski T.T. Growth and development of trees. Vol.1. New York: Academic, 1971, 314~316
    94. Kuroa H, Sugiura T, Ito D. Changes in hydrogen peroxide content in flower buds of Japanese pear (Pyrus pyrifolia Nakai.) in relation to breaking of endodormancy. J Jpn Soc Hortic Sci., 2002, 71(5):610~616
    95. Lang G A et al. Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy reseach. Hort Science,1987,22(3):371~377
    96. Leslie H., Fuchigami and Cheng-Chu Nee. Degree growth stage model and rest-breaking mechanisms in temperature woody perennials. HortScience, 1987, 22(5): 836~845
    97. Liu D, Faust M., Millard M.M., and Stutte G.W. States of water in summer-dormant apple buds determined by proton magnetic resonance imaging. J. Amer. Soc. Hort. Sci, 1993, 118: 632~637
    98. Lyr H G et al. On the chilling requirement of dormant buds of Tilla platyphyllos.SCOP. Biochem. Physiol. Pflantzen, 1970, 161:133~141
    99. Lyr H., Hoffmann G., and Richter R. On the chilling requirement of dormant buds of Tilla platyphllos. SCOP. Biochem. Physiol. Pflanzen., 1970, 161: 133~141
    100. Muthalif. M.M., and Rowland L.G. Identification of dehydrin-like proteins responsive to chilling in floral buds of blueberry (Vaccinium, section Cyanococcus).J. Plant Physiol., 1994, 104: 1439~1447
    101. NeSmith D S and Bridges D D. Modeling chilling influence on cumulative flowerings: A case study using Tifblu Rabbiteye bluberry. J. Amer. Soc. Hort. Sci., 1992, 117(5):698~702
    102. Nir G., Shulman Y., Fanberstein L., and Lavee S. Changes in the activity of catalase in relation to the dormancy of grapevine (Vitis vinifera)buds. Plant Physiol., 1986, 81: 1140~1142
    103. Noctor G, Foyer CH. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Mol Biol, 1998, 49: 249~279
    104. Norman HA, Pillai P, John JB, et al. In vitro desataration of monogalactosyldiacy-glycerol and phosphatidylcholine molecular species by chloroplast homogenates. Phytochemistry, 1991, 30: 2217~2222
    105. Or E., Vilozny I., Fennell A., Eyal Y., and Ogrodvith A. Dormancy in grape buds: Isolation and characterization of catalase cDNA and analysis of its expression following chemical induction of bud dormancy release. Plant Sci., 2002, 162: 121~130
    106. Or, E., Vilozny I., Eyal Y., and Ogrodvith A. The transduction of the signal for grape dormancy breaking, induced by hydrogen cyanamide, may involve the SNF-like protein kinase GDBrPK. Plant Mol. Biol., 2000, 43: 483~489
    107. Orffer C.J, Goussand P. G. Effects of hot water treatments on bud burst and rooting of graprvine cuttings. Vitis, 1980, 10:1~3
    108. Parmentier Cecile M., Rowland Lisa J., and Line Michael J. Water status in relation to maintenance and release from dormancy in blueberry flower buds. J. Amer. Soc. Hort. Sci., 1998, 123(5): 762~769
    109. PerryT.O. Dormancy of trees in winter. Science, 1971, 171:29~36
    110. Rallo L and Martin G C.The role of chilling in releasing olive floral buds from dormancy. J. Amer. Soc. Hort. Sci., 1991, 116(6):1058~1062
    111. Richardson E.A., Seeley S.D., and Walker D.R. A model for estimating the completion of rest for ‘Redhaven’ and ‘Elberta’ peach trees. HortScience, 1974, 9(4): 331~332
    112. Rinne P., Hanninen H. Freezing exposure releases bud dormancy in Betula pubescens and B.pendula. J. Plant Cell and Enviroment, 1997, 20: 1199~1204
    113. Romberger J.A. Meristem, growth, and develepment in woody plants. USDAF or. Ser. Tech. Bul., 1963, 1293~1298
    114. Ross J.D. Metabolic control of dormancy breakage in hazel. Plant Physiol.Suppl, 1983, 72: 98
    115. Rowland L.J, and Arora R. Proteins related to endodormancy (rest) in woody perennials. Plant Sci., 1997, 126: 119~144
    116. Salzman R.A. Programmed accumulation of LEA-like proteins during desiccation and cold acclimation of overwintering grape buds. J. Plant Cell Environ, 1996, 19: 713~720
    117. Samish R.M. Dormancy in woody plants. Ann. Rev. Plant Physiol, 1954, 5: 183~204
    118. Sarvas R. Investigations on the annual cycle of development of forest trees: I. Active period. Commun Inst. For. Fenn, 1972, 76:1~102
    119. Sarvas R. Investigations on the annual cycle of development of forest trees: II. Autumn dormancy and winter dormancy. Commun. Inst. For. Fenn., 1974,84(1): 1~101
    120. Sarvas R. Investigation on the annual cycle of development of forest trees: ⅡAutumn dormancy and winter dormancy. Commum. Inst. For. Fenn., 1974, 84(1): 1~11
    121. Saure M.C. Dormancy release in deciduous fruit trees. Hort. Rev., 1985, 7: 239~300
    122. Saure.M. Dormancy release in deciduous fruit trees. Hort. Sci., 1985, 106: 405~409
