安塞—子长地区延长组长1、2段沉积体系与成藏组合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着鄂尔多斯盆地油气勘探不断深入,延长组长2段等隐蔽性较大的小型油藏逐渐成为油田增储、挖潜及新油区勘探的主要目标。长2段油气藏主要分布于葫芦河以北、麒麟沟以南的广大区域。由于油藏隐蔽性大,控制因素复杂,增加了该段油气勘探的难度和风险。因此,开展油气藏分布规律的研究成为进行长2段油气勘探的关键。
     对于隐蔽油气藏的勘探,目前主要应用层序地层学理论与方法进行层序划分并建立等时地层格架,查明砂体的展布规律,以达到识别隐蔽油气藏之目的。研究方法的发展趋势是将层序地层学与油气系统研究相结合,探究油气从源岩到圈闭的整个成藏过程,以便寻找层序地层格架内油气分布、聚集与富集的内在规律。
     层序地层学目前正从盆地规模的地震地层学向储层规模的高分辨率层序地层学方向深化。由于时间分辨率和层序划分精度的提高,使得建立高精度的层序地层格架成为可能。因此,高分辨率层序地层学越来越显示出其理论上与方法上的优越性。随着油气勘探程度不断提高,勘探部署需要更为具体的勘探目标,因此成藏组合的研究逐渐引起人们的重视。成藏组合是一套可以使勘探和开发部署得以实施的、具有地理与地层限制的、其岩性、沉积相、构造特征具有相关性的一套储层和圈闭。
     本论文应用高分辨率层序地层学以及油气成藏组合的理论与方法,针对延长组长1、2段地层小时间尺度的层序地层划分与对比、层序格架内沉积体系的特征与演化、以及生、储、盖层的特征与分布、层序地层格架中成藏组合的类型与特征等四方面问题开展了研究。
     研究结果显示,研究区延长组形成于构造运动控制下的超常期基准面旋回(LLSC1)(231~203Ma),自下至上由四个长期旋回(LSC1、LSC2、LSC3、LSC4)及九个中期旋回(MSC1、MSC2……MSC9)构成。MSC8(长2段)和MSC9(长1段)又可分为七个短期旋回(SSC1、SSC2……SSC7)。其中,MSC8以河流沉积体系为主,自下至上又可分为辫状河(SSC1(长2_3段))、曲流河(SSC2(长2_2段))和交织河(SSC3(长2_1段))三个沉积亚相。MSC9(长1段)为湖泊-三角洲沉积体系,自下至上可分为三角洲平原亚相(SSC4(长1_4段))、三角洲前缘亚相一浅湖亚相(SSC5(长1_3段))、三角洲平原亚相(SSC6(长1_2段))及深湖亚相(SSC7(长1-1段)),深湖亚相由深湖泥岩及水下浊积扇砂岩构成。
     MSC9湖相泥岩有机质丰度高,有机碳总量(TOC)为1.0%-10%,平均3.5%,镜质体反射率平均0.65%,干酪根为Ⅰ-Ⅱ型,有机质处于低成熟度-到成熟阶段,为好到较好的烃源岩。MSC8储层砂岩的岩石类型主要为中-细粒岩屑长石砂岩,发育次生孔隙,常见微裂缝发育,实测孔隙度10%—23%,平均15%,渗透率0.2×10~(-3) m~2—120×10~(-3) m~2,平均25×10~(-3) m~2,物性较好;MSC9储层砂岩中钙质胶
The relatively small-scale and hidden oil pool of Chang 2 Member of the Yangchang Formation is gradually becoming one of the major aimed prospective members for hydrocarbon exploration and development, and for enhancing oil production, with development of hydrocarbon exploration in the Ordos Basin. The Chang 2 oil pool is widely distributed in northern part of Huluhe and southern part of Qilinggou, where oil exploration difficulties and risks are increasing due to complicated controlling parameters and more concealed intensity of the Chang 2 Member. Thus, research on spatial distribution of the oil pool becomes a key problem for hydrocarbon exploration in the area.Recently, recognition for concealed oil pools are mainly by means of sequence classification and isochroous stratigraphic framework establishment, and spatial distribution investigation of sandstone bodies, using theories and technological methods of sequence stratigraphy. Comprehensive research combining sequence stratigraphy with petroleum system and/or hydrocarbon pool-forming dynamic system is becoming a trend for sequence stratigraphic research, by which we can study the whole processes from source rocks to trap forming, in order to probe accumulation, emplacement and distribution of hydrocarbons in the sequence stratigraphic framework.Sequence stratigraphy is being improved from seismic stratigraphy in basin based-scale to high-resolution sequence stratigraphy in reservoir based-scale in recent years. Enhancement of precision for time-resolution and sequence classification makes it possible that we can establish high-precision sequence stratigraphic framework. Thus, high-resolution sequence stratigraphy is showing more and more advantages theoretically and methodologically. Hydrocarbon exploration deployment needs more and more concrete hydrocarbon-bearing prospect aims due to continuous enhancement of oil and gas exploration level. Thus, research on assemblages of pool-forming has gradually attracted attention and increased interest in petroleum geologists. An assemblage of pool-forming can be defined as reservoirs and traps confined geographically and stratigraphycally in which lithology and depositional facies are related with tectonic characteristics.Precise small-scale classification and correlation of sequence stratigraphy for the Chang 1 and Chang 2 of the Yangchang Formation are conducted, characteristics and evolution of depositional systems, features and distribution of source rocks, reservoirs and seals in the sequence stratigraphic framework are studied in this paper. Meanwhile, types and characteristics of hydrocarbon pool-forming in the sequence stratigraphic framework
    are also elucidated, by using theories and methods of high-resolution sequence stratigraphyand hydrocarbon pool-forming assemblage.Research results show that the Yanchang Formation of the Upper Triassic was formed under a Long-long-term Sea Level Cycle (LLSC1 )and controlled by tectonic movement from 231 Ma to 203Ma, which can be divided into four Long-term Sea Level Cycles (LSC1, LSC2, LSC3 ^ LSC4) included in these Long-term Sea Level Cycles are nine Middle-term Sea LevelCycles (MSCK MSC2......MSC9) from the bottom to the top. The MSC8 (Chang 2 Member)and MSC9 (Chang f Member) consist of seven Short-term Sea Level Cycles (SSC1,SSC2......SSC7). The MSC8 characterized by fluvial system which can be divided into threesub-facies of braided stream (SSC1, Chang 23), meandering stream (SSC2, Chang 2i) and anastomosing stream (SSC3, Chang 2\). The MSC9 is lacustrine-deltaic sedimentary facies, and delta plain (SSC4, Chang U), delta front and shallow lacustrine (SSC5, Chang I3), delta front and delta plain (SSC6, Chang I2) and deep lacustrine (SSC7, Chang 11) sub-facies can be recognized from the bottom to the top. The deep lacustrine sub-facies is composed of deep lacustrine mudstones and subaqueous turbidity fan sandstones.Mudstones in the MSC9 lacustrine facies, formed in a weak oxidation environment, are of high organic matter with total organic carbons ranging from 1% to 10% and average of 3.5%, average vitrinite reflectance 0.65% and I -Ilkerogen types, which indicate that the organic mater in the mudstones is in its low mature to mature stage and resulted in good source rocks. Sandstones in the MSC8 fluvial system are reservoirs with medium to fine-grained lithic arkose as the main sandstone rock types, secondary dissolution pores developed and with a small amount of micro-fissures which led to better reservoir quality, measured porosity ranges 10%-23% with average 15%, permeability ranges 0.2 * 10~3um2- 120 * 10~3um2 with average 25 * 10~3um2. Whereas, sandstones in subaqueous rurbiditic fan of the MSC9 are with high content of carbonate cement (av. 11%) which resulted in poor reservoir properties (average porosity 15%, average permeability 2 x 10 3|im2). Study also shows that sedimentary facies and diagenesis are the major factors controlling reservoir quality.Research on correlation of source rock provenance indicates that hydrocarbons in the Chang 2 are characterized by mixied source provenances, which may attributed to that source rocks are presented not only in the Chang 1 Member, but also distributed from the Chang 4 to Chang 7 Members. Oils in the Chang 1 reservoir in Ganquan area southern part of the study area may come from the in situ source rocks. Two suites of hydrocarbon pool-forming assemblages can be recognized in the LSC4: pool-forming assemblage of the MSC8 with exotic and mixed sources and pool-forming assemblage of the MSC9 with in situ-sourced and mixed sources, based upon study result of source rock correlation and sandstone types in the
    depositional systems. The same characteristics of the two suite is that framework sandstone bodies in the fluvial system have been acted as the major conduit system, while mudstones in the overlie (MSC9) and in the underlie (MSC4-6) lacustrine facies are as excellent source rocks for reservoirs in the fluvial system.Study shows that movement of the Long-long-term Sea Level and Long-term Sea Level during the Late Triassic in the Ordos Basin controlled developing phases and spatial distribution patterns of the major and accessory source rocks and important reservoirs for hydrocarbon accumulation as well. When the Long-long-term Sea Level Cycle (LLSC1, Yanchang Formation) rose to its culmination, a strata containing the major source rocks (MSC4, Chang 7 Member) was developed; whereas when the three Long-term Sea Level Cycles (LSC1, LSC3 and LSC4) went up their maximum levels, respectively, three stratigraphic beds bearing the accessory source rock beds of Chang 9 (MSC2), Chang 4+5 (MSC6) and Chang 1 (MSC9) occurred. By contrast, the three Long-term Sea Levels (LSC1, LSC3 and LSC4) fell to their minimum levels during which depositional environments were relatively stable and the three important hydrocarbon reservoirs of Chang 8 (MSC3), Chang 6 (MSC5) and Chang 2 (MSC8) occurred.Research also implies that abnormal high pressure was the main dynamic drive for primary hydrocarbon migration. Depositional facies, hydrocarbon generation centers and regional nose-like structures are the major factors that control distribution and accumulation of hydrocarbons in pool-forming assemblages.
引文
[1] 操应长,姜在兴,夏斌,等.陆相断陷湖盆T-R序列的特点及其控制因素—以东营凹陷古近系沙河街组三段序列地层为例[J].地质科学,2004,39(1):111-122
    [2] 陈安宁,韩永林,杨旸等.鄂尔多斯盆地三叠系延长统成藏地质特征及油藏类型.低渗透油气田,2000,5(3):30-39
    [3] 陈建华,田景春.层序地层学的产生、现状与展望[J].复式油气田,2000,(2):9-12.
    [4] 陈建平,黄第藩,陈建军.等.酒东盆地油气生成与运移[M].北京:石油工业出版社,1986,90-190
    [5] 陈建渝,刘从印,张树林,等.原油中生物标志物的组成是成藏史的反映[J].地球科学-中国地质大学学报,1997,22(6):97-102
    [6] 程克明,张朝富,何忠华等.吐哈盆地油气生成[M].北京:石油工业出版社,1994,141-143
    [7] 池秋鄂.层序地层学成就与面临的挑战[J].世界石油工业,1996,3(4):5-6.
    [8] 池秋鄂,龚富华.层序地层学基础与应用[M].北京:石油工业出版社,2001,1-10
    [9] 崔攀峰,王力,杨秋莲,等.加深长2、长3油层认识利用滚动勘探开发技术寻找高效储量[J].低渗透油气田,2001,6(2):9-12
    [10] 戴卿林,郝石生,陆双舫,等.煤与泥岩排烃过程中的甾萜烷色层效应差异[J].地球化学,1996,25(4):400-408
    [11] 邓宏文,王红亮,李熙喆,等.层序地层地层基准面的识别、对比技术及应用[J].石油与天然气地质,1996,17(3):177-184.
