用户名: 密码: 验证码:
高炉炉料中合理利用含MgO原料的基础理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着我国炼铁企业外购矿使用量的增加,以及低硅冶炼和某些特殊矿冶炼的需要,高炉渣须保证一定的MgO含量。
     针对此问题,本文系统地研究了含MgO原料(白云石、菱镁石等)添加到烧结或球团配料中,对烧结球团工艺及烧结矿、球团矿各种冶金性能的影响规律,并利用EPMA和X-ray衍射等现代测试技术,结合热力学原理对MgO在铁矿石及其还原过程中的赋存状态和含MgO初渣的熔化性能等进行了深入的理论分析。在此基础上,对三种炉料结构的软熔性能进行了试验研究,选择最佳的炉料结构应用于生产试验,使炼铁生产技术指标得到了显著的提高。
     本论文的研究工作和成果主要包括以下内容:
     (1)适当提高渣中MgO含量,可改善炉渣流动性,提高炉渣脱硫能力及排碱率等,炉渣中适宜的MgO含量应控制在8-10%。
     (2)随着烧结矿中MgO含量的提高,烧结杯利用系数和烧结矿的强度、成品率、品位随之下降,但烧结矿的低温还原粉化性能得到改善。若减少烧结配料中MgO的添加量,应采相应措施以解决烧结矿低温还原粉化率升高的问题。
     (3)本文定义了烧结矿的高压差温度区间。MgO含量从1.3%增加到3.0%时:R=1.36烧结矿的高压差温度区间从50℃增加到80℃;R=1.76烧结矿从168℃增加到218℃。因此,高碱度高MgO烧结矿在高炉内所产生透气性差的温度区间比较宽,表现为软熔带变厚,料柱透气性变差,气流不顺,高炉难以顺行,焦比增加,不易强化等。
     (4)论文考察了含MgO球团矿的冶金性能。MgO含量在2.0%以下时,对生球性能和成品球团的抗压强度、转鼓指数没有明显影响,但对球团矿的高温冶金性能有显著影响。当MgO含量由0.6%增加到1.8%时,RDI+3.15由62.2%增加到约75%,还原度Ri由34%增加到45-53%(900℃还原1h),同时还可降低高炉软熔带位置,扩大铁矿石的间接还原区。
     (5)本文在常规检测方法的基础上,对相同还原度时(Ri=40%)球团矿的膨胀性能进行了研究。当MgO含量由0.6%增加到1.8%时:高低MgO精矿搭配和添加菱镁石两种方法,都能使球团矿还原膨胀指数RSI由23%降低到约20%;但添加白云石时,由于Ca元素的影响,RSI反而由23%增加到32%。因此,虽然MgO可以改善球团矿多种冶金性能,但不宜使用白云石。
     (6)论文对三种炉料结构的高温软熔性能进行了试验研究。其中,低MgO烧结矿配加含MgO球团矿的炉料结构软熔性能最佳。不仅改善了烧结矿和球团矿的冶金性能,还可降低综合炉料的软熔带温度区间(TD-T10)和高压差温度区间(T2-T1)。
     (7)在实验室研究的基础上,进行了低MgO烧结矿配加含MgO球团矿炉料结构的现场生产试验。结果表明,减少烧结配料中MgO含量可显著改善炼铁生产技术指标。与基准期相比,试验期烧结机利用系数提高1.46%,高炉料柱压差降低4.82%,高炉产量提高0.66%。
     综上,本文认为适合于现代化大高炉强化冶炼要求的炉料结构为:低MgO烧结矿配加含MgO球团矿,含MgO球团矿的生产方式可采用添加菱镁石粉或高低MgO精矿粉搭配使用的方法。研究结果表明,采用“低MgO烧结矿配加含MgO球团矿”的炉料结构即可满足高炉渣对MgO含量的需求,又可改善综合炉料的冶金性能。对生产性能优良的高炉炉料,改善料柱透气性,优化高炉渣冶金性能等具有重要参考价值,为炼铁生产合理添加MgO工艺和优化高炉冶炼工艺开拓新的途径,实现集成创新。
In recent years, appropriate MgO content is required in the slag of BF with the increase of overseas iron ores. At the same time, it is the requirement of smelting low-Si hot meltal and smelting some special iron ores.