    123. Seeley S.D. Modelling climatic regulation of bud dormancy. In: G.A. Lang (ed.) Plant dormancy: Physiology, biochemistry and molecular biology. Wallingford, U.K: CAB Intl, 1996, 361~376
    124. Shaltout A.D, and C.R.Unrath. Rest completion prediction model for‘Starkrimson Delicious’apple. J. Amer. Soc. Hort. Sci., 1983, 108: 958~961
    125. Smith M.W., Carroll B.L., and Cheary B.S. Chilling requirement of pecan. J. Amer. Soc. Hort. Sci., 1992, 117(5): 745~748
    126. Sorensen F C. Geographic variation in growth and phenology of seedlings of the Abia procera/A. magnific complex. For. Ecol. Manag., 1990, 36: 205~235
    127. Sparks D. Chilling and heating model for pecan budbreak. J. Amer. Soc. Hort. Sci., 1993,118 (1): 29~35
    128. Sugiura T., Kuroda H., Honjo H.,and D. Ito.Temperate dependence of endodormancy development in flower buds of ‘Kousui’ japanese pear and a model for estimating the completion of endodormancy. Acta. Hort., 2002, 587 (2): 345~352
    129. Sugiura T., Yoshida M., Magoshi J., and Ono S. Changes in water status of peach flower buds during endodormancy and ecodormancy measured by differential scanning calorimetry and nuclear magnetic resonance spectroscopy. J. Amer. Soc. Hort. Sci., 1995, 120: 134~138
    130. Swartz H.J, and Powell. The effect of long chilling requirement on time of bud break in apple.Acta Hort., 1981, 120: 173~178
    131. Tamura, F., Tanabe K., and Itai A. Regulation of endodormancy in Japanese pear. Acta. Hort., 2002, 587(2): 325~336
    132. Tamura, F., Tanabe K., Itai A., and Tanaka H.. Protein changes in the flower buds of Japanese pear during breaking of dormancy by chilling or high-temperature treatment. J. Amer. Soc. Hort. Sci,1998, 123: 532~536
    133. Tanino K.K, and Fuchigami L.H. Dormancy-breaking agents on acclimation and deacclimation of dogwood. HortScience, 1989, 24(2): 353~354
    134. Thompson W.K., Jones D.L., and Nichols D.G. Effects of dormancy factors on the growth of vegetative buds of young apple trees. Austral. J. Agr. Res., 1975, 26: 989~996
    135.Tung C.H, and Deyoe D.R..Dormancy induction in container–grown Abies seedlings: Effects of environmental cues and seedlings age. J. New For., 1991, 5: 13~22
    136. Vegis A. Dormancy in higher plants. Annu. Rev. Plant Physiol., 1964, 15: 185~224
    137. Vegis A. Formation of the resting condition in plants. Experientia, 1956, 12: 94~99
    138. Walser. R.H, D.R.Walker, and S.D.Seeley. Effect of temperature, fall defoliation, and gibberellic acid on the rest period of peach leaf buds. J.Amer. Soc.Hort.Sci., 1981, 106: 91~94
    139. Wang S.Y., Jiao H.J., and Faust M.. Changes in activities of catalase, peroxidase, and polyphenol oxidase in apple buds during bud break induced by thidiazuron. J.Plant. Growth Regulat, 1991a, 10: 33~39
    140. Wang S.Y., and Faust M. Changes in the antioxidant system associated with bud break in ‘Anna’ apple buds. J. Amer.Soc.Hort.Sci, 1994, 119: 735~741
    141. Wang S.Y., Faust M. Changes in membrane lipids in apple buds during dormancy and bud break. J. Amer. Soc. Hort. Sci, 1990, 119: 735~741
    142. Wang S.Y., Jiao H.J., and Faust M. Changes in ascorbate, gluthathione, and related enzyme activities during thidiazuron-induced bud break of apple. Physiol. Plant., 1991b, 82: 231~236
    143. Wang S.Y., Jiao H.J., and Faust M. Changes in metabolic enyme activities during thidiazuron-induced lateral budbreak apple.HortScience, 1991, 26: 171~173
    144. Wang SY, and Faust M. Changes in membrane polar lipids associated with bud break in apple induced by Nitrogwanidines. J Plant Growth Regul, 1989, 8:133~ 161
    145. Wang SY, and Faust M. Metabolic activities during dormancy and blooming of deciduous fruit trees. Isr J Bot, 1988, 37: 227~243
    146. Weinberger J.H. Chilling requirements of peach varieties. Proc. Amer. Soc. Hort. Sci., 1950, 56:122~128
    147. Weinberger J.H. Effects of high temperatures during the breaking of the rest of Sullivan Elberta peach buds. Proc. Amer. Soc. Hort. Sci., 1954, 63: 157~162
    148. Welling, A.,P.Kaikuranta, and P.Rinne. Photoperiodic induction of dormancy and freezing tolerance in Betula pubescens.Involvement of ABA and dehydrins. Physiol. Plant., 1997, 100: 119~125
    149. Wsinieski M. E.,Sauter S. J.,Fuchigami L. H.,and Stepien V.. Effects of near-lethal heat stress on budbreak, heat shock proteins and ubiquitin in dormant poplar. Tree Physiology, 1997,17:453~460
    150. Young E. Timing of high temperature influence chilling negation in dormant apple trees. J. Amer.Soc.Hort. Sci., 1992, 117(27): 271~272
    151. Zimmerman R.H., Lieberman M., and Broome O.C. Inhibitory effect of a rhizobitoxine analog on bud growth after release from dormancy. Plant Physiol, 1977, 59: 158~160

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700