    [12] 邓宏文,王红亮,钟宁宁.沉积物体积分配原理高分辨率层序地层学的理论基础[J].地学前缘,2000,7(4):305-313.
    [13] 邓宏文,王洪亮,翟爱军,等.中国陆源碎屑盆地层序地层与储层展布[J].石油与天然气地质,1999,20(2):109-114
    [14] 邓宏文.美国层序地层研究中的新学派高分辨率层序地层学[J].石油与天然气地质,1995,16(2):89-97.
    [15] 邸领军.鄂尔多斯盆地基底演化及沉积盖层相关问题的控究[D].博士论文,西北大学,2003:108-112.
    [16] 樊太亮,吕延仓,丁明华.层序地层体制中的陆相储层发育规律[J].地学前缘,2000,7(4):315-321.
    [17] 方爱民,侯泉林,李继亮,等.西昆仑库地混杂岩带中深海浊积岩的浊积相划分及其特征[J].地质科学,2003,38(1):1-12
    [18] 方爱民,李继亮,侯泉林.浊流及相关重力流沉积研究综述[J].地质论评,1998,44(3):270-280
    [19] 方国庆,王多云,林锡祥,等.陕甘宁盆地中部东西向构造带的确定及其聚气意义[J].石油与天然气地质,1999,20(3):195-198.
    [20] 冯增昭,王英华,刘焕杰,等.中国沉积学[M].北京:石油工业出版社,1994:286-287.
    [21] 傅家谟,秦匡宗.干酪根地球化学[M].1995:462-463
    [22] 高岗.富硫泥灰岩油气生成特征模拟研究[J].石油大学学报(自然科学版),2000,24(1):33-38.
    [23] 郭巍,刘招君,董清水,等.断陷湖盆层序地层格架中的油气聚集规律[J].吉林大学学报(地球科学版),2002,32(3):233-237
    [24] 洪庆玉.沉积物重力流地质学[M].四川:成都科技大学出版社,1992.
    [25] 侯读杰,张林晔.实用油气地球化学图鉴[M].北京:石油工业出版社,2003:76-77
    [26] 黄第藩,李晋超,周翥虹,等.陆相有机质演化和成烃机理[M].北京:石油工业出版社,1984:109-143
    [27] 黄汝昌.中国低熟油及凝析气藏形成与分布规律[M].北京:石油工业出版社,1997:54-55
    [28] 姜涛,解习农.细粒浊积体的油气地质意义[J].地质科技情报,2003,22(2).52-55
    [29] 姜涛,解习农.细粒浊积体研究现状与展望[J].地球学报,2003,24(3):289-292
    [30] 姜衍文,朱忠德,肖传桃.全息地层学新的挑战[J].石油与天然气地质,1995,16(2):110-118.
    [31] 焦养泉,周海民,刘少峰,等.断陷盆地多层次幕式裂陷作用与沉积充填响应[J].地球科学.中国地质大学学报,1996,21(6):634-636.
    [32] 焦养泉,周海民,庄新国,等.扇三角洲沉积体系及其与油气聚集关系[J].沉积学报,1998,16(1):71-75.
    [33] 李凤杰,王多云,郑希民,等.陕甘宁盆地陇东地区长3油组坳陷湖盆岩性油藏成藏模式[J].西安石油大学学报(自然科学版),2004,19(3):2-9;
    [34] 李思田,林畅松,解习农,等.大型陆相盆地序列地层学研究-以鄂尔多斯中生代盆地为例,地学前缘,1995,2(3~4):133-148
    [35] 李文厚,邵磊,魏红红,等.西北地区湖相浊流沉积.西北大学学报(自然科学版),2001,31(1),58-62
    [36] 李文厚,周立发,符俊辉,等.库车拗陷上三叠统的浊流沉积及石油地质意义.沉积学报,1997,15(1):20-24.
    [37] 李文厚.塔西南坳陷侏罗系的扇三角洲沉积[J].沉积学报,1998,16(2):150-153.
    [38] 李艳红,金奎励.烃源岩成熟度评价指标及选取[J].地质地球化学,2000,28(2):94-96
    [39] 李桢,温显端,周惠堂,徐勇为.鄂尔多斯盆地东缘中生代延长组浊流沉积的发现与意义[J].现代地质,1995,9(1):99-107
    [40] 林畅松,张燕梅.高精度层序地层学和储层预测[J].地学前缘,2000,7(3):111-117.
    [41] 刘全有,刘文汇,孟仟祥,等.塔里木盆地侏罗系煤岩热模拟生物标志化合物特征研究[J].沉积学报,2004,22(4):724-728
    [42] 刘宪斌,万晓樵,林金逞,等.陆相浊流沉积体系与油气[J].地球学报,2003.24(1):61-66.
    [43] 刘招君,董情水,王嗣敏,等.陆相层序地层学导论与应用[M].北京:石油工业出版社,2002
    [44] 卢宗盛,陈斌.陕西横山晚三叠世鱼类游泳遗迹(Undichna)的发现[J].古生物学报,1998.37(1):76-84.
    [45] 卢宗盛,郝朝坤,陈斌,等.陕西横山晚三叠世鱼类游泳遗迹化石的新材料[J].古生物学报,2003a,41(4):266-276.
    [46] 卢宗盛,侯建湘,陈斌,等.陕西横山晚三叠世鱼类游泳遗迹的成因解释及鱼体长度估算.中国科学(D辑),2003b,33(7):650-657.
    [47] 罗静兰,张成立,阎世可,等.盆地埋藏史及其对砂岩储层物性演化的影响[J].石油与天然气地质,2001,22(2):123-127
    [48] 罗立民.河湖沉积体系三维高分辨率层序地层学.以准噶尔盆地东部北27井区侏罗系头屯河组为例[M].北京:地质出版社,1999.130-150.
    [49] 梅志超.沉积相与古地理重建[M].西安:西北大学出版社,1994:86-87.