     Aim at this problem, effects of the materials containing MgO on sintering process, pellet process and the metallurgical properties of sinter and pellet were studied in this paper. By the EPMA, X-ray diffraction and thermodynamic analysis, existent shapes of MgO in iron ore before and during its reduction process were discussed. We also studied the melting properties of the slag containing MgO. On the basis of above study, softening and melting properties of three kinds of burden structure were conducted. We chosed the best burden structure for testing production. Then the technical index had been improved significantly.
     The main contents and achievements of the paper include:
     (1) MgO content is increased properly, the properties of fluidity, desulphurizing and excepting alkali are improved. MgO content should be about 8-10%.
     (2) With the increase of MgO content, utilization coefficient of sinter pot, the yield, strength and grade of sinter decrease. But the low-temperature disintegration properties can be improved. If the content of MgO is decreased, we should take some measures to restrain the disintegration of sinter.
     (3) A temperature range about high-pressure was defined in this paper. When the MgO content increases from 1.3% to 3.0%, the temperature range of sinter (R=1.36) increases from 50℃to 80℃, that of sinter (R=1.76) increases from 168℃to 218℃. Therefore, the sinter with high basicity and high MgO content will take a wide temperature range with bad gas permeability. Then the cohesive zone becomes thicken, and the airflow becomes foul-up. It isn't favourable to operation of BF.
     (4) The properties of pellet with MgO were studied in this paper. When the content of MgO is lower than 2.0%, MgO has no obvious effects on the strength and drum index of pellet, but it has obvious effects on metallurgical properties in high temperature. When the MgO content increases from 0.6% to 1.8%, RDI+3.15 increases from 62.2% to 75%, Ri increases from 45% to 53%(reduction condition:900℃, for 1 hour), and the position of cohesive zone can be declined.
     (5) The relative free-swelling properties was studied under the condition of Ri=40%. With the MgO content increases from 0.6% to 1.8%, the relative free-swelling index RSI decreases from 23% to 20% when magnesite or the fine ore with high MgO content is added. But RSI increases from 23% to 32% because of the effect of Ca when dolomite is added. So, though MgO can improve metallurgical properties of pellet, dolomite shouldn't be added in pellet production based on the above analysis.
     (6) Softening and melting properties of three kinds of burden structure were studyed in this paper. Thereinto, the best softening and melting properties is the burden structure (sinter with low MgO content and pellet with high MgO content are mixed). This kind of burden structure not only can improve metallurgical properties of sinter and pellet, but also can decrease the temperature range of cohesive zone (TD-T10) and high-pressure zone (T2-T1).
     (7) On the basis of laboratory researches, the burden structure (sinter with low MgO content and pellet with high MgO content are mixed) was tested in practical production. The results of testing production shows that technical index can be improved significantly with the decrease of MgO content in sinter raw material. Compare with the base period, utilization coefficient of sinter machine increases 1.46%, pressure of burden decreases 4.82%, and the production of BF increases 0.66% in the testing period.
     Summarizing the above results, it is founded that the burden structure (sinter with low MgO content and pellet with high MgO content are mixed) is the best favourable to modern operation of BF. The production of pellet with MgO can take the measure of adding magnesite or adding fine ores with high MgO content. In this paper, the result of research can not only ensure proper MgO content in slag, but also improve metallurgical properties of burden. It provides important reference value for the production of excellent iron ores, for improvement of metallurgical properties of slag, for reasonable process of adding MgO in BF, for optimizing ironmaking technology, and for achieveing integrated innovation.
引文
1.杨金善.世界钢铁工业发展简介[J],冶金信息导刊,1999(1):20-22.
    2.张寿荣.进入21世纪我国钢铁工业面临的机遇与挑战——兼论中国需要产多少钢[A],2003中国钢铁年会论文集[C],北京:冶金工业出版社,2003,3-9.
    3.单尚华,张壮志,关克正.中国钢铁工业发展战略思考[A],2003中国钢铁年会论文集[C],北京:冶金工业出版社,2003,10-15.
    4.王筱留.钢铁冶金学(炼铁部分第二版)[M],北京:冶金工业出版社,2004.
    5.徐矩良.我国高炉合理炉料结构探讨[J],炼铁,2004,23(4):25-26.
    6.张家驹.铁冶金学[M],沈阳:东北工学院出版社,1988.
    7.罗吉敖.炼铁学[M],北京:冶金工业出版社,1996.
    8.金荣泽.日本炼铁原料技术的发展[J],鞍钢技术,1998(4):1-4.
    9.韩志进.唐钢一炼铁厂炉料结构的进步[J],炼铁,1998,17(3):43-45.
    10.刘云彩.当代高炉炼铁成就[J],炼铁,2001,20(3):27-31.
    11.任春堂.提高烧结矿含铁品位的经济评价[J],1987年炼铁精料学术会议论文集,1987(10):9-10.
    12. Horst B, Hansde H, Werner K. Plant Trials on Fractors Determining Sinter Quqlity and Resuting Blast Furnace Performance [J], Iron and Steel Making,1980,7 (6):17.
    13.关雪芳,候慧军,欧韬.提高烧结矿MgO含量的途径及高炉冶炼效果[J],烧结球团,2001,(2):24-28.
    14. Hideaki S.第三届国际造块会议论文集[M],北京:烧结球团编辑部出版,1982:226-228.
    15. Noboru T, Takaho O, Yasuo O. Immersion treatment of sinter into calcium halide solution[J], ISIJ International,1990,30 (4):281-289.
    16.吴贤甫.降低梅山烧结矿低温还原粉化的研究[D],沈阳:东北大学,2003.
    19. Masaru M, Masahiko H, Takazo K. Improvement of sinter softening property and reducibility by controlling chemical compositions[J], ISIJ International,2005,45(4):594-602.
    20. Shigaki I, Sawada M, Maekawa M et al. Melting Property of MgO Containing Sinter [J], Transaction ISIJ,1981,21:862-869.
    21. Khaki J, Kashiwaya Y, Ishii K. High temperature behaviour of selffluxed pellets during heating up reduction [J], Ironmaking and Steelmaking,1994,21(1):56-63.
    22. Belmah E.烧结一百年[J],烧结球团,1989,24(1):42-44.
    23. Cappel F, Lurgi G. The History and Development of Iron Ore Sintering [J], Ironmaking Conference Proceeding,1989,3322-3329.
    24.徐矩良.我国高炉合理炉料结构探讨[J],炼铁,2004,23(4):25-26.
    25.戴云阁,施月循.普通钢铁冶金学[M],沈阳:东北工学院出版社,1988,16-27.
    26.孙君泉,曾国华.国外烧结球团发展方向[J],国外烧结球团,1982(1):15-18.
    27.朱德庆.强化制粒对高铁低硅混合料烧结的影响[J],烧结球团,2003,28(1):10-13.
    28.谭金馄.低温烧结及其技术措施[J],烧结球团,1992,27(3):1-4.
    29.杨李香.澳大利亚的烧结研究[J],矿冶工程,1996(10):10-16.
    30.贺真.低硅烧结矿试验研究[J],湘钢科技,2001(3):26-32.
    31. Litster J D, Waters A G, Nicol S K.铁矿石制粒机理[A],第五届国际造块会议论文集[C],北京:冶金工业出版社,1990,120-123.
    32.松村胜.铁矿石烧结混合料制粒技术的基础研究[A],第六届国际造块会议论文集[C],北京:中国金属学会出版社,1993,75-78.
    33. Allen A P.粘结剂在矿物造块中的作用[A],第五届国际造块会议论文集[C],北京:冶金工业出版社,1990,158-161.
    34. Omori Y, Kssai E.先进的铁矿石准备技术[A],第六届国际钢铁会议炼铁文集[C],北京:中国金属学会出版社,1990,112-114.
    35.肥田行博.豆状褐铁矿自密化高熔点液相烧结工艺[A],第六届国际造块会议论文集[C],北京:中国金属学会出版社,1993,94-97.
