城市污水A~2/O工艺调控、监控体系优化与异常修复技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
A~2/O工艺兼具脱氮和除磷功能,在水污染控制工程中发挥着巨大作用。但A~2/O工艺由于自身多种因素的相互制衡,其脱氮除磷功能难以进一步提升,并影响到其应用范围和效益;城市合流污水C/N较低、难降解成份多和水质变化大的特点,对A~2/O工艺的稳定运行也提出了新的问题。
     本论文依托上海市建委2007年重大科技攻关项目《污水处理升级改造工艺技术》(建科2007-007)开展研究,通过模拟上海市白龙港污水处理厂二期升级改造工程A~2/O工艺,以城市合流污水为对象,重点研究:①外源条件(温度和F/M)对A~2/O系统处理功能的影响;②强化ANAMMOX(Anaerobic AmmoniumOxidation)技术对A~2/O系统处理功能的提升效果;③耦合生物指标(DHA、PHB、OUR、ATP和DNA分子标记)的监控体系及其在A~2/O系统中应用可行性;④极端低C/N对A~2/O系统处理功能的冲击效应及适宜的修复方法。本论文的目标是通过工艺调控、监控体系优化、异常修复研究,为城市合流污水A~2/O处理系统的稳定、高效运行提供相关的技术依据。主要得出如下结论:
     (1)温度和F/M对A~2/O系统处理功能的影响
     温度与A~2/O工艺处理功能密切相关,季节更替对处理效果有一定影响。COD去除率在15℃~25℃范围内,由70%上升至85%,25℃以上可保证COD稳定和高效的去除效果。最佳脱氮温度范围约为25℃~30℃之间,TN去除率约70%,硝化率达95%,过高或过低的温度条件对脱氮功能均有抑制作用;温度变化对系统除磷效果影响较小,但是除磷功能易受到系统运行条件的影响,波动较大,平均去除率约50%。
     COD降解最佳F/M范围0.14~0.22gBOD_5/gMLSS.d;反硝化最佳F/M范围0.125~0.23gBOD_5/gMLSS.d;硝化最佳F/M范围0.14~0.28gBOD_5/gMLSS.d;除磷最佳F/M范围是0.14~0.23gBOD_5/gMLSS.d。综合COD去除、反硝化、硝化和除磷要求,实验最佳F/M介于0.14~0.22gBOD_5/gM LSS.d之间,高于A~2/O的常规设计标准0.10~0.15gBOD_5/gMLSS.d。因此,对处理低C/N废水的装置而言,适度提高系统的F/M可提升其处理效能。
     (2)A~2/O系统监控体系优化及其应用
     DHA、PHB、OUR、ATP和DNA分子标记分析技术优化了A~2/O工艺传统监控体系,有利于从微生物生理生化活性和群落结构演替角度解析A~2/O系统功能变化的过程机制,并准确和灵敏地评价A~2/O系统的即时运行状态。
     稳定高效的A~2/O系统其对应的DHA介于30,4a~lTF/gTSS.h之间,DHA含量过高和过低时出水水质恶化,DHA上限值约为60mgTF/gTSS·h左右。
     稳定高效的A~2/O系统中厌氧池RHB含量介于23~28mg/gMLSS之间,提高温度和F/M对RIB合成有促进作用,平均约消耗140mgPHB去除1mg磷。
     A~2/O实验系统的OUR值介于7.1~13.3mgO_2/gMLSS·h,硝化OUR介于0.88~2.95mgO_2/gMLSS·h之间。温度与OUR及硝化OUR成正相关,高F/M可增加OUR,但同时会降低系统的硝化OUR,导致硝化功能恶化。
     ATP可表征活性污泥中活体微生物数量的增减,A~2/O实验系统的ATP含量介于1.14~1.86mg/gMLSS,上限约为2.08mg/gMLSS,温度和F/M对ATP的影响与微生物的生长繁殖有关。
     PCR-DGGE可有效分析A~2/O系统中氨氧化细菌AOB(Ammonia-OxidizingBacteria)和硝化细菌NOB(Nitrite-Oxidizing Bacteria)群落结构的动态变化。温度的变化对硝化菌群落结构影响较大,低温时多样性相对丰富,高温时群落结构相对稳定,其中AOB_2、AOB_4和AOB_6在AOB菌群中占优势种,NOB菌群以Nitrobacter为主,优势种为Nb_7、Nb_8和Nb_9,Nitrospira优势种主要为Np2;F/M<0.15 BOD_5/gMLSS·d时有利于硝化菌群的生长,F/M>0.32BOD_5/gMLSS·d时适生种较少。不同F/M条件下AOB优势种为AOB_2、AOB_4和AOB_6,Nitrobacter优势种为Nb_1、Nb_2、Nb_4和Nb_7,Nitrospira菌群优势种主要为Np_6。
     (3)A2~/O系统强化ANAMMOX的效能
     在A~2/O系统曝气池中通过限制DO的方式可形成NO_2~--N积累,强化ANAMMOX反应,提高系统脱氮能力。强化ANAMMOX反应的兼氧池NH_4~+-N和TN去除率分别提高15个百分点和9个百分点,而系统TN的去除率提高约7个百分点。但采用限制DO的运行方式对COD和TP的去除有一定影响,同比条件下,COD去除率下降5个百分点,TP去除率下降1.4个百分点。
     ANAMMOX脱氮率约占A~2/O系统TN去除率的21.9%,反应基质以NH_4~+-N和NO_2~--N为主,在反应过程中生成少量NO_3~--N,3者的比例约为1:1.256:0.155;最佳反应pH约为7.8~8.0;DO对ANAMMOX有抑制作用;温度对其反应速率影响较大,从30.6℃至24.6℃变化过程中,ANAMMOX反应速率由1.47mg/L·h降低至1.175mg/L·h。
     (4)低C/N冲击效应及修复技术
     C/N=3.5时可明显降低系统的硝化功能,C/N=1.2可使反硝化功能完全停止,同时降低COD和TP的去除功能,并导致污泥膨胀和产生“漂泥”。而采用加大回流比的方法可有效缩短修复时间,相同条件下NH_4~+-N去除率平均可提高20个百分点,TN去除率提高约7.4个百分点,COD去除率提高约5.4个百分点,但是该方法对修复系统除磷功能的作用不明显;提高F/M和降低SRT的修复方法可有效提高系统的处理功能,同比条件下NH_4~+-N去除率平均提高约5个百分点,硝化OUR提高7%,亚硝化OUR提高4.2%,TN去除率提高约4.7个百分点,COD去除率提高约7.4个百分点,TP的去除率提高约4.5个百分点。
     本论文通过对A~2/O工艺的技术参数选择、监控方法优化和异常问题修复等方面的研究,为保障A~2/O工艺处理低C/N城市合流污水的稳定和高效运行提供了可靠的科学依据,具有良好的应用前景。
Based on the functions of nitrogen and phosphorus removal, the A~2/O process is playing an important role in water pollution control. But the function of nitrogen and phosphorus removal can't be further improved, because of restricting by its multiple self-factor. So, improving the function and extending application of A~2/O process has become the new subject in wastewater treatment field. Furthermore, the wastewater of combined sewage system has special characteristics of low C/N and high content of N and P.These problems have greatly hindered the efficant and stable operation of sewage treatment equipment. Therefore, it is very important to timely and accurately evaluate the operation status of system, diagnosis the abnormal conditions, puts forward solving countermeasure, and improve process function by enhancing ANAMMOX technology. The study has great significance in the water pollution controll domain, especially in Waterbody Eutrophi cation control field.
     This thesis is based on the project of process technology upgrade and transform in wastewater treatment plant supported by Shanghai Committee for Urban Construction and Transportaion. By simulating real system of Bailonggan wastewater treatment plant, the research investigated the effect of temperature and F/M on system, and study treatment efficiency after enhancing ANAMMOX technology. The purpose of experiment was to explore the impact effect of low C/N, put forward solving technique, attempt to establish the monitoring and evaluating system of biochemistry indexes and further improve the nitrogen and phosphorus removal function.
     The results showed that the temperature and the processing functions of A~2/O process were closely related. And the seasonal change had some negative effect on treatment efficiency. COD removal rate was rising from 70% to 85% when temperature changed from 15℃to 25℃, and removal rate was stable when the temperature was up to 25℃. The temperature range of 25℃-30℃was the best for denitrification, and too high or too low temperature could inhibit function of nitrogen removal. In this temperature range, the removal rate of TN was about 70%; nitrification could reach to 95%. The influence of temperature variation on the phosphorus removal was limited, but the phosphorus removal could easily be affected by operation condition. So, the fluctuation of phosphorus removal was large, and average removal rate was 50%.
     The best range of F/M for COD remove was 0.14-0.22gBOD_5/gMLSS·d. The best range of F/M for denitrification was 0.125-0.23gBOD_5/gMLSS·d. The best range of F/M for nitrification was 0.14-0.28gBOD-5/gMLSS·d, and best range of F/M for phosphorus remove was 0.14-0.23gBOD_5/gMLSS·d. In summar, the best range of F/M for the A~2/O system was 0.14-0.22gBOD_5/gMLSS·d. It was slightly higher than the design standard of A~2/O. It was show that increasing F/M was an effective solution to the problems encountered in low C/N wastewater treatment system.
     Biochemical index of DHA、PHB、OUR and ATP could not only reflect the organic matter degradation efficency of microbe, but also could judge the organic matter degradation velocity and operation conditions of the treatment equipments The suitable range of DHA was 30-40mgTF/gTSS·h, upper limit value was 60mgTF/gTSS·h, too high or too low concentration of DHA could lower effluent quality. Temperature and routine F/M had distinct influence on the synthesis of PHB, the concentration of PHB in anaerobic tank is between 23mg/gMLSS-28mg/gMLSS, mean consumption 140mg PHB could uptake 1mg phosphorus. Normal OUR was between 7.1-13.3mgQ_2/gMLSS·h, conventional value of nitration OUR was between 0.88-2.95mgO_2/gMLSS·h, the value of OUR was correspondingly adjusted by temperature. Increase the F/M was benefit to the OUR, but high F/M would inhibit nitrification and negatively affect the function of nitrogen removal. ATP could characterize the quantity of living microbe of activated sludge, the range of ATP was between 1.14-1.86mg/gMLSS, the influence of temperature and F/M on ATP was related to growth and reproduction of microbe, the upper limit value of ATP was about 2.08mg/gMLSS.
     PCR-DGGE could effectively analyze the community structure variation of AOB and NOB which was the man parts of Nitrobacteria The variation of temperature could easily make the successions of Nitrobacteria The species of community was relatively abundant when the temperature was low, but the community structure was stable when the temperature was high. The dominant bacteria of AOB were AOB_2, AOB_4 and AOB_6. The chief NOB of microflora was Nitrobacter of which dominant bacteria was Nb_7, Nb_8, Nbg. And the NP_2 was the mainly of Nitrospira. Just like the effect of temperature, the man microbes of AOB were AOB_2, AOB_4 and AOB_6 when the F/M changed. But the main species of Nitrobacter were Nb_1, Nb_2, Nb_4 and Nb_7, and the Np_6 of Nitrospira, which was different with the temperature On the other hand, the results showed that F/M <0.15 BODs/gM LSS·2d was beneficial to the growth of nitrification floraEnhancing the nitrogen and phosphorus removal function of A~2/O process by ANAMMOX technology was an effective way. The results showed that lowering DO in aeration tank cloud result in effective accumulation of NO_2~--N, enhance ANAMMOX function, and strengthen nitrogen removal in the system. More 15% NH_4~+-N and more 9% TN could be removed respectively in the anoxic tank. More 7% TN could be removed in the whole system. But lowering DO had negative influence on the function of COD and TP removal, and the removal rate of COD and TP decreased 5% and 1.4% respectively.
     TN removal by ANAMMOX is account for 21.9% of TN removal rate in system, the reaction medium was NH_4~+-N and NO_2~--N, and generated small amount of NO_3~--N in reaction process. The proportion of those factors was 1:1.256:0.155; the best range of pH for ANAMMOX reaction was 7.8-8.0. DO could restrict ANAMMOX, and temperature had great influence to the reaction rate The reaction rate decreased from 1.47mg/L·h to 1.175mg/L·h when temperature changed form 30.6℃to 24.6℃.
     The results of shocking and restoring experiment showed that the nitration function could be greatly limited by wastewater of which C/N was 3.5. The denitrification function could completely stop when C/N was 1.2, meanwhile it could result in the fast decrease of COD and TP removal, and in sludge bulking and floating sludge. Increasing reflux ratio could effectively shorten restoration time, and the removal rate of NH_4~+-N, TN and COD could be improved 20%,7.4% and 5.4% respectively. But this method had no effect on phosphorus removal. Increasing F/M and lowering SRT could also improve the processing function of system, the removal rate of NH_4~+-N, TN, COD and TP could be improved about 5%, 4.7%, 7.4% and 4.5% respectively. The method could also improve the bioactivities of sludge, and the nitrification OUR and nitrosification OUR could be improved about 7% and 5.7% respectively.
引文
[1] 严煦世.俞辉群.水和废水技术研究[M].北京:中国建筑工业出版社,1992.
    
    [2] 张杰,臧景红,杨宏,等.A~2/O工艺的固有欠缺和对策研究[J].给水排水,2003,29(3):22-26.
    
    [3] 华光辉,张波.城市污水脱氮除磷工艺中的矛盾关系与对策[J].给水排水,2000,26(12):1-4.
    
    [4] Rensink J H.Donker HJ G W,Simons S J. Phosphorus Removal at Low Sludge Loadings[J]. Water Scienceand Technology, 1985,17(11-12): 177-186.
    
    [5] Cooper P, Day M, Thomas V. Process options for phosphorus and nitrogen removal from wastewater[J]. JIWEM,1994,8(2):85-92
    
    [6] 李勇,吕柄南,黄勇.改进A~2/O法的设想[J].中国给水排水,2001,17(8):32-34.
    
    [7] Jonsson K.Johansson P.Magnus C.et al. Operational factors affecting enhanced biological phosphorus removal at the wastewater treatment plant in Helsingborg Sweden[J].Water Science and Technology. 1996,34(3):67-74.
    
    [8] 羊寿生.上海在建的三座大型城市污水处理厂介绍(二)-上海白龙港污水处理厂[J].给水排水,2003,29(2):1-2.
    
    [9] 羊寿生.上海三座大型城市污水处理厂试运行中的问题及对策[J].给水排水,2005,31(8):1-3.
    
    [10] 史家樑,徐亚同,张圣章.环境微生物学[M].上海:华东师范大学出版社,1993.
    
    [11] 张波.生物脱氮除磷工艺系统的几个重要问题[J].青岛建筑工程学院学报,1998,19(1):1-6.
    
    [12] Holm K G Elberg J P.Henze M.Characterization of Functional Microorgansim Groups and Substrate inActivated Sludge and Wastewater by AUR, NUR and OUR[J].Wat Sci Tech, 1992,25(6) :43-57
    
    [13] Kuba T.Smolders G.van Loosdrecht M C M,Heijnen J J.Biological phosphorus removal from wastewater byanaerobic-anoxic sequencing batch reactor[J].Wat Sci Tech, 1993,27 (5-6).
    
    [14] Shao Y J.Wada F.Abkiam V.et al.Effects of MCRT on Enhanced Biological Phosphorus Removal [J]. Wat SciTech, 1992,26 (5/6):967-976.
    
    [15] 王亚宜,彭永臻,王淑莹.等.反硝化除磷理论、工艺及影响因素[J].中国给水排水,2003,19(1):33-36.
    
    [16] 王亚宜,王淑莹,彭永臻,等.污水有机碳源特征及温度对反硝化聚磷的影响[J].环境科学学报,2006,26(2):186-192.
    
    [17] Gerber A,Villiers R H,et al. Interactions between phosphate.nitrate and organic substrate in biological nutrient remoal processes[J]. Water Science and Technology,1987,19:183-194.
    
    [18] 张洁,胡卫新,张秋雁.改进型双泥反硝化除磷脱氮工艺[J].环境污染与防治,2005,27(3):232-236.
    
    [19] 上海市环境保护局编.废水生化处理[M].上海:同济大学出版社,1999,240-246.
    
    [20] 于宏兵,吴睿,段宁.等.固定化酶酸化/UASB两相厌氧有机酸代谢特征[J].环境科学,2006,27(3):483-487.
    
    [21] 沈耀良,王宝贞.水解酸化工艺及其应用研究[J].哈尔滨建筑大学学报,1999,32(6):35-38.
    
    [22] 郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998.
    
    [23] Kuba T,Van Loosdrecht M C M,Heijnen J J. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system[J].Water Research,1996,30(7):1702-1710.
    
    [24] 李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社,2002.
    
    [25] Kuba T,Murnleitner E,van Loosdrecht M C M,et al.Efect of nitrate on phosphorus release in biological phosphorus systems[J].Water Science and Technology, 1994,30(6):263-269.
    
    [26] 徐亚同,废水中氮磷的处理[M].上海:华东师范大学出版社,1996.
    
    [27] Sorm R.Bortone G.Saltarelli R,et al.Phosphate uptake under anoxic conditions and fixed-film nitrification in??nutrient removal activated sludge system[J].Water Research, 1996,7(30): 1573-1584.
    
    [28] 李捷,熊必永,张树德,等.亚硝酸盐对聚磷菌砐磷效果影响.环境科学,2006,27(4):701-703.
    
    [29] 徐亚同,黄民生.废水生物处理的运行管理与异常对策[M].北京:化学工业出版社,2003.
    
    [30] 娄金生.A~2/O生物脱氮除磷工艺的探讨[J].中南工学院学报,1996,10(2):36-41.
    
    [31] 张自杰,林荣沈,金儒霖.排水工程(第四版)[M].北京:中国建筑工业出版社,2000.
    
    [32] 王晓莲,王淑莹,马勇,等.A~2/O工艺中反硝化除磷及过量曝气对生物除磷的影响[J].化工学报,2005,36(8):1565-1570.
    
    [33] 郭海娟,马放,沈耀良.C/N比对反硝化除磷效果的影响[J].环境科学学报,2005,25(3):367-371.
    
    [34] 郝红元,郝红英,王伟.A~2/O工艺影响因素的研究[J].给水排水,2003,29(4):12-15.
    
    [35] 李绍秀,谢晖,郭玉.改良A~2/O工艺的工程实践.环境污染治理技术与设备[J].2006,7(5):132-134.
    
    [36] 李绍秀,谢晖,郭玉.改良A~2/O工艺在污水处理厂中的应用[J].给水排水,2006,32(8):37-39.
    
    [37] 杨云龙,闫鸿远.A~2/O脱氮除磷工艺[J].山西建筑,2004,30(22):85-87.
    
    [38] 娄金生,谢水波,提高A~2/O工艺总体处理效果的措施[J].中国给水排水,1998,14(3):27-31.
    
    [39] Daewhan E C, Zuwhan R, Lee Y E.Temperature effects on biological nutrient removal system with weak municipal wastewater[J].Wat Sci Tech. 1998.37(9):219-226.
    
    [40] 刘长青,毕学军,张峰.等.低温对生物脱氮除磷系统影响的试验研究[J].水处理技术,2006,32(8):18-21.
    
    [41] 魏琛.浅议影响污水生物除磷的因素[J].重庆环境科学,2002,24(2):85-87.
    
    [42] 金杭,王淑梅.生物脱氮除磷技术及其发展趋势[J].广州环境科学,2006,21(2):9-13.
    
    [43] Bortone G, Marsili S.Li B.et al.Anoxic phosphate uptake in the Dephanox process[J]..Wat Sci Tech. 1999,40(4-5): 177-185.
    
    [44] Van Loosdrecht MCM ,Brandse F A, De Vries A C.Upgrading of waste water treatment processes for integrated nutrient removal -BCFS process[J]. Water Science and Technology. 1998.37(9):209-217.
    
    [45] 邹伟国,张善发,张辰,等.新型双污泥脱氮除磷工艺处理生活污水[J].中国给水排水,2004,20(6):16-18.
    
    [46] 邹伟国,杨小红,张辰,等.双污泥脱氮除磷工艺用于老厂达标改造[J].中国给水排水,2006,22(2):20-22.
    
    [47] 张波,高庭耀.倒置A~2/O工艺的原理与特点研究[J].中国给水排水,2000,16(7):11-15.
    
    [48] 王之晖,王淑莹,彭永臻,等.前置反硝化脱氮系统外加碳源在线控制基础[J].环境科学,2004,25(3):73-77.
    
    [49] 陈洪斌,唐贤春,何群彪,等.倒置AAO工艺聚磷微生物的吸磷行为[J].中国环境科学,27(1):49-53.
    
    [50] Sorm R.Bortone G.Saltarelli R.et al. Phosphate uptake under anoxic conditions and fixed-film nitrification in nutrient removal activated sludge[J].Water research, 1996,30(7): 1573-1584.
    
    [51] 高廷耀,周增炎.一种适合当前国情的城市污水脱氮除磷新工艺[J].同济大学学报,1996,24(6):647-651.
    
    [52] 甘晓明,刑绍文,徐高田,等.倒置A~2/O污水处理工艺的特点及应用实例[J].环境工程学报,1(6):69-71.
    
    [53] 周雹,周丹.多点进出水倒置A~2/O工艺[J].给水排水,2002,28(1):39-42.
    
    [54] Marsili L S, Giunti L. Fuzzy predictive control for nitrogen removal in biological wastewater treatment [J].Water Science and Technology,2002,45(4-5):37-44.
    
    [55] Purtschert I, Siegrist H, Gujer W. Enhanced denitrification with methanol at WWTP Zorich-Werdholzli[J].Water Science and Technology.l996,33(12):117-126.
    
    [56] Baker P S,Dold P L,Denitrification behavior in biological excess phosphorus removal activated sludgesystem [J].Water Research, 1996,30:769-780.
    
    [57] George A E.Mark C W.Difficulties and developments in biological nutrient removal technology andmodelling[J]. Wat Sci Tech ,1999,39(6): 1-11.
    
    [58] 谢冰,徐亚同.废水生物处理原理与方法[M].北京:中国轻工业出版社,2007.
    
    [59] 郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社,2004.
    
    [60] Turk O.Mavinci D S. Selective inhibition a novel concept for removing nitrogen from highly nitrogenous??wastes[J].Environ Technol Lett,1987,8:419-426.
    
    [61] Ciudad G,Rubilar O,Munoz P,et al.Partial nitrification of high ammonia concentration wastewater as a part ofa shortcut biological nitrogen removal process[J].Process Biochemistry,2005,40:1715-1719.
    
    [62] Mulder A,Van de Graaf A A, Robertson L A, et al.Anareobic ammonium oxidation discovered in adenitri2fying fluidized bed reactor[J]. FEMS Microbiol Ecol,1995, 16 (3): 1772-1783.
    
    [63] 孙衍增,蒋彬,殷琨.生物脱氮除磷机理及新工艺[J].云南环境科学,2006,25(1):54-56.
    
    [64] Strous M,Van Gerven E,Zhen p. Ammonium removal from concentrated waste streams with the anaerobicammonium oxidation(ANAMMOX) process in different configuration[J].Water research. 1997.31:1955-1962.
    
    [65] Gupta AB.Thisophaera pantotropha: a sulfur bacterium capable of simultaneous heterotrophic nitrificationand aerobic denitrification.Enzyme & Microbial Technol[J]., 1997.21:5895-95.
    
    [66] Chiu Y C.Lee L L.Chang C N,et al. Control of carbon and ammonium ratio for simultaneous nitrificationand denitrification in a sequencing batch bioreactor [J].International Biodeterioration & Biodegradation.2007,9:1-7.
    
    [67] 王建芳,涂宝华,陈荣平,等.生物脱氮除磷新工艺的研究进展[J].环境污染治理技术与设备,2003,4(9):70-73.
    
    [68] Kuba T.Van Loosdrecht M C M.Heijnen J J.Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system [J].Water Research.l996,30(7):1702-1710.
    
    [69] 王亚宜,彭永臻,李探微,等.A_2N连续流双泥系统反硝化除磷脱氮试验研究[J].哈尔滨工业大学学报,2004,36(81:1046-1049.
    
    [70] 王亚宜,杜红,彭永臻,等.A2N反硝化除磷脱氮工艺及其影响因素[J].中国给水排水,2003,19(9):8-11.
    
    [71] Hellinga C.Schellen A A J C,Mulder J W.et al.The Sharon-process : an innovative method for nitrogen removal from ammonium rich wasterwater[J].Water Science andTechnology.1998.37(9):135-142.
    
    [72] Van Dongen U,Jetten M S M,van Loosdrecht M C M.The Sharon-Anammox process for treatment of ammonium richwasterwater[J].Water Science and Technology,2001,44(1): 153-160.
    
    [73] 杨朝晖,高峰,曾光明,等.短程硝化反硝化去除高氨氮猪场废水中的氮[J].中国环境科学,2005,25(supp1):43-46.
    
    [74] Laanbroek H J, Bodelier P L E, Gerards S. Oxygen consumption kinetics of Nitrosomoas europaea and Nitrobacter hamburgensis grown in mixed continuous cultures at different oxygen concentrations[J].Arch Microbiol.l994.161:156-162.
    
    [75] 闫志英,廖银章,李旭东,等.新型废水生物脱氮的微生物学研究进展[J].应用与环境生物学报,2006,12(2):292-296.
    
    [76] 郑平,冯孝善.厌氧氨氧化菌基质转化特性的研究[J].浙江农业大学学报,1997,23(4):409-413.
    
    [77] Straous M. Ammonium Removal from Concentrated Waste Streams with the Anaerobic Ammonium Oxidation (ANAM2M0X) Process in Different Configurations[J].Water Research,1997,31:1955-1962.
    
    [78] 郑平,冯孝善,Jetten M S M,等.ANAMMOX 流化床反应器性能的研究[J].环境科学学报,1998,18(4):367-372.
    
    [79] 胡宝兰,郑平,冯孝善.新型生物脱氮技术工艺的研究[J].应用与环境工程学报,1999,5(suppl):68-73.
    
    [80] Third K,Sliekers O A,Kuenen J G,et al.The CANON system (comp letely autotrophic nitrogen removal over nitrite in one single reactor) under ammonium:imitation:interaction and competition between three group s of bacteria[J].Syst Appl Microbiol.2001.24:588-596.
    
    [81] 孟了,陈永,陈石.CANON 工艺处理垃圾渗滤液中的高浓度氨氮[J].给水排水,2004,30(8):24-29.
    
    [82] Olav S A,Third K A,Abma W,et al. CANON and Anammox in a gas-lift reactor[J].FEMS Microbiology Letters. 2003,(218):339-344.
    
    [83] 尤勇军,沈娟,王艳萍.同步硝化反硝化生物脱氮技术研究[J].环境污染治理技术与设备,2006,7(4):128-131.
    
    [84] 马勇,彭永臻,于德爽.A/生物脱氮工艺处理生活污水中试(二)系统性能和SND现象的研究[J].环境科学学报,2005,26(5):710-715.
    
    [85] Zhao H W,Mavinic D S,OIdham W K. Controlling factors for simultaneous nitrification and denitrification in two stage intermittent aeration process treating domestic sewage[J].Water research,1999,33(4):961-970.
    
    [86] 高大文,彭永臻,王淑莹.高氮豆制品废水的亚硝酸型同步硝化反硝化生物脱氮工艺[J].化工学报,2005,56(4):699-704.
    
    [87] 尹军.消化污泥脱氢酶活性检测的若干问题[J].中国给水排水,2000,16(10):47-49.
    
    [88] 周春生,尹军.TTC-脱氢酶活性检测方法的研究[J].环境科学学报,1996.1 6(4):400-405.
    
    [89] Terslovev J. Comparison of bacterial toxicity test based on growth dehydrogenase activity and esterase activity of pseudormonas fluorescens[J].Ecotoxicol Environ Saf,1993,25(1):33-37.
    
    [90] Saski T,Kawai K,Saijo K K,et al.Detergent cytotoxicity :Simplied assay of cytolysis by measuring LDH activity. Toxicol in Vitro, 1992,6(5):451-456.
    
    [91] 吴雪征,赖震宏,龙腾锐.金属离子对好氧活性污泥活性的影响[J].安全与环境学报,2004,12,43-45.
    
    [92] 马志毅.测定ATP以确定微生物活性[J].水处理技术.1989,15(1):45-50.
    
    [93] Roe P C J,Bhagat S K. Adenosine Triphosphate as a control parameter to activated sludge processes[J].Water Pollution Control Federation,1982,54(3):244-254.
    
    [94] Nelson P O,Lawrence A W. Microbial Viability Measurements and Activated Sludge Kinetics[J]. Water research, 1980,14(3):217-225.
    
    [95] 许晓路,申秀英,活性污泥活性参数指标的选评[J].环境科学,1993,14(2):58-62.
    
    [96] 孙立新,蒋展鹏,师绍琪.ATP法测定有机物好氧生物降解性的研究[J].环境科学,1996,17(1):1-5.
    
    [97] 吴成强,杨敏,张昱.低温生物膜和活性污泥的生物活性比较[J].应用与环境生物学报,2004,10(5):647-650.
    
    [98] Comeau Y. Biochemical Model for Enhanced Biological Phosphorus Removal [J].Water Research, 1986,20(12):1511-1521.
    
    [99] Van Loosdrecht M C M,Pot M A,Heijnen J J. Importance of bacterial storage polymers in bioprocesses[J].Water Science and Technology, 1997,35(1):41-47.
    
    [100] Liu Y H. Low sludge carbohydrate content: a prerequisite for enhanced biological phosphorus removal[J].Water Environment Resesrch,1997,69(7): 1-7.
    
    [101] 王红武,马鲁铭,董美玉,等.PHB及糖原在废水生物处理好氧条件下的形成[J].精细化工,2000,17(9):519-525.
    
    [102] Mino T.Liu W T,Kurisu F,et al. Modeling Glycogen Storage and Denitrification Capability of Microorganisms in EBPR Processes[J].Water Science and Technology, 1995,31(2):25-34.
    
    [103] Satoh H,Mino T,Matsuo T. Deterioration of enhanced biological phosphorus by the domination of micro-organisms without polyphosphate accumuluation.Water Science and Technology.1994,30(6):203-211.[104] 田淑嫒,王景峰,杨睿,等.厌氧下的PHB和聚磷酸盐及其生化机理研究[J].中国给水排水,2000,16(7):5-7.
    
    [105] 刘燕,行智强,陈银广,等.聚烃基烷酸转化对强化生物除磷影响研究[J].环境科学,2006,27(6):1103-1106.
    
    [106] EPA-821-R-01-014.Specific oxygen uptake rate in biosolids.Method 1683[S].
    
    [107] Watts J B,Garber W F.On line respirometry:A power tool for activated sludge plant operation anddesign[J].Water Science and Technology,1993.28(11-12):389-399.
    
    [108] 卢少勇,宋英豪,申立贤,等.呼吸速率测定研究进展[J].环境污染治理技术与设备,2002,3(8):24-27.
    
    [109] Gutierrez M,Etxebarria J,Fuentes L D L.Evaluation of wastewater toxicity: comparative study between Microtox and activated sludge oxygen uptake inhibition[J].Water Research,2002,36:919-924.
    
    [110] 孟雪征,赖震宏,龙腾锐.金属离子对好氧活性污泥活性的影响[J].安全与环境学报,2004,4(6):43-45.
    
    [111] 施汉昌,柯细勇,张伟,等.用快速生物活性测定仪测定活性污泥生物活性的研究[J].环境科学,2004,25(1):67-71.
    
    [112] Nowak O,Svardal K,Observations on the kinetics of nitrification under inhibiting conditions caused by industrial wastewater compounds[J]. Water Science and Technology ,1993 ,28(2):115-123.
    
    [113] 刘宏伟,崔蕾,郝春明.氧吸收速率(OUR)表征短程硝化试验污泥活性的研究[J].能源环境保护,2007,21(3)21-23.
    
    [114] Dalzell D J B,Alte S,Aspichueta E,et al.A comparison of five rapid direct toxicity assessment methods to determine toxicity of pollutants to activated sludge [J]. Chemosphere,2002,47(5):535-545.
    
    [115] 符成泽,李咏梅,顾国维.硝化速率法用于活性污泥活性测试的研究[J].环境污染与防治,2006,28(4):264-266.
    
    [116] 陈金声,史家樑,徐亚同.硝化速率测定和硝化细菌计数考察脱氮效果的应用[J].上海环境科学,1996,15(3):18-20.
    
    [117] 周德庆.微生物学教程[M].北京:高等教育出版社,1993.
    
    [118] Marsh T L,Liu W T,Forney L J.Beginning a molecular analysis of the eukaryal community in the activated sludge[J].Water science technology,1998,37(4-5):455-460.
    
    [119] 曾微,杨庆,张树军.等.采用FISH、DGGE和Cloning对短程脱氮系统中硝化菌群的比较分析[J].环境科学学报,2006,26(5):734-739.
    
    [120] 许玫英,曾国驱,任随周,等.分子检测技术对活性污泥中氨氧化细菌的比较研究[J].微生物学报,2003,43(3):371-378.
    
    [121] Pynaert K,Smets B F,Beheydt D, et al. Start-up autotrophic nitrogen removal reactor via sequential biocatalyst addition. Environmental Science and Technology. 2004,38:1228-1235.
    
    [122] 张丽娜,曹慧,崔中利,等.红壤荒草地氨氧化细菌富集液16SrDNA文库的RFLP分析[J].土壤学报,2006,43(4):635-641.
    
    [123] 钦颖英,李道棠,杨虹.给水生物预处理反应器的细菌种群多样性和群落结构[J].应用与环境生物学报,2007,13(1):104-107.
    
    [124] Jang A,Yoon Y H. Characterization and evaluation of aerobic granules in sequencing batch reactor[J]. Journal of Biotechnology,2003,10(5):71-82.
    
    [125] 谢冰,徐华,徐亚同.荧光原位杂交法在活性污泥硝化细菌检测中的应用[J].上海环境科学,2003,22(5):363-365.
    
    [126] 胡宝兰,郑平,胡安辉,等.Anammox反应器的启动及其菌群演变的研究[J].农业工程学报,2005,21(7):107-110.
    
    [127]王峰,夏四清,史妍,等.硝化悬浮填料塔中氨氧化细菌群落稳定性特征分析[J].环境工程,2006,24(3):10-12.
    
    [128] 王家玲,李顺鹏,黄正.环境微生物学(第二版)[M].北京:高等教育出版社,2004.
    
    [129] 束家鑫.上海气象志[M].上海:上海社会科学院出版社,1997.
    
    [130] 上海市环境保护局.废水生化处理[M].上海:同济大学出版社,1999.
    
    [131] 初里冰,杨凤林,张兴文.低温厌氧处理低浓度废水研究进展[J].环境污染治理技术与设备,2003,4(4):61-65.
    
    [132] 陈韬,彭永臻,田文军,等.ORP检测在水处理中的应用[J].中国给水排水,2003,19(5):20-22.
    
    [133] 郑平,钟文辉.环境微生物学[M].浙江:浙江大学出版,2002.
    
    [134] 徐亚同.pH、温度对反硝化的影响[J].中国环境科学,1994,14(4):308-313.
    
    [135] Euiso Choi Daewhan,Rhu Zuwhan,Yun Euisin Lee. Temperature effects on biological nutrient removal system with weak municipal wastewater[J].Water Science and Technology, 1998,37(9):219-226.
    
    [136] 蔡军,安立超,黄荣富.曝气生物滤池处理焦化废水脱氮的研究[J].环境污染治理技术与设备,2006,7(11):138-141.
    
    [137] 王春荣,王宝贞,王琳.温度及氨氮负荷对曝气生物滤池硝化作用的影响[J].城市环境及城市生态,2004,17(4):24-26.
    
    [138] 马俊,张永祥,刘亮,等.A~2/O脱氮工艺效果研究[J].哈尔滨商业大学学报,2006,22(1):28-31.
    
    [139] 郑兴灿,李亚新.污水除磷脱氮技术(第一版)[M].北京:中国建筑工业出版社,1998.
    
    [140] 刘长青,毕学军,张峰.等.低温对生物脱氮除磷系统影响的试验研究[J].水处理技术,2006,36(8):18-21.
    
    [141] 徐亚同.废水中氮磷的处理[M].华东师范大学出版社,1994,132-140.
    
    [142] 张自杰,林荣沈,金儒霖.排水工程下册(第四版)[M].北京:高等教育出版社,2000.
    
    [143] 张自杰,张忠祥,钱易,等.环境工程手册[M].北京:高等教育出版社,1996.
    
    [144] 高廷耀,顾国维.水污染控制工程下册第二版[M].北京:高等教育出版社,1999.
    
    [145] Kiuru HJ,Rantiaineu J A. Biological nutrient removal at a very low21oaded activated sludge plant with high biomass concentrations[J].Water Science and Technology,1998,38(1):63-70.
    
    [146] Kiuru H J,Rantiaineu J A.Biological nutrient removal at a very low-loaded activated sludge plant with high biomass concentrations[J].Wat Sci Tech,1998,38(l):63-70.
    
    [147] 毕学军,张波,丁曰堂,等.长期低负荷运行对污水生物除磷的影响[J].中国给水排水,2002.18(7):83-85.
    
    [148] 陈洪斌,唐贤春,何群彪,等.倒置AAO工艺聚磷微生物的吸磷行为[J].中国环境科学,2007,27(1):49-53.
    
    [149] 郑燕清,周建华.除磷工艺中厌氧释磷和好氧吸磷的影响因素[J].中国市政工程,2007,125(1):48-50.
    
    [150] Temmink H,Petersen B , Isaacs S,et al. Recovery of biological phosphorus removal after periods of low organic loading[J]. Water Science and Technology ,1996,34(1-2): 1-8.
    
    [151] 郭劲松,黄天寅,龙腾锐.生物脱氮除磷工艺中的微生物及其相互关系[J].环境污染治理技术与设备,2000,1(1):8-15.
    
    [152] 刘瑾,高廷耀.生物除磷机理的研究[J].同济大学学报,1995,23(4):387-392.
    
    [153] 国家环境保护总局.城镇污水处理厂污染排放标准GB18918-2002[S].2002.
    
    [154] Chung Y C,Neethling J,B.Microbial activity measurements for anaerobic sludge digestion[J].Journal WPCF. 1989,61(3):343-349.
    
    [155] Brouwer H,KIapwijk A,Keesman K J. Identification of activated sludge and wastewater characteristics using respirometric batch-experiment[J]. Water Research.. 1998.32(4): 1240-1254.
    
    [156] 陈翔.脱氢酶在环境监测中的应用概况[J].解放军预防医学杂志.1997,15(6):459-462.
    
    [157] 尹军,付瑶,王翠兰,等.活性污泥的基质代谢脱氢酶活性测定[J].中国给水排水,2002,18(9):50-52.
    
    [158] 陈元彩,詹怀宇,陈中豪,等.高效内循环反应器的污泥特性[J].中国环境科学,2003,23(1):81-84.
    
    [159] Watts J B,Garber W F. On line respirometry: A powerful tool for activated sludge plant operation anddesign[J].Water Science and Technology,1993.28(11-12):389-399.
    
    [160] Klapwijk A,Brouwer H,Vrolijk E.et al.Control of intermittently aerated nitrogen removal plants bydetection endpoints of nitrification and denitrification using respirometry only[J]. Waterresearch, 1998,32(5): 1700-1703.
    
    [161] Cheng Hong. ATP content and biomass activity in sequential anaerobic/aerobic reactors[J].Journal ofzhejiang University,2004,5(6):727-732.
    
    [162] 谭铁鹏.ATP浓度的测定在废水处理中的应用研究[J].环境科学与技术,1996,9(1-2):43-46.
    
    [163] David J.B. D, Nick C. An ATP luminescence method for direct toxicity assessment of pollutants impacting on the activated sewage sludge process[J]. Water Research.36(2):1493-1502.
    
    [164] 王暄,王景峰,季民.等.聚糖菌颗粒污泥的有机物吸收及胞内储存特性[J].中国环境科??学,2005,25(5):597-601.
    
    [165] Cech J S, Hartman P. Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphorus removal systems[J].Water Research.,1993,27(7):1219-1225.
    
    [166] Caruuci A,Dionisi D,Majone M,et al. Aerobic storage by activated sludge on real wastewater[J].Water Research,2001,35(16):3833-3844.
    
    [167] 朱南文,闵航,陈美慈,等.TTC-脱氢酶测定方法的探讨[J].中国沼气,1996,14(2):3-5.
    
    [168] 胡子斌.TTC-脱氢酶活性常温萃取测定法及应用[J].工业水处理,2001,21(10):29-31.
    
    [169] 谭学军,尹军,王建辉,等.OUR和INT-ETS表征污泥活性的比较[J].中国给水排水,2005,21(7):43-46.
    
    [170] 林东恩,张逸传,郭世骚,等.活性污泥好氧/厌氧合成聚-3-羟基丁酸酯[J].华南理工大学学报(自然科学版),2002,30(9),100-104.
    
    [171] 王婧,李清彪,何宁,等.营养条件与间歇曝气方式对活性污泥累积聚-β-羟基丁酸酯的影响[J].现代化工,2007,27(5):45-48.
    
    [172] 李冰,孙英兰,李玉瑛.耗氧速率(OUR)测量方法的实验研究[J].中国海洋大学学报,2006,36(3)456-460.
    
    [173] 叶树明,楼凯凯,杨俊毅,等.利用ATP生物发光法测定西湖水体微生物量[J].浙江大学学报,2006,32(5):500-50.
    
    [174] 何艳.ATP生物发光法中ATP提取剂的研究[D].上海:华东师范大学,2007.
    
    [175] 丁峰,徐学青,彭永臻,等.污泥活性抑制和污泥上浮的检测及控制[J].工业用水与废水,2001,32(1):10-12.
    
    [176] 严嫒嫒,孙力平,冯雷雨.SBR法处理还原段DSD酸废水脱氢酶活性的研究[J].环境科学与技术,2007,30(3):87-90.
    
    [177] 贺延龄,陈爱霞.环境微生物学[M].北京:中国轻工业出版社,2001.
    
    [178] 管运涛,王乐,滕飞,等.活性污泥对聚-β-羟基丁酸酯(PHB)积累能力的影响[J].清华大学学报,2007,47(6):814-817.
    
    [179] 周岳溪,钱易,顾夏声.生物除磷过程中乙酸盐厌氧代谢机理的研究[J]环境科学研究,1992,5(3):25-28.
    
    [180] Daigger G T,Grady C L P. The dynamics of microbial growth on soluble substrates [J].Water Research. 1982,16(4):365-382.
    
    [181] 吴光学,管运涛.SRT及碳源浓度对厌氧/好氧交替运行SBR工艺中PHB的影响[J].环境科学,2005,26(2):126-130.
    
    [182] 田淑嫒,王景峰,杨睿,等.厌氧下的PHB和聚磷酸盐及其生化机理研究[J].中国给水排水,2000,16(7):5-7.
    
    [183] Fuhs G W.Chen M.Microbiological Basis of Phosphate Removal in the Activated Sludge Process for the Treatment of Wastewater[J].Microbiology Ecology, 1975,119-138.
    
    [184] 徐亚同.废水的生物除磷[J].环境科学与研究,1994,7(5):1-6.
    
    [185] 卢少勇,宋英豪,申立贤,等.呼吸速率研究进展[J].环境污染治理技术与设备,2002,3(8):24-27.
    
    [186] 孟雪征,赖震宏,龙腾锐.金属离子对好氧活性污泥活性的影响[J].安全与环境学报,2004,4(6):43-45.
    
    [187] De Bel M,Stokes L,Upton J,et al. Applications of a respirometry based toxicity monitor[J].Water Scienceand Technology, 1996.289-296.
    
    [188] Brouwer H.Klapwijk A,Keesman K J.Modelling and control of activated sludge plants on the basis ofrespirometry[J]. Water Science and Technology, 1994,30(4):265-274.
    
    [189] Nowak O,Svardal K.Observations on the Kinetics of Nitrification under Inhibiting Conditions Caused byIndustrial Wastewater Compounds[J]. Wat Sci Technol, 1993,28:115-123.
    
    [190] 王建龙,吴立波,齐星,等.用氧吸收速率(OUR)表征活性污泥硝化活性的研究[J].环境科学学报,1999,19(3):225-229.
    
    [191] 崔卫华,宋英豪,倪文,等.SBR系统中活性污泥内源呼吸速率的研究[J].环境工程学??报,2007,1(4):123-126.
    
    [192] Spanjers H,Vanrolleghem P. Respirometry as a tool for rapid characterization of wastewater and activated sludge[J].Water Science and Technology,1995.31(2)105-l14.
    
    [193] 施汉昌,柯细勇,张伟,等.用快速生物活性测定仪测定活性污泥生物活性的研究[J].环境科学,2004,25(1):67-71.
    
    [194] 史家樑,徐亚同,张圣章.环境微生物学[M].上海:华东师范大学出版社,1993,95-96.
    
    [195] 张自杰,林荣枕,金儒霖.排水工程(第四版)[M].北京:中国建筑工业出版社,2000,309-310.
    
    [196] 李先宁,宋海亮,吕锡武,等.反应器分区提高生物接触氧化硝化性能的研究[J].中国环境科学,2006,26(1):62-66.
    
    [197] Pujol RXemmel H,Gousailles M. A key point of nitrification in an up flow biofiltration reactor[J].Water Science and Technology,1998.38(3):43-49.
    
    [198] 李红岩,张昱,高峰,等.水力停留时间对活性污泥系统的硝化性能及其生物结构的影响[J].环境科学,2006,27(9):1862-1865.
    
    [199] 孙立新,蒋展鹏,师绍琪.ATP法测定有机物好氧生物降解性的研究[J].1996,17(1):1-5.
    
    [200] Roe P C,Bhagat S K. Adenosine Triphosphate as a control parameter to activated sludge processes[J].Water Pollution Control Federation.1982.54:244-254.
    
    [201] 陶文沂.工业微生物生理与遗传育种学[M].北京:中国轻工业出版社,1997,134-145.
    
    [202] 李季伦.微生物生理学[M].北京:北京农业大学出版社,1993,182-186.
    
    [203] 程皆能,毛根富,张伟心.微生物生理学[M].上海:复旦大学出版社,1987,66-70.
    
    [204] Jorgensen P E,Eriksen T,Jensen B K.Estimation of viable biomass in wastewater and activated sludge bydetermination of ATP.Oxygen utilization rate and FDA hydrolysis. Water Res,1992,11:1495-1501.[205] Satoshi T,Ryuki M,Takashi O,et al. Characterization of Denitrifying Polyphosphate-AccumulatingOrganisms in Activated Sludge Based on Nitrite Reductase Gene[J].Journal of bioscience andbioengineering.2005,99(4):403--407.[206] 戴睿,刘洪波,夏四清.城市污水强化生物除磷工艺中除磷菌种群结构分析[J].四川环境,2007,26(1):9-13.
    
    [207] 宫曼丽,任南琪,刑德峰.DGGE/TGGE技术及其在微生物分子生态学中的应用[J].微生物学报,2004,44(6):845-848.
    
    [208] Curtis T P,Craine N G.The comparison of the diversity of activated sludge p lants.Water Science andTechnology,1998,37,71-78.
    
    [209] 马悦欣.Carola H,Jeremy W,等.变性梯度凝胶电泳(DGGE)在微生物生态学中的应用[J].生态学报,2003,23(8):1561-1569.
    
    [210] Holger H,Martin K,Paul B,et al. Analysis of Actinomycete Communities by Specific Amplificationof Genes Encoding 16S rRNA and Gel-Electrophoretic Separation in Denaturing Gradients[J].Applied andEnvironmental Microbiology, 1997.63(8):3233-3241.
    
    [211] 刘恩科,赵秉强,李秀英,等.不同施肥制度土壤微生物量碳氮变化及细菌群落16S rDNAV3片段PCR产物的DGGE分析[J].生态学报,2007,27(3):1079-1085.
    
    [212] Kowalchuk G A,Bodelier P L E, Heilig G H J,et al. Community analysis of ammonia-oxidising bacteria, in relation to oxygen availability in soils and root-oxygenated sediments, using PCR, DGGE and oligonucleotide probe hybridisation[J]. FEMS Microbiol.Ecology,l998.27(0):339-350.
    
    [213] Regan J M,Harrington G W,Noguera D R. Ammonia and Nitrite-Oxidizing Bacterial Communities in a Pilot-Scale Chloraminated Drinking Water Distribution System[J].AppI Environ Microbial,2002.68:73-81.
    
    [214] Bruce K M,Michael W,Vincent U,et al. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria[J]. Applied and Environmental Microbiology,1996,62(6):2156-2162.
    
    [215] Vreas L,Daae F L,Daae F L,et al. Distribution of bacterioplankton in Meromictic Lake saelevannet. as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA[J]. Applied and Environmental Microbiology,1997,63:3367-3373.
    
    [216] 苏俊峰,马放,王弘宇,等.利用PCR-DGGE技术分析生物陶粒硝化反应器中微生物群落动态[J].环境科学学报,2007,27(3):386-390.
    
    [217] 曾微,杨庆,张树军,等.采用FISH、DGGE和Cloning对短程脱氮系统中硝化菌群的比较分析[J].环境科学学报,2006,26(5):734-739.
    
    [218] 张晶,张惠文,苏振成,等.长期有机污水灌溉对土壤固氮细菌种群的影响[J].农业环境科学学报,2007,26(2):662-666.
    
    [219] Bortone G Libelli S M, Tilche A,et al. Anoxic Phosphate Uptake in the DEPHANOX Process[J].Water Science and Technology, 1999,40(4): 177-185.
    
    [220] 张杰,臧景红,杨宏,等.A~2/O工艺的固有缺欠和对策研究[J].给水排水,2003,29(3):22-26.
    
    [221] Broda E. Two kinds of lithotrophs missing in nature [J].Z Allg Mikrobiol, 1997, 17(6):491-493.
    
    [222] Mulder A,Vande Graff A A,Robertson L A,et al. Anaerobic Ammonium Oxidation Discovered in a Denitrifying Fluidized Bed Reactor[J].FEMS Microbiol Ecol,1995,16(3):177-183.
    
    [223] Strous M,Heijnen J J.Kuenen J C,et al.The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J].Mocrobiol Biotechnol.l996,50(5):589-596.
    
    [224] Van Dongen U,Jetten M S M,Van Loosdrecht M C M. The SHARON-ANAMMOX process for treatment of ammonium rich waste water[J].Water Science and Technology,2001,44(l):153-160.
    
    [225] 初里冰,张兴文,李晓慧,等.一种新型生物脱氮工艺-CANON工艺[J].山东轻工业学院学报,2005,19(1):21-24.
    
    [226] Sliekets A O, Derwort N, Campos Gomez J L. Completely autotrophic nitrogen removal over nitrite in one single reactor[J].Water Research.2002,36:2475-2482.
    
    [227] 江慧贞,李颖.生物脱氮工艺的新发展-半硝化和厌氧氨氧化[J].水处理技术,2002,28(5):308-310.
    
    [228] KuypersM M M, Sliekers A O, Lavik G, et al. Anaerobic ammonium oxidation by ANAMMOX bacteria in the Black Sea[J].Nature.2003,422(6932):608-611.
    
    [229] Ton S K,Webb R I.Ashbolt N J.Enrichment of autotrophic anaerobic ammonium-oxidizing consortia from various wastewaters[J].Microbial Ecology.2003,43(l):154-167.
    
    [230] 胡宝兰,郑平,管丽莉.ANAMMOX反应器中氨氧化菌的分离鉴定及特性研究[J].浙江大学学报,2007,27(3):314-316.
    
    [231] 李亚静,孙力平,李计元.ANAMMOX反应器快速启动及对反硝化聚磷的影响研究[J].工业用水与废水,200637(4):16-19.
    
    [232] 阮文权,邹华,陈坚.厌氧氨氧化混培菌的获得及其运行条件[J].重庆环境科学,2002,24(6):30-33.
    
    [233] 胡宝兰等.新型生物脱氮技术的工艺研究[J].应用与环境生物学报,1999,5(增刊):68-73.
    
    [234] Wyffel S,Pynaert K.Boeckx P,et al.Identification and Quantification of Nitrogen Removal in a RotatingBiological Contactor by 15N Tracer Techniques[J].Water Research,2003.37(6):1252-1259.
    
    [235] Van de Graaf A A.Robertson L A. Robertson L A. Autotrophlic growth of anaerobicammonium-oxidizing micro-organisms in a fluidized bed reactor [J]. Microbiology, 1996, 142(8):2187-2196.
    
    [236] 郝晓地,曹秀芹,曹亚莉,等.厌氧氨氧化细菌在生物膜系统中起主要脱氮作用的模拟预测[J].环境科学学报,2004,24(6):1007-1013.
    
    [237] Ruiz GJeison D,Chamy R.Nitrification with high nitrite accumulation for the treatment of wastewater withhigh ammonia concentration[J].water research,2003,37(6):1371-1377.
    
    [238] Wyffel S, Boeckx P.Pynaert K,et al. Sustained nitrite accumulation in a membrane-assisted bioreactor??(MBR)for the treatment of ammonium rich wastewater[J].Journal of Chemical Technology and Biotechnology,2003,78(4):412-419.
    
    [239] 叶建锋,徐祖信,薄国柱.新型生物脱氮工艺-OLAND工艺[J].中国给水排水,2006,22(4):6-8.
    
    [240] Kuai L P,Versraete W. Ammonium removal by the Oxygen-limited autorophic nitrification-denitrification (OLAND)system[J]. Applied and Environment Microbiology, 1998,64(11):4500-4506.
    
    [241] Bernet N,Peng D C,Delgenes J P,et al.Nitrification at low oxygen concentration in biofilm reator[J]. Journal of Environment and Engineering,2001,127(3):266-271.
    
    [242] 尹疆,李小明,吴永明,等.限氧亚硝化-厌氧氨氧化新工艺评述[J].净水技术,2005,24(5):34-37.
    
    [243] 魏琛,罗固源.DO对低C/N比污水生物亚硝化的影响分析[J].重庆建筑大学学报,2007,29(1):81-84.
    
    [244] 郑平,胡宝兰.厌氧氨氧化菌混培物生长及代谢动力学研究[J].生物工程学报,2001,17(2):193-198.
    
    [245] Jetten M S M,Strous M,Van de K T,et al. The anaerobic oxidation of ammonium[J]. FEMS MicrobiolReviews,1998, 22(5):421-437.
    
    [246] Strous M,Kuenen J G,Jetten M S M. Key physiology of anaerobic ammonium oxidation[J]. Applied andEnvironment Microbiology,l999,65:3248-3250.
    
    [247] Strous M,Heijnen J J,Kuenen J G,et al. The sequencing batch reactor as a powerful tool to study veryslowly growing microorganisms[J].Applied and Environment Microbiology,1998,50(5):589-596.
    
    [248] 郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社,2004:61-71.
    
    [249] Mulder A,Van de Graaf A A,Robertson L K,et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology,l995,16(3):177-184.
    
    [250] 周少奇,姚俊芹.UASB厌氧氨氧化反应器启动研究[J].食品与生物技术学报,2005,24(6):1-5.
    
    [251] Kuba T,Van Loosdrecht M C M, Heijnen J J,et al. Biological dephosphatation by activated sludge under denitrifying conditions: pH influence and occurrence of denitrifying dephosphatation in a full-scale waste water treatment plant [J].Water Science and Technology,l999,36(12):75-82.
    
    [252] 阮文权,邹华,陈坚.乙酸钠为碳源时进水COD和总磷对生物除磷的影响[J].环境科学,2002,3(23):49-52.
    
    [253] Hanaki K,Wantawin C,Ohgaki S.Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor[J].Water Research,1990,24(3):297-302.
    
    [254] 徐亚同.废水的硝化作用[J].环境污染治理技术与设备,1994,2(3):44-49.
    
    [255] 刘寅,杜兵,司亚安,等.厌氧氨氧化菌的培养与推流式反应器氨厌氧工艺[J].环境科学,2005.26(2):137-142.
    
    [256] Nowak O, Svardal K. Observations on the kinetics of nitrification under inhibiting conditions caused by industrial waste water compounds [J] .Water Science and Technology, 1993,28 (2) :115-123.
    
    [257] 戴兴春,黄民生,徐亚同,等.沸石强化生化装置脱氮功能的效果及机理初探[J].环境科学,2007,28(8):1881-1888.
    
    [258] 杨洋,左剑恶,沈平,等.环境科学与工程[M].北京:清华大学出版社,2004,39-43.
    
    [259] 郑平,胡宝兰,徐向阳,等.厌氧氨氧化电子受体的研究[J].应用与环境生物学报,1998,4(1):74-76.
    
    [260] 胡宝兰,郑平,徐向阳,等.一株反硝化细菌的鉴定及其厌氧氨氧化能力的证明[J].中国科学C辑生命科学,2006,36(6):493-499.
    
    [261] Van de Graaf A A.Robertson L A. Robertson L A.Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor [J]. Microbiology, 1997,143.2415-2421.
    
    [262] 杜兵,司亚安,孙艳玲,等.推流式固定化絮体生物反应器培养ANAMMOX菌试验研究[J].机械给排水,2003,4:26-32.
    
    [263] 杜兵,刘寅,孙艳玲,等.氨氮与亚硝酸盐比对推流式ANAMMOX反应器影响研究[J].给水排水,2006,32(5):27-33.
    
    [264] 徐亚同.不同碳源对生物反硝化的影响[J].环境科学,1994,15(2):29-32.
    
    [265] Antoniou P,Hamilton J,Koopman B,et al. Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria. Water Research,1990,24(l):97-101.
    
    [266] 郑平,胡宝兰.厌氧氨氧化菌混培物生长及代谢动力学研究[J].生物工程学报,2001,17(2):193-198.
    
    [267] Strous M,Van Gerven E,Kuenen J G,et al. Effects of Aerobic and Microaerobic Conditions on Anaerobic Ammonium-Oxidizing(Anammox)Sludge[J].Applied and Environmental Microbiology, 1997,63(6):2446-2448
    
    [268] 石利军,杨凤林,张兴文.有氧条件下ANAMMOX反应及其在HABR反应器中实现[J].大连理工大学学报,2007,47(3):338-343.
    
    [269] 张自杰,林荣忱,金儒霖.排水工程(第四版)[M].北京:中国建筑工业出版社,2000,358-360.
    
    [270] 徐亚同.废水的硝化作用[J].环境科学进展[J].1994,2(3):44-49.
    
    [271] 徐亚同.生物反硝化除氮研究[J].环境科学学报,1994,14(4):445-453.
    
    [272] Elefsiniotis P,Li D. The effect of temperature and carbon source on denitrification using volatile fattyacids[J]. Biochemical Engineering Journal, 2006,28:148-155.
    
    [273] Van Loosdrecht M C M, Jetten M S M. Microbiological conversions in nitrogen removal [J]. Water Scienceand Technology, 1998,38(1): 1-7.
    
    [274] Cooper P.Day M,Thomas V. Process options for phosphorus and nitrogen removal from wastewater[J].Journal of the Institution of Water and Environmental Management. 1994,8(1): 84-92.
    
    [275] 徐亚同.废水生物除磷系统的运行与管理[J].给水排水,1994,6:20-22.
    
    [276] Her J J, Huang J S. Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough[J]. Bioresource Technology, 1995,54(1):45-51.
    
    [277] Carrera J,Vicent T,Lafuente J. Effect of influent COD/N ratio on biological nitrogen removal (BNR)from high-strength ammonium industrial wastewater[J]. Process Biochemistry.2004,39(12):2035-2041.
    
    [278] 尹军,王晓玲,吴相会,等.低C/N条件下MUCT工艺的反硝化除磷特性[J].环境科学,2007,8(11):2478-2483.
    
    [279] 高景峰,彭永臻,王淑莹.不同碳源及投量对SBR法反硝化速率的影响[J].给水排水,2001,27(5):55-58.
    
    [280] 杨殿海,宋拥好,谭巧国,等.低碳源、低能耗型改良A~2/O工艺的脱氮除磷研究[J].中国给水排水,2006,22(23):18-21.
    
    [281] 方茜,韦朝海,张朝升,等.碳氮磷比例失调城市污水的同步脱氮除磷[J].环境污染治理技术与设备.2005,6(11):46-50.
    
    [282] Bortone G,Libelli S M,Tilche A,et al. Anoxