黑炭的理化特性及其对红壤生物物理性质的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探讨黑炭(Biochar,简称BC)对土壤生物物理性质的影响,本研究通过室内恒温培养及盆栽试验相结合的方法,研究了不同焦化温度和时间对黑炭本身理化性质的影响,然后开展不同数量和质量的黑炭对红壤pH、CEC.土壤呼吸、团聚体稳定性、抗破碎性等性质的研究,并通过盆栽试验,揭示黑炭对玉米生长的影响。旨在为秸秆(Straw)焚烧还田提供科学依据。本研究主要结论包括以下三个部分:
     (1)黑炭物理化学性质
     黑炭的性质试验表明,黑炭的物理、化学性质受焦化温度和时间的影响很大。随温度升高(250℃到450℃)、时间延长(2到8小时),黑炭的回收率、挥发性物质的含量降低,其变化范围分别为26.0-63.2%,10.4-49.6%;而C、K、P、灰分含量升高,其变化幅度分别为57.2-72.9%,169-314 g kg-1,1.29-2.82 g kg-1;N的变化规律不够明显。电子显微镜扫描黑炭微结构表明,随温度、时间增加,黑炭碎裂程度加剧,其结构破坏更为严重。红外线光谱表明,温度或时间增加都会使黑炭中O、H及脂肪族C含量降低,而芳香族C含量增加。炭化时间与温度对黑炭性质的影响有相似的作用。
     (2)黑炭对土壤物理、化学及生物性质的影响
     室内恒温培养试验表明,在11天的室内恒温培养中(40%田间含水量,25℃),来源于5个炭化温度和3个炭化时间的黑炭对土壤累计呼吸速率有显著提高(P<0.05),较CK处理增加幅度达0.0065-0.046gg-1y-1,但通过55天的培养,黑炭对土壤呼吸的影响却不明显(P>0.05),可见黑炭对土壤呼吸的影响只是短时间。以碳矿化速率计算黑炭周转周期约为200-1700年,并随温度、时间增加呈增加趋势。而秸秆周转周期仅7年。
     施用黑炭显著提高了土壤pH、阳离子代换量(CEC) (P<0.05),其增加量分别为0.1-0.46,0.284-1.26cmol kg-1,但不能像秸秆一样提高土壤微生物C、N,团聚体水稳定性和土壤抗破碎性(P>0.05)。
     (3)黑炭对玉米生长的影响
     盆栽试验表明,在40天盆栽试验中,单施黑炭能提高玉米株高,但并未能提高作物生物量(P>0.05)。但在配施NPK情况下极显著提高玉米生长(P<0.001),玉米干重增加率在96.6-157%。不同温度、不同量的黑炭处理之间差异不显著。黑炭以肥料的形式对玉米生长贡献率为7%,而以调节剂的形式贡献率达到53%。
Applying biochar to soils may cause a win-win situation resulting in C sequestration and soil fertility improvement. The effect may be more evident in highly weathered and infertile tropical soils, but will be dependent on biochar quality and amount. An Ultisol, typical to southern China, was used to evaluate amendment with biochars produced by a range of temperatures and durations, to investigate its effect on soil properties and plant growth. Rice straw-derived biochars were charred at temperatures from 250 to 450℃for between 2,4 and 8 hrs. Major conclusions were made below:
     (1) Characteristics of biochars
     The physical and chemical properties of biochars depend strongly on charring temperature and duration. The increase of charring temperature from 250 to 450℃and duration from 2 to 8 hrs decreased the yield of biochars from 63.2%to 26%, but increased C, K, P and ash content. The higher charring temperature further caused smaller less structured fragments as viewed by SEM, and form with less O, H and aliphatic C functional groups, but more aromatic C as indicated by infrared spectroscopy.
     (2) Effect of biochar amendment on soil biophysical properties
     During the 11-day incubation, the biochar amendment increased CO2 respiration as compared to control without biochar addition (P<0.05) but this effect disapeared with increasing incubation up to 55 days. The mean residence time (MRT) of biochars under controlled conditions (25℃,40% field capacity) was estimated from 200 to 1700 years, generally increasing with charring temperature and duration. But rice straw MRT was only 7 years. Amendment of 1%biochar increased pH by 0.1-0.46 (P< 0.01) and CEC by 3.9-17.3%(P< 0.05), but had no effect on microbial C and N (P< 0.05), aggregate stability (P> 0.05) and soil tensile strength (P> 0.05), disliking other organic materials (straw in this study).
     (3) Effect of biochar amendment on maize growth
     During the 40-day pot trials the biochar amendment did not significantly increase maize biomass (P> 0.05), but biochar plus NPK fertilizer increased biomass by 157% (P< 0.001). However, the biochar quality (as indicated by different charring temperatures) and amount (1% and 2%) did not have an effect on maize growth. This study further proved that the biochar as a fertilizer function only contributed to 7% of biomass, but as a conditioner accounted for 54% of biomass. The study emphasizes that amendment with biochar can improve soil fertility at least in the short term.
引文
[1]劳秀荣,孙伟红,王真,等.秸秆还田与化肥配合施用对土壤肥力的影响[J].土壤学报,2003,4(40):618-623.
    [2]Steinbeiss S, Gleixner G, Antonietti M. Effect of biochar amendment on soil carbon balance and soil microbial activity[J]. Soil Biology and Biochemistry, 2009,41:1301-1310.
    [3]Preston CM and Schmidt MWI. Black (pyrogenic) carbon:a synthesis of current knowledge and uncertainties with special consideration of boreal regions [J]. Biogeosciences,2006,3:397-420.
    [4]潘根兴,张阿凤,邹建文,等.农业废弃物黑炭转化还田作为低碳农业途径的探讨[J].生态与农村环境学报,2010,26(4):394-400.
    [5]刘玉学,刘微,吴伟祥,等.土壤生物质炭环境行为与环境效应[J].应用生态学报,2009,20(4):977-982.
    [6]张文玲,李桂花,高卫东.生物质炭对土壤性状和作物产量的影响[J].中国农学通报,2009,25(17):153-157.
    [7]Tryon EH. Effect of charcoal on certain physical, chemical, and biological properties of forest soils[J]. Ecological Monographs,1948,18:81-115.
    [8]Zimmerman AR. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar)[J]. Environmental Science & Technology,2010,44,1295-1301.
    [9]Lehmann J, Jose Pereira da Silva Jr, Steiner C, et al. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin:fertilizer, manure and charcoal Amendments [J]. Plant and Soil,2003,249: 343-357.
    [10]Chidumayo EN. Effects of wood carbonization on soil and initial development of seedlings in miombo woodland, Zambia[J]. Forest Ecology Management,1994, 70,353-357.
    [11]Hamer U, Marschner B, Brodowski S, et al. Interactive priming of black carbon and glucose mineralization[J]. Organic Geochemistry,2004,35:823-830.
    [12]Fushimi C, Araki K, Yamaguchi Y, et al. Effect of Heating Rate on Steam Gasification of Biomass 2. Tbemmgravimetric Mass Spectrometric(TG-MS) Analysis of Gas Evolution[J]. Indastrial and Engineering Chemistry Research, 2003,42(17):3929-3936.
    [13]Lehmann J. A handful of carbon[J]. Nature,2007,447,143-144.
    [14]Ogutunde PG, Ayodele FM, Nick van de Giesen A. Effect of charcoal production on maize yield, chemical properties and texture of soil[J]. Biology Fertility of Soils,2004,39:295-299.
    [15]Liang B, Lehmann J, Solomon D, et al. Black carbon increases cation exchange capacity in soils[J]. Soil Science Society of America Journal,2006,70:1719-1730.
    [16]Asai H, Samson BK, Stephan HM, et al. Biochar amendment techniques for upland rice production in northern Laos[J]. Field Crops Research,2009,111:81-84.
    [17]Steiner C, Teixeria WG, Lehmann J, et al. Long term effects of manure, charcoal, and mineral:fertilization on crop production and fertility on a highly weathered central Amazonian upland soil[J].Plant and Soil,2007,291:275-290.
    [18]Glaser B, Lehmann J, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review[J]. Biology Fertility of Soils,2002,35:219-230
    [19]Gaunt JL and Lehmann J. Energy Balance and Emissions Associated with Biochar Sequestration and Pyrolysis Bioenergy Production[J]. Environmental Science Technology,2008,42:4152-4158.
    [20]Kaal J, Martinez-Cortizas A, Buurman P, et al.8000 yr of black carbon accumulation in a colluvial soil from NW Spain[J]. Quaternary Research,2008, 69:56-61.
    [21]Schmidt MWI and Noack AG. Black carbon in soils and sediments:analysis, distribution, implications, and current challenges [J]. Global Biogeochem Cycles, 2000,14:777-794.
    [22]Bird MI, Wurster CM, Pedro H de Paula Silva, et al. Algal biochar-production and properties[J]. Bioresource Technology,2010,2(102):1186-1891.
    [23]张旭东,梁超,诸葛玉平,等.黑碳在土壤有机碳生物地球化学循环中的作用[J].土壤通报,2003,34(4):349-355.
    [24]Demirbas A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues[J]. Journal of Analytical and Applied Pyrolysis, 2004,72:243-248.
    [25]Hossain MK, Strezov V, Chan KY, et al. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar[J]. Journal of Environment Management,2010,1(92):223-228.
    [26]Glaser B, Balashov E, Haumaier L, et al. Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region[J]. Organic Geochemistry, 2000,31:669-678.
    [27]Cheng CH, Lehmann J, Thies JE, et al. Oxidation of black carbon by biotic and abiotic processes[J]. Organic Geochemistry,2006,37:1477-1488.
    [28]Brodowski S, John B, Flessa H, et al. Aggregate occluded black carbon in soil[J]. European Journal Soil Science,2006,57:539-46.
    [29]Nguyen BT, Lehmann J. Black carbon decomposition under varying water regimes [J]. Organic Geochemistry,2009,40:846-853.
    [30]Rumpel C, Alexis M, Chabbi A, et al. Black carbon contribution to soil organic matter decomposition in tropical sloping land under slash-and-burn agriculture [J]. Geoderma,2005,130:35-46.
    [31]Potthoff M, Dykmans J, Flessa H. Decomposition of maize residues after manipulation of colonization and its contribution to the soil microbial biomass [J]. Biology Fertility of Soils,2008,44:891-895.
    [32]Sohi S, Lopez-Capel E, Krull E, et al. Biochar, climate change and soil:A review to guide future research[R]. CSIRO Land and Water Science Report series ISSN, 2009,1834-1868.
    [33]Cheng CH, Lehmann J, Engelhard MH. Natural oxidation of black carbon in soils:changes in molecular form and surface charge along a climosequence[J]. Geochimica et Cosmochimica Acta,2008,72:1598-1610.
    [34]Goldberg ED. Black carbon in the environment:properties and distribution New York[J]. John Wiely,1985,7(50):1569.
    [35]Oguntunde PG, Abiodun BJ, Ajayi AE, et al. Effects of charcoal production on soil physical properties in Ghana[J]. Journal of Plant Nutrient and Soil Science, 2008,171:591-596.
    [36]Novak JM, Busscher WJ, Laird DL, et al. Impact of Biochar Amendment on Fertility of a Southeastern Coastal Plain Soil [J]. Soil science,2009,174(2):105-112.
    [37]Piccolo A, Mbagwu JSC. Effects of different organic waste amendments on soil microaggregates stability and molecular sizes of humic substances [J]. Plant and Soil,1991,123:27-37.
    [38]Piccolo A, Pietramellara G, Mbagwu JSC. Use of humic substances as soil conditioners to increase aggregate stability[J]. Geoderma,1997,75:267-277.
    [39]Abiven S, Menasseri S, Chenu C. The effect of organic inputs over time on soil aggregate stability-A literature analysis[J]. Soil Biology and Biochemisty,2009, 41:1-12.
    [40]魏朝富,高明.有机肥对紫色水稻土水稻性团聚体的影响[J].土壤通报,1995,3(26):114-116.
    [41]章明奎,何振立.利用方式对红壤水稳定性团聚体形成的影响[J].土壤学报,1997,4(34):359-366.
    [42]Laird DA, Fleming P, Davis DD, et al. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil[J]. Geoderma,2010,158:443-449.
    [43]Clarholm M. Granulated wood ash and a'N-free'fertilizer to forest soil:effects on P availability [J]. Forest Ecology Management,1994,66:127-136.
    [44]Mahmood S, Finlay RD, Fransson A-M, et al. Effects of hardened wood ash on microbial activity, plant growth and nutrient uptake by ectomycorrhiza spruce seedlings[J]. FEMS Microbiol Ecology,2003,(43):121-133.
    [45]Glaser B, Haumaier L, Guggenberger G, et al. Black carbon in soils:The use of benzenecarboxylic acids as specific markers[J]. Organic Geochemistry,1998,29: 811-819.
    [46]Atkinson CJ, Fitzgerald JD, Hipps NA. Potential mechanisms for achieving agricultural benefits form biochar application to temperate soil:a review[J]. Plant and Soil,2010,337:1-18.
    [47]Ling B, Lehmann J, Solomon D, et al. Stability of biomass-derived black carbon in soils[J]. Geochimica et Cosmochimica Acta,2008,72:6069-6078.
    [48]Simone E. KolbKevin J. Fermanich ME, et al. Effect of Charcoal Quantity on Microbial Biomass and Activity in Temperate Soils[J]. Soil Science Society of America Journal,2009,73(4):1173-1181.
    [49]Robertson FA, Thorburn PJ. Management of sugarcane harvest residues: consequences for soil carbon and nitrogen[J]. Australian Journal of Soil Research, 2006,45(1):13-23.
    [50]Stephanie T, Jean-Francois P, Sylvain B. Manioc peel and charcoal:a potential organic amendment for sustainable soil fertility in the tropics[J]. Biology Fertility of Soils,2005,41:15-21.
    [51]Middelburg JJ, Nieuwenhuize J, Van BP. Black carbon in marine sediments [J]. Marine Chemistry,1999,65:245-252.
    [52]Chen KY, Van ZL, Meszaros I, Downie A, Joseph S. Agronomic values of greenwaste biochar as a soil amendment[J]. Australian Journal of Soil Research, 2007,45:629-634.
    [53]Masahide Y, Yasuyuki O, Irhas FW, et al. Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia[J]. Soil Science and Plant Nutrition,2006,52:489-495.
    [54]Steiner C, Glaser B, Teixeira WG, et al. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferraisol amended with compost and charcoal[J], Soil Science and Plant Nutrition,2008,171:893-899.
    [55]Kei M, Toshitatsu M, Yasuo H, et al. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal[J]. Bioresource Technology,2004,95:255-257.
    [56]Kishimoto S, Sugiura G. Charcoal as a soil conditioner [J]. Int Achieve Future 1985,5:12-23.
    [57]Glaser B, Haumaier L, Guggenberger G, et al. The 'Terra Preta' phenomenon:a model for sustainable agriculture in the humid tropics[J]. Naturwissenschaften, 2001,1(88):37-41.
    [58]Ogawa M., Okimori Y, Takahashi F. Carbon sequestration by carbonization of biomass and forestation:three case studies[M]. Mitigation and Adaptation Strategies for Global Change,2006,11:429-444.
    [59]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [60]Le BY. Aggregate stability and assessment of soil crustability and erodibility:Ⅰ. Theory and methodology[J]. European Journal of Soil Science,1996,47:425-437.
    [61]Dexter AR, Kroesbergen. Methodology for determination of tensile strength of soil aggregates [J]. Journal of Agricultural Engineering Research,1985,31:139-147.
    [62]Demirbas A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues[J]. Jouranl Analytical Applied Pyrolysis,2004, 72:243-248.
    [63]Keiluweit M, Nico PS, Johnson MG, et al. Dynamic molecular structure of plant biomass-derived black carbon(Biochar)[J]. Environmental Science & Technology, 2010,44,1247-1253.
    [64]Kuzyakov Y, Subbotina I, Chen H, et al. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling[J].Soil Biology and Biochemistry,2009,41,210-219.
    [65]Peng X, Ye LL, Wang CH, et al. Temperature-and-duration-dependent rice straw-derived boichar:characteristics and its effects on soil properties of an Ultisol in southern China[J]. Soil and Tillage research,2010,112:159-166.
    [66]Masiello CA. New directions in black carbon organic geochemistry [J]. Marine Chemistry,2004,92:201-213.
    [67]Jeffrey LS, Harold PC, Vanessa LB. The effect of young biochar on soil respiration[J]. Soil Biology and Biochemistry,2010,12(42):2345-2347.
    [68]Lehmann J, Liang B, Solomon D, et al. Near-edge x-ray absorption fine structure spectroscopy for organic carbon forms in soils:Application to black carbon particals[J]. Global Biogeochemical Cycle,2005,19:1013-1025.
    [69]谭周进,李倩,李建国,等.稻草还田量对晚稻土微生物数量及活度的动态影响[J].农业环境科学学报,2006,25(3):670-673.
    [70]乔海龙,刘小京,李伟强,等.秸秆深层覆盖对土壤水盐运移及小麦生长的影响[J].土壤,2006,37(5):885-889.
    [71]Zhang AF, Cui LQ, Pan GX, et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China [J]. Agriculture, Ecosystems and Environment,2010,4(139):469-475.
    [72]Zwieten LV, Kimber S, Morris S, et al. Effect of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility [J]. Plant and Soil, 2010,327:235-246.
    [73]Barrett J, Burke IC. Potential nitrogen immobilization in grassland soils across a soil organic matter gradient[J]. Soil Biology and Biochemistry,2000,32:1707-1716.
    [74]Perakis SS, Hedin LO. Fluxes and fates of nitrogen in soil of an unpolluted old-growth temperate forest, southern Chile[J]. Ecology,2001,82:2245-2260.
    [75]Vance ED, Chapin IFS. Substrate limitations to microbial activity in taiga forest floors[J]. Soil Biology and Biochemistry,2001,33:173-188.
    [76]刘建国,卞新民,李彦斌,等.长期连作和秸秆还田对棉田土壤生物活性的影响[J].应用生态学报,2008,19(5):1027-1032.
    [77]David AL, Pierce F, Dedrick DD, et al. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil[J]. Geoderma,2010,158:443-449.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700