    [50] 牟泽辉.鄂尔多斯盆地庆阳以南三叠系延长组长5、长6、长7储层成岩作用[J].天然气工业,2001,21(2):13-17
    [51] 钱奕中,陈洪德,刘文均.层序地层学理论和研究方法[M].成都:四川科学技术出版社,1994:371~380
    [52] 屈红军,李文厚,梅志超,等.论层序地层学与含油气系统在油气勘探中的联系.以鄂尔多斯中生代盆地为例[J].地质论评,2003,49(5):496-500
    [53] 任战利.鄂尔多斯盆地热演化史与油气关系的研究[J].石油学报,1996,17(1):17-26
    [54] 史基安,赵欣,王金鹏,等.油藏储层中不同赋存状态烃类地球化学特征:Ⅰ链烷烃-以鄂尔多斯盆地三叠系延长组为例[J].沉积学报,2005,23(1):163-169
    [55] 宋凯,吕剑文,杜金良,等.鄂尔多斯盆地中部上三叠统延长组物源方向分析与三角洲沉积体系[J].古地理学报,2002,4(3):59-65.
    [56] 苏德造.记陕北子长晚三叠世一新的古鳕类[J].古脊椎动物学报,1999.37(4):257-266
    [57] 孙冬胜,李文山,罗纪红,等.陕北新庄地区延长组长2油层组储层特征[J],西北地质,2003,36(1):59-61
    [58] 孙少华,李小明,龚革联,等.鄂尔多斯盆地构造热事件研究[J].科学通报,1997,42(3):307-308
    [59] 孙少华,刘顺生,汪集肠.鄂尔多斯盆地热流场特征[J].大地构造与成矿学,1996,20(1):29-37
    [60] 田云,吴强,严永新,等.有机地球化学在油气的生源及成熟度的研究中的应用综述[J].河南石油,2003,17(增刊):6-11
    [61] 田在义,张庆春.中国含油气沉积盆地论[M].北京:石油工业出版社,1996:189-190
    [62] 万天丰,构造应力场。北京:地质出版社,1988:121-122
    [63] 汪泽成,刘焕杰,张林,等.鄂尔多斯含油气区构造层序地层研究[J].中国矿业大学学报,2000,29(4):433-436
    [64] 王东良,李欣,李书琴,等.未成熟-低成熟煤系烃源岩生烃潜力的评价[J].中国矿业大学学报(自然科学版),2001,30(3):317-322
    [65] 王飞宇,何萍,傅家谟等.光变可作为评价镜质体富氢类型的方法.石油实验地质,1995,17(4),385-393
    [66] 王飞宇,肖贤明,何萍,等.有机岩石学在油气勘探中应用的现状和发展[J].地学前缘,1995,2(4):189-194.
    [67] 王贵文,郭荣坤.测井地质学[M].北京:石油工业出版社,2000:153-157.
    [68] 王红亮,等.准噶尔盆地南缘层序地层特征与有利含气区带预测[J].石油实验地质,2000,22(4):336.
    [69] 王红亮,邓宏文.地层基准面原理在湖相储层预测中的应用[J].石油与天然气地质,1997,18(2):96-102.
    [70] 王培荣,等.生物标志物质量色谱图集[M],北京:石油工业出版社,1993
    [71] 王起琮,李文厚,赵虹,等.鄂尔多斯盆地三叠系延长组长1段沉积相特征[J].西北大学学报,2005,(6)
    [72] 王起琮,李文厚,赵虹,等.鄂尔多斯盆地三叠系延长组长1段浊积岩特征及意义[J].地质科学,2006,(1)
    [73] 王铁冠,钟宁宁,侯读杰,等.低熟油气形成机理与分析[M].1995:132-134
    [74] 王铁冠.生物标志物地球化学研究[M].北京:中国地质大学出版社,1990
    [75] 王卫红,姜在兴,吴明荣,等.断陷湖盆层序地层单元与油气的关系[J].新疆地质,2003,21(2):202-205
    [76] 王永春,黄志龙,刘保柱.松辽盆地南部油气系统特征[J].石油勘探与开发,2001,28(6):16-19
    [77] 王兆云,程克明,张柏生,等.泥灰岩的生、排烃模拟实验研究[J].沉积学报,2000,14(1):127-134
    [78] 魏红红,李文厚,邵磊,等.汝箕沟盆地上三叠统延长组沉积环境.西北大学学报(自然科学版),2001,31(2):172-174.
    [79] 魏魁生,叶淑芬,郭占谦,等.松辽盆地白垩系非海相沉积层序模式[J].199614(4):50-60
    [80] 吴崇筠.对国外浊流沉积和扇三角洲沉积研究的评述.见:国外浊积岩和扇三角洲研究IM].北京:石油工业出版社,1986:29-30
    [81] 吴智勇,郭建华,姜衍文编译.地质旋回与全球旋凹地层学[J].国外油气勘探,1998(3)
    [82] 武富礼,李文厚,李玉宏,等.鄂尔多斯盆地上三叠统延长组三角洲沉积及演化[J].古地理学报,2004,6(3):307-315.
    [83] 肖贤明,刘德汉,傅家谟.我国聚煤盆地煤系烃源岩生烃评价与成烃模式.沉积学报,1996,14(增刊):11-17
    [84] 肖贤明,毛鹤龄,等.从镜质组的成因论其作为烃源岩成熟度指标的意义[J].煤田地质与勘探,1990,6(1):24-30.
    [85] 肖贤明.生油岩中镜质组类型及其反射率分布规律[J].石油学报,1991,12(2):33-37.
    [86] 辛恩田,程守田,杨士恭,等.鄂尔多斯盆地东北部层序地层及沉积体系分析[M].北京:地质出版社,1992,194
    [87] 徐怀大.陆相层序地层学研究中的某些问题[J],1997,18(2):83-89
    [88] 徐怀先,陈丽华.石油地质试验测试技术与应用.北京:石油工业出版社,2001:82-83
    [89] 徐勇为.陕西定边—横山地区晚三叠世晚期—早中侏罗世延安组几种沉积体系和聚煤作用[硕士论文].北京:中国地质大学,1989
    [90] 许晓宏,瞿辉,潘继平,等.层序地层格架下的含油气系统研究-开鲁盆地龙湾筒凹陷下白垩统含油气系统(!)[J].江汉石油学院学报,2000,22(3):3-9
    [91] 杨俊杰,李克勤,张东生,等.长庆油田.中国石油地质志.北京:石油工业出版社,1992,490
    [92] 杨俊杰.鄂尔多斯盆地构造演化与油气分布规律[M].北京:石油工业出版社,2002,35-129.
    [93] 杨雷,梅志超,熊伟.陕北地区延长组层序地层划分与含油气性[J].古地理学报,2001,3(3):83-88
    [94] 姚素平,胡文碹,薛春燕,等.瓦窑堡煤系有机岩石学特征及煤成烃潜力研究[J].沉积学报,2004,22(3):518.524
    [95] 姚素平,张景荣,胡文碹,等.鄂尔多斯盆地中生界煤成烃潜力的实验研究[J].煤田地质与勘探,2004,32(1):42-47
    [96] 姚素平,张景荣,胡文碹等.鄂尔多斯盆地中生界煤成烃潜力的实验研究[J].煤田地质与勘探,2004,32(1):24-32
    [97] 喻建,韩永林,等.鄂尔多斯盆地三叠系延长组油田成藏地质特征及油藏类型[J].中国石油勘探,2000,6(4):13-19。
    [98] 喻建,宋江海,等.鄂尔多斯盆地中生界隐蔽性油气减成藏规律[J].天然气工业2004(12)
    [99] 曾允孚,覃建雄.沉积学发展现状与前瞻[J].成都理工学院学报,1999,26(1):1-7.
    [100] 张抗.鄂尔多斯断块构造与资源[M].西安:陕西省科学技术出版社,1989,193-250.
    [101] 张昌民,等.建立储层流动单元模型的新方法[J].石油与天然气地质,1999,20(2).
    [102] 张成立.延长油区盆地构造模拟及含油气系统分析[D].博士论文.西北大学地质系.1999
    [103] 张泓,白清昭,张笑薇,等.鄂尔多斯聚煤盆地形成与演化[M].西安:陕西科学技术出版社,1995:31-35.
    [104] 张志伟,张龙海.测井评价烃源岩的方法及其应用效果.石油勘探与开发,2000,27(3),84-87
    [105] 赵俊峰,刘池洋,王小梅,等.镜质体反射率测定结果的影响因素[J].煤田地质与勘探,2004,32(6):12-17
    [106] 赵俊兴,陈洪德,向芳.鄂尔多斯盆地中部延安地区中侏罗统延安组高分辨率层序地层研究[J].沉积学报,2003,(2)
    [107] 赵连国.层序地层学的研究现状[J].沉积与特提斯地质,2000,20(3):97-104.
    [108] 赵孟为,Hans-Jurgen Behr.鄂尔多斯盆地三叠系镜质体反射率与地热史[J].石油学报,1996;17(2):16-23
    [109] 赵师庆,王飞宇.镜质体的抑制效应及富氢镜质体的形成模式[J].淮南矿业学院学报,1990,10(3):1-11.
    [110] 真柄钦次(陈荷立,译).压实与流体运移[M].北京:石油工业出版社,1981.
    [111] 张博全.压实在油气勘探中的运用[M].北京:石油地质大学出版社,1992.
    [112] 郑浚茂,庞明.碎屑储集岩的成岩作用研究武汉:中国地质大学出版社,1989,53~58
    [113] 郑荣才,等.浅谈陆相盆地高分辨率层序地层研究思路[J].成都理工学院学报,2000,27(3):241-244.
    [114] 郑荣才,彭军,吴朝容.陆相盆地基准面旋回的级次划分和研究意义[J].沉积学报,2001,19(2):249-254.
    [115] 郑荣才,彭军.陕北志丹三角洲长6油层组高分辨率层序分析与等时对比[J].沉积学报2002,(1)
    [116] 郑荣才,吴朝容.西部凹陷深层沙河街组生储盖组合的层序分析[J].成都理工学院学报,1999,26(4):375-381.
    [117] 郑荣才,尹世民,彭军.基准面旋回结构与叠加样式的沉积动力学分析[J].沉积学报,2000,18(3):369-375.
    [118] 郑荣才.四川盆地下侏罗统大安寨段高分辨率层序地层学特征[J].沉积学报,1998,16(2):42-49
    [119] 中国科学院地球化学研究所.有机地球化学[M],1982,185-187
    [120] 周江羽,吴冲龙,韩志军.鄂尔多斯盆地的地热场特征与有机质成熟史[J].石油实验地质,1998,20(1):20-24
    [121] 朱翠山,郭稚弧,包建平,等.三塘湖盆地煤成油地球化学特征[J].江汉石油学院学报,2001,23(1):9-13
    [122] 朱筱敏.21世纪层序地层学展望[J].世界石油工业,1999,9(1):16-19.
    [123] 朱扬明,张春明,张敏,等.沉积环境的氧化还原性对重排甾烷形成的作用[J],沉积学报,1997,15(4):104-108
    [124] 朱扬明.塔里木盆地陆相原油的地球化学特征[J].沉积学报1997,5(2):27-30
    [125] L.A.弗雷克斯。地质时代的气候,海洋出版社,1984 319-321
    [126] Aitken J F.高分辨率层序地层学—创新、应用及发展前景[J].地质科学译丛,1997,14(2):19-22.
    [127] B.P蒂索,D.H.威尔特着,郝石生译.石油形成与分布.油气勘探新途径[M].北京:石油工业出版社,1982,69-114
    [128] K.E.彼得斯,J.W.莫而多万.生物标记化合物指南.古代沉积物和石油中分子化石的解释[M].北京:石油工业出版社,1995:165-234
    [129] L.A.弗雷克斯.地质时代的气候[M].北京:海洋出版社,1984:180-189
    [130] R.B.约翰斯.沉积记录中的生物标志物[M].北京:科学出版社,1991:155-163
    [131] Alexander R, Kagi R I, Noble R and Volkaman J K. Identification of some bicyclic alkanes in Petroleum. Advances in Organic Geochemistry, 1983, 63-72.
    [132] Allen, A. P., and J. R. Allen. Basin analysis; Principles and applications: Blackwell Scientific Publications, 1990
    [133] Aquino Neto, F. R., Triguis, J., Azevedo, D. A., Rodrigues. R., and Simoneit, B. R. T. Organic geochemistry of geographically unrelated Tasmanites. 14th Intemational Meeting on Organic Geochemistry. Paris, September 1989. 18-22.
    [134] Azevedo, D. A., Aquino Neto, ER., Simoneit, B. R. T., and Pinto, A. C. Novel series of tricyclic aromatic terpanes characterized in Tasmanian tasmanite. Organic Geochemistry, 1992(18): 9-16.
    [135] Bames. M. A., and Barnes. W. C., Oxic and anoxic diagenesis of diterpenes in acustrine sediments. In: Advances in Organic Geochemistry 1981 (M, Biorly et al., eds,) J, Wiley and Sons, New York, 1983: 289-298.
    [136] Bouma, A. H., G H Lee, O Van Antwerpenetal. 1995. Channel complex architecture of fine-grained submarine fans at the base of slope. Gulf Coast Association of Geological Societies Transactions 45. TULSA: AAPG: 65-70.
    [137] C. Hans Nelson, Evgeny B. Karabanov, et al, Tectonic and Sediment Supply Control of Deep Rift Lake Turbidite Systems: Lake Baikal, Russia, Geology, 1999, 27(2): 163-166
    [138] Chosson, P., Connan, J., Dessort, D., and Lanau, C., In vitro biodegradation of steranes and terpanes: A clue to understanding geological situations. In: Biological Markers in Sediments and Petroleum (J. M. Moldowan, P. Albrecht, and R. P. Philp, eds.) Prentice Hall, Englewood Cliffs, N. J., 1992: 320~349.
    [139]Connan, J., Diagenese naturelle et diagenese artificielle de la matiere organique a lement vegetaux predominants. In: Advances in Organic Geochemistry 1973 (B.P.Tissot and F.Bienner, eds). Editions Technip, Paris, 1974:73-95 .
    [140]Cross,T. A., Controls on coal distribution in transgressive-regressive cycles, Upper Cretaceous.western interior, U.S.A. In: Wilgaus CK, et al. Sea-level changes : An integrated approach. SEPM special publication, 42,1988,371-380
    [141]Cross,T.A., Lessenger, M. A., Sediment Volume Partitioning: Rationale for Stratigrapic Model Evaluation and High-Resolution Stratigraphic Correlaton [A]. Accepted for publication in Norwegian Petroleums-Forening Conference Volume, 1996.1-24.
    [142]Demaison, G, Hutiinga, B. J.,Genetic classification of petroleum systems[J].AAPG Bulletin 1991,75(10):1626—1643
    [143]Didyk, B.M., Simoneit, B.R. T., Brassell, S.C., and Eglinton, G Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 1978,272: 216-222.
    [144]Dott, R. H., Dynamics of subaqueous gravity deposition process. AAPG bulletin, 1963. 47: 104-109.
    [145]Ekweozor, C. M., Tricyclic terpanes in the Athabasca Oil Sands:Their geochemistry Advances in Organic Geohemistry. 1981,746- 766.
    [146]Middleton, G V.,Monty, A., Hampton.,Sediment Gravity Flow: Mechanics of Flow and DepositionA, In: Gerard V. Middleton and A.H.Bouma, eds. Turbidites and Deep water sedimentation, Anaheim: SEPM pacific sec. short course notes: 1982:138
    [147]Galimov, E. M., 13C/12C in kerogen. In: Kerogen - - Insoluble organic matter from sedimentary rocks (B. Durand eds. ),Graham & Trotman Ltd, Paris, 1980:271 - 300.
    [148]Goodwin, N. S., Mann, A. L., and Patience, R. L., Structure and significance of C30-methy steranes in lacustrine shales and oils. Organic Geochemistry, 1988,12: 495-506.
    [149]Galloway, W. E. ,Genetic stratigraphic squences in basin analysisl: architecture and genesis Of flooding surface bounded depositional units. AAPG 1989:125-142
    [150]Goodwin., N.S., Park, P.J.D., and Rawlinson, T. ,Crude oil biodegradation. In: Advances in Organic Geochemistry 1981 (M. Bjory et al. ,ed.) J. Wiley and Sons, New York, 1983:650-658
    [151]Hughes,W.B., Holba,A.G, Miller, D.E., and Richardson, J.S. ,Geochemistry of greater Ekofisk crude oils. In: Geochemistry in Exploration of the Norwegian Shelf (B. M. Thomas. eds), Graham and Trotman, 1985:75-92
    [152]Lowe D.R. ,Sediment Gravity flows: Ⅱ .Depositional Models with special reference to the deposits of high density turbidity current. Jour. Sed. Pelerology, 1982,52(1):279-297
    [153]Magoon,L.B., The petroleum systems—a classification scheme for research,exploration and source assessment. In L.B.Magoon eds., petrolum systems of the United States: USGS Bulletin 1870, 1988,2-15
    [154]McKirdy, D. M. ,Aldridge ,A. K. ,and Ypma,P. J. M. ,A geochemical comparison of some crude oils from Pre-Ordovician carbonate rocks. In: Advances in Organic Geochemistry 1981, J. Wiley and Sons. New York, 1983: 99-107.
    [155]Middleton, G V., Hampton, M. A., Sediment gravity flow: mechanics of flow and deposition, In: Middleton, G V. and Bouma, A.H. eds. Turbidite and Deep Water Sedimentation, Anaheim: SEPM Pacific Sec. Short Course Notes: 1973:1-38.
    [156]Miller, B. M, Application of exploration play-analysis techniques to the assessment of conventional petroleum resources by the U.S. Geological Survey: SPE9561, 1982:101-109
    [157]Moldowan,J. M. ,Lee,C. Y., Watt,D. S ., Jeganathan,A., Slougui ,N. E. ,and Gallegos ,E J.,Analysis and occurrence of C26-steranes in petroleum and source rocks. Geochimica et CosmochimicaActa. 1991a (55):1065-1081.
    [158]Moldowan,J. M. ,Sundararaman,P. ,Salvatori, T. ,Alajbeg.A. ,Gjukic,B., Lee,C. Y., and Demaison, GJ. ,Source correlation and maturity assessment of select oils and rocks from the Central Adriatic Basin (Italy and Yugoslavia). In: Biological Markers in Sediments and Petroleum (J. M. Moldowan, P. Albrecht and R. P. Philp, eds.) Prentice Hall.Englewood Cliffs ,N.J., 1992 :370-401.
    [159]Mutti, E. and Ricci-Lucchi, F.,Le Torbiditi Dell, Appennino Settrentrionale: Introduzione All Analsisi Di Facies. Soc. Geo. Italiana. Mem, 1972(11):161-199.
    [160]Nelson, C.H., Evgeny, B., Karabanov, Tectonic and sediment supply control of deep rift lake turbidite systems: Lake Baikal, Russia. Geology, 1999,27(2): 163-166.
    [161]Nemec W, Steel R J. What is a Fan Delta and How Do We Recognize It ?[A],In: Nemec W, Steel R J, et al. Fan Deltas: Sedimentology and Tectonic Settings. Blackie and Son, 1988:3-13.
    [162]Noemark, W.R., Fan Valleys, Channels and depositional Lobes on modern submarine fans: characters for recognition of Sany turbidity environments. AAPG Bulletin, 1978,62(6): 912-937.
    [163]Noemark, W.R., Growth patterns of deep sea fans. AAPG Bulletin, 1970(54): 2170-2195.
    [164]Ourisson,G., Albrecht.P., and Rohmtr,M., Predictive microbial biochemistry,from molecular fossils to procaryotic membranes. Trends in Biochemical Sciences, 1982(7):236-239.
    [165]Ourisson,G ,Albrecht,P., and Rohmer,M.,The hopanoids. Palaeochemistry and biochemistry of a group of natural products. Pure and Applied Chemistry, 1979(51): 709 -729.
    [166]Ourisson,G,Rohmer,M., and Poralla,K., Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annual Review of Microbiology, 1987(41): 301-333.
    [167]Ourisson.G ,Albrecht.P. ,and Rohmer,M.,The microbial origin of fossil fuels. Scientific American, 1984,251:44-51.
    [168]Pedruski,J.A.,etc,Conventional oil resources of western Canada (Light and Medium) : Geology Survey of Canada, 1987
    [169]Perrodon, A Petroleum systems: model and applications,.Journal of Petroleum Geology 1992,15(3): 319-326
    [170]Peters,K. E. ,Moldowan,J. M. ,and Sundararaman,P. ,Effects of hydrous pyrolysis on biomarker thermal maturity parameters : Monterey Phosphatic and Silliceous Members. Organic Geochemistry, 1990(15):249- 265.
    [171]Philp,R. P. ,and Gilbert ,T. D., Biomarker distributions in oils predominantly derived from terrigenous source material. In: Advances in Organic Geochemistry 1985 (D. Leythaeuser and J. Rullkotter.eds.) Pergamon Press, 1986: 73-84.
    [172]Philp,R.P.,Organic Geochemistry in oil exploration(Unpublished lecture Notes in Beijing). 1993
    [173]Pikering K.T., Stow, D.A.V, Watsonmp, etal. ,Deep water facies, process and models: a review and classifications cheme for modem and ancient sediments J.Ear. Sci. Rev. 1986(23):75-174.
    [174]Posamentier, H. W. ,et al, Eustatic controls on clastic deposition I - conceptual frame work. SEPM Special Publication, 1988,42
    [175]Posamentier, H. W., Va nations of the sequence strait—graphic model:past concepts present understandingsand future direction.AAPG Bull 1991,75(3):955-956
    [176]Powell, T.G, et al. ,Petroleum source rock assessment in non marine sequences: Pyrolysis and petrographic analysis of Austrilia coal and carbonaceous shale. Org. Geochem 1991(17):374-394
    [177]Rubinstein, I., and Albrecht, P. ,The occurrence of nuclear methylated steranes in a shale. Journal of the Chemical Society, Chemical Communications, 1975:957-958.
    [178]Rubinstein, I., Sieskind, O., and Albrecht P. ,Rearranged sterenes in a shale: Occurrence and simulated formation. Journal of the Chemical Society, Perkin Transaction, 1975:1833-1836
    [179]Rullkotter, J., Spiro. B., and Nissenbaum, A., Biological marker characteristics of oils and asphalts from carbonate source rocks in a rapidly subsiding graben. Dead Sea, Israel. Geochimica et Cosmochimica Acta. 1985(49): 1357-1370.
    [180]Sanders J. E.,Primary Sedimentary Structures Formed by Turbidity Currents and Related Resedimentation Mechanics, SPEM. Special Publication 12:1982., 192-289
    [181]Sanders, J.E., Primary Sedimentary Structures Formed by Turbidity Currents and Related Resedimentation Mechanics, SEPM. Special Publication. 1965(12) 192-289.
    [182]Schoell, M.,Teschner, M. Wehner, H, Durand, B.,and Oudin, J.L.,Maturity related biomarker and stable isotope variations and their application to oil/source rock correlation in the Mahakam Delta. Kalimantan: In:Advances in Organic Geochemistry 1981 (M.Bjorty et al., ed.) J. Wiley and Sons.New York, 1983:156-163.
    [183]Seifert, W. K., and Moldowan, J. M. ,Use of biological markers in petroleum xploration. In: Methods in Geochemistry and Geophysics (R. B. Johns. ed.) 1986(24):261-290.
    [184]Shanley K. W, et al., Perspective on the sequence stratigraphy of continental strata. AAPG Bulletin, 1994(78)
    [185]Shanly, K. W, et al.,Perspectives on the sequencestratigraphy of continental strata, AAPG Bulletin, 1994,74(4):544-568
    [186]Shanmugam, G, Moiola, R.J., Types of submarine fan lobes: models and implication. AAPG Bulletin, 1991(75): 156-179.
    [187]Sofer, Z., Biomarkers and carbon isotopes of oils in the Jurassic Smackover Trend ofthe Gulf Coast States,U.S.A. Organic Geochemistry, 1988(12):421 - 432.
    [188]Sofer, Z. ,Zumberge,J.E., and Lay, V. ,Stable carbon isotopes and biomarkers as tools in undrstanding genetic relationship. Maturation,biodegradation, and migration in crude oils in the Northern Peruvian Oriente (Maranon) Basin. Organic Geochemistry. 1986(10):377-389
    [189]Stow D.A.V. and Johansson M., Deep water massive sands: nature, origin and hydrocarbon implications. Marine and Petroleum Geology, 2000,17(l):145-174.
    [190]ten Haven, H. L., de Leeuw, J. W., Rullkotter, J., and Sinninghe Damste, J. S., Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator. Nature, 1987(330): 641-643.
    [191]Tissot, B. P., Deroo, G, and Hood, A.,Geochemical study of the Uinta Basin: Formation of petroleum from the Green River formation. Geochimica et Cosmochimica Acta, 1978(42):1469~1485.
    [192]Tissot, B. P. and Welte,D. H ., Petroleum formation and occurrence, SpringerVerlag Berlin Heidelberg New York Tokyo. 1984,
    [193]Tissot. B. P., and Welte, D. H., Petroleum Formation and Occurrence. Springer-Ver -lag, New York, 1984:699.
    [194]Vail, P. R., Seismic stratigraphy interptation using sequence stratigrphy. Part l:seismic stratigraphy Interpretation procedure. In:Bally A W. ed. Atlas of seismic stratigraphy. American Association of Pretrolume Geologists. Studies in Geology, 1987,271 ~10
    [195]Volkman, J. K., Banks, M. R., Denwer, K., and Aquino Neto, F. R. ,Biomarker composition and depositional setting Tasmanite oil shale from northern Tasmania. Australia. 14th International Meeting on Organic Geochemistry, Paris. September 18-22,1989, Abstract No. 168.
    [196]Volkman, J. K., Alexander. R., Kagi, R. T., Noble. R. A., and Woodhouse, G W. ,A geochemical reconstruction of oil generation in the Barrow Sub - basin of Western Australia. Geochimica et Cosmochimica Acta, 1983a (47):2091-2106.
    [197]Volkman. J. K. Biological marker compounds as indicators of the epositional environments of petroleum source rocks. In :Lacustrine Petroleum Source Rocks (A. J. Fleet. K. Kelts, and M, R. Talbot, eds.) Geological Society Special Publication 1988(40): 103-106
    [198]Walker, R. G, Deep-water sandstone fades and ancient submarine fan: Models For Exploration for Stratigraphic Traps. AAPG Bulletin, 1978.62(6): 932-966.
    [199] Walker, R.G and Mutti, E.,Turbidite facies and facies associations. In: Middleton GV. and Bouma A.H., eds. Turbidities and Deep Water Sedimentation, Soc. Econ. Paleontol. Min., Pacific Section, Short Course: 1973:119-157.
    [200]Walker. R. G, Deep Water Sandstone Facies and Ancient Submarine Fan :Models For Exploration for Stratigraphic Traps. AAPG 1978,62(6):932-966
    [201] Walters, C. C, and Cassa, M. R. ,Regional organic geochemistry of offshore Louisiana. Transactiom Culf Coast Association Geological Society. 1985( 35):277-286.
    [202]Weimer P. R.,Envelopments in sequence stratigraphy:foreland and cratonic basins.AAPG Bull.l992,76(7):965~982
    [203]Weimer, P., Bouma, A. H., Perkins, B. F. Submarine fans and turbidite systems, sequence stratigraphic, reservoir architecture and production characteristics. In: Anon. Gulf of Mexico and International: Gulf Coast Section of the SEPM Foundation 15th Annual Research Conference Proceedings. TULSA:SEPM: .1994:440.
    [204] Wheeler, H. E., Base level, Lithosphere surface, and time-stratigraphy. Bull Geol. Soc. America, 1964(75): 599~610
    [205] White, D. A., Assessing oil and gas plays in facies-cycle wedges: AAPG Bulletin, 1980(64): 1158-1178
    [206] White, D. A., Oil and gas play maps in exploration and assessment: AAPG Bulletin, 1988(74): 940-949
    [207] 崔攀峰等.安塞油田油层分布及周边储量预测(内部资料),1985,12.
    [208] 何自新等.安塞油田三叠系延长组储层评价研究(内部资料),1995,12.
    [209] 李文厚等.鄂尔多斯南部延长组主要油层组沉积相研究(内部资料),1999,12.
    [210] 李志伟等.安塞浅油层油藏富集规律(内部资料),2001,12.
    [211] 罗静兰等.蟠龙油田地质总结(内部资料),西北大学地质系,2001,12.
    [212] 谢秋元等.陕甘宁盆地石油普查地质成果总结报告(内部资料).1974,12.
    [213] 张景荣等.陕甘宁瓮地中生界长1-延安组煤系地层生油研究(内部资料).1997,8.
    [214] 赵靖州,秦胜飞,赵海平等.陕北斜坡东部蟠龙探区油气分布规律研究及有利区块评价(内部资料).西安石油大学,2003,12.
    [215] 赵靖舟,武富礼,吴少波,等.陕北斜坡东部中生界低渗.超低渗油田成藏规律与大中型油田勘探方向(内部资料).西安石油大学.2004,12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700