    36.川口尊三.利用豆状褐铁矿块做铺底料改善烧结过程[A],第六届国际造块会议论文集[C],北京:中国金属学会出版社,1993,98-102.
    37. Kanagarajsh A, Jenich L, Huntchens M et al..高配比豆状褐铁矿的烧结操作[A],第六届国际造块会议论文集[C],北京:中国金属学会出版社,1993,103-106.
    38.武轶.A12O3含量对烧结矿性能的影响[J],钢铁研究,2005(12):5-8.
    39. Satskii A, Tarasov P, Nabona V. Resuits of Operating the Bell Charging APParatus with Delivery of Part of the Coke into the Axial Zone of the Top [J], Coke and Ironmaking congress,2001,31 (11):1-5.
    40. Loo C E, Wan K T, Howes V R. Mechanical Properties of Natural and Synthetic Mineral Phases in Sinters Having Varying Reduction Degradation Indices [J], Ironmaking and Steelmaking,1998,25(6): 279-285.
    41. Kasai E. Influence of Properties of Fluxing Materials on the Flow of Melt Formed in the Sintering Process [J], ISIJ International,2000,40(9):857-862.
    42. Kowaldki W, Kersting K, Werner P. The Influence of Sinter Composition on Sintering Rate and Phuical Quality of Sinter [A], Ironmaking Conference Proceedings [C],1997:415-452.
    43.唐少先,陈建二,张泰山等.烧结智能控制系统信息模型和集成方法的探讨[J],冶金自动化,2004(3):5-9.
    44. Gunther S. Experiment and Study on Effects of Diferent Basicity and Contents of MgO and SiO2 in Sinter [J], ISIJ International,1998,38(7):457-462.
    45. Liheng H, Whiteman J. Effect of Raw Material Composition on the Mineral Phases in the Lime-fluxed Iron Ore Sinter [J], ISIJ International,1993,33(4):62-73.
    46. Bristow N, Loo C. Sintering Properties of Iron Ore Mixes Containing Titanium [J], ISIJ International, 1997,37(2):819-827.
    47. Vurunov F. Ecological Problems of Ironmaking [A], Proceeding of the Feouth European Coke and Ironmaking Congress [C],2001,31(11):6-10.
    48. Dawson P. Recent Developments in Iron Ore Sintering New Development for Sintering[J], Ironmaking and Steelmaking,1993,2:135-136.
    49. Cappel F, Gmbh L. The History and Development of Iron Ore Sintering[A], Ironmaking Conference Proceeding[C],1989:3322-3329.
    50.戈德林.根据矿物学来鉴定铁矿石烧结矿的性能[A],第五届国际造块会议论文集[C],北京:冶金工业出版社,1990,214-220.
    51.布鲁因.矿物学对人造富矿还原性能的影响[A],第五届国际造块会议论文集[C],北京:冶金工业出版社,1990,58-62.
    52. AKETA K. Kobe Production of Low-SiO2 Iron Ore Sinter and Blast Furnace Operation at Kobe Works, Kobe Steel Ltd, Technical Report [J], Transaction ISIJ,1988,28:523-530.
    53. Lyons R G, Davis W J. Evaluation of sinter made with Olivine [A], Ironmaking Conference Proceedings [C],1988,67-71.
    54. Jadahiro I.烧结技术在提高过程效率方面的最新发展趋势[A],第六届国际造块会议论文集[C],北京:中国金属学会出版社,1993,89-93.
    55. Capple F.低能耗烧结工艺技术[A],第五届国际造块会议论文集[C],北京:冶金工业出版社,1990,142-146.
    56.葛西荣.烧结矿生产工艺及成品评价[J],钢铁,1993,11:98-102.
    57. Dawson P R.世界铁矿石烧结法现状——制粒与布料[J],Ironmaking and Steel making,1993,2:24-29.
    58. WAlter G, Manfred L, Gunther K.烧结废气净化新技术[A],第六届国际造块会议论文集[C],北京:中国金属学会出版社,1993,192-196.
    59. Schlebusch D, Capple F.烧结厂污染控制的优化[A],第六届国际造块会议论文集[C],北京:中国金属学会出版社,1993,226-228.
    60. Stisany H.二烧结厂的现代化对产品质量、生产率及环境的改善[A], Ironmaking Conference Proceedings[C],1994,131-134.
    61.叶匡吾.欧盟高炉炉料结构述评和我国球团生产的进展[J],烧结球团,2004,29(4):4-7.
    62.叶匡吾.关于我国球团矿质量问题的探讨[J],烧结球团,2005,30(5):1-4.
    63.陈建伟,任玉明,赵红强.安钢300m3的高炉配加印度球团矿的生产实践[J],河南冶金,2001, 42(1):36-37.
    64.许满兴.杭钢高炉配用进口球团矿的冶炼效果fJ],烧结球团,1996,26(1):8-12.
    65.布林佐.北美的铁矿石和热压块市场[J],国外金属矿山,2000,5:58-63.
    66.杨金善.世界钢铁工业发展简介[J],冶金信息,1999,1:20-22.
    67.许满兴.论新世纪球团矿的质量进步[J],烧结球团,2000,25(6):1-3.
    68. BHP Research New castle Laboratories. Properties of World Iron Ore [J], Pellets and HBI,1996,7.
    69.许满兴,张宗旺,冯根生.国外几种酸性炉料的质量及分析[J],烧结球团,1998,23(2):6-8.
    70.李朝辉.论提高球团矿品味与经济效益[J],烧结球团,1998,23(6):10-12.
    71.张新兵.朱梦伟.膨润土对我国球团矿生产的影响[J],烧结球团,2003,28(6):3-7.
    72.叶匡吾.高炉炉料结构与精料[J],烧结球团,2001,26(3):6-7.
    73.孔令坛.中国球团矿的发展[A],2004年全国球团技术研讨会论文集[C],大连,2004,8.
    74.李蒙,任伟,陈三凤.国内外球团矿生产现状及展望[A],2004年全国球团技术研讨会论文集[C],大连,2004,8.
    75.梁德兰,贾彦忠,王学伟.球团用进口矿性能研究[A],第八届全国炼铁原料学术会议论文集[C],2003,9.
    76.许满兴.铁矿石冶金性能及高炉炉料结构论文集[M],北京:北京科技大学出版社,1996.
    77.何隆奎..优化炉料结构分析[J],四川冶金,2000(4):16-18.
    78.袁兵.重钢铁矿石冶金性能及合理经济配矿的研究[D],重庆大学硕士学位论文,2005,9-10.
    79.阿不力克木·亚森.八钢高炉入炉原料的冶金性能及配料优化研究[D],西安建筑科技大学硕士学位论文,2004.
    80.叶匡吾.高炉炉料结构与精料[J],烧结球团,2001(3):6-7.
    81.石自新.酒钢高炉合理炉料结构研究[D],西安建筑科技大学硕士学位论文,2002,10-11.
    82.焦玉书.再论利用两种资源开创国内国外铁矿石发展的双赢局面[J],中国矿业,2002,11(1):35-36.
    83.宋阳升.世界炼铁技术发展的回顾与展望[J],炼铁,1998(4):1-5.
    84.杜鹤桂.国外高炉炼铁的技术进步[J],炼铁,1999(1):1-7.
    85. Ponghis N. Reduction of Blast Furnace Coke Rate:Coal Injection [A], ICSTI/Ironmaking conference proceddings [C],1998,365-369.
    86.杨志泉.武钢高炉渣中Al2O3含量异常升高原因分析及其对策[A],2005中国钢铁年会论文集[C],北京:冶金工业出版社,2005,482-485.
    87.常久柱,于勇.Al2O3对唐钢高炉炉渣性能的影响[J],炼铁,2004,23(3):10-13.
    88.刘琦.高炉基本操作制度的选择[J],炼铁,2004,23(1):2-8.
    89.张振峰,吕庆,高峰等,高TiO2、Al2O3炉渣脱硫能力的试验研究[J],钢铁,2008,43(2):14-17.
    90.沈峰满.高炉合理炉料结构的思考[R],讲学资料,本溪,2007,3.
    91.龙防.富Al2O3矿对炼铁原料及冶炼过程的影响[D],武汉科技大学,2006,32-50.
    92.何环宇.低硅铁冶炼与炉渣MgO含量对生铁含硅量的影响研究[D],武汉科技大学,2002,1-5.
    93.李马可.杭钢255m3高炉冶炼低硅生铁[J],钢铁,1986(8):12-16.
    94. Toshio U. The Technology for the Control of the Silicon Content in Hot Metal [J], Ironmaking Proceedings,1986,45.
    95.陈淑芳,王雅军.降低包钢铁水含硅量技术措施分析[J],冶金译从,1999(4):13-16.
    96. Higuchi K, Naito M, Nakano M, et al.. Optimization of Chemical Composition and Microstructure of Iron Ore Sinter for Low-temperature Drip of Molten Iron with High Permeability [J], ISIJ International,2004,44(12):2057-2066.
    97. Panigraphy S C, Verstraeten P, Dilewijns J. Influence of MgO Addition on Mineralogy of Iron Ore Sinter [J], Metallurgical Transactions B,1984,15B(3):23-32.
    98. Yadav U S, Pandey B D. Influence of Magnesia on Sintering Characteristics of Iron Ore [J], Ironmaking and Steelmaking,2002,29(2):91-94.
    99. Matsumura M, Hoshi M, Kawaguchi T. Improve of Sinter Softening Property and Reducibility by Controlling Chemical Compositions [J], ISIJ International,2005,45(4):594-602.
    100. Kimura H, Tsukihashi F. Phase Diagram for the CaO-SiO2-FeOx System and Melting Behavior[A], Science and Technology of Innovative Ironmaking for Aiming at Energy Half Consumption[C], Tokyo: MEXT,2003,83-86.
    101. Nakano M, Naito M, Higuchi K, et al.. Non-spherical Carbon Composite Agglomerates:Lab-scale Manufacture and Quality Assessment[J], ISIJ International,2004,44:2079-2085.
    102. Kimura K, Tsukihashi F. Effect of Al2O3 and MgO Addition on Melting Behavior of Sinter [J], CAMP-ISIJ,2004,17:574-577.
    103.任允芙,蒋烈英,王树同等.配加白云石烧结矿中MgO的赋存状态和矿物组成及其对冶金性能影响的研究[J],烧结球团,1984(3):1-9.
    104. Panigraphy S C, Verstraeten P, Dilewijns J. Influence of MgO addition on mineralogy of iron ore sinter [J], Metallurgical Transactions,1984,15B(3):23-32.
    105.周取定,孔令坛.铁矿石造块理论与工艺[M],中国金属学会炼铁学术委员会,1985,8-11.
    106.单继国.烧结矿低温还原粉化的研究[J],烧结球团,1989(2):15-19.
    107.甘勤,何群,黎建明等.SiO2/TiO2比值及辅料对钒钛烧结矿软熔滴落性能的影响[J],钢铁,2000,35(4):1-4.
    108.杨兆祥.用X射线透视法研究铁矿石在高温下的软熔过程[J],烧结球团,1985(3):1-16.
    109. Ichiro S, Mineo S, Masahiro M. Melting property of MgO containing Sinter [J], Transactionns ISIJ, 1981,21(6),862.
    110.侯兴.烧结矿产质量与炼铁指标的关系[J],烧结球团,1996,7(4):48-49.
    111.任允芙.钢铁冶金研相矿相学[M],冶金工业出版社,1986,212-215.
    112.朱苗勇,杜钢,阎立懿.现代冶金学[M],冶金工业出版社,2005,35-45.
    113.李光森,金明芳,姜鑫等.含氟烧结矿粘结相熔化特性的研究[J],物理测试,2008,26(2):5-8.
    114. Shen F M, Du H, Liu X. Effects of Combustion-supporting agents on properties of combustion of pulverized coal [J], Journal of Northeastern University (Natural Science),1996,17(6):167-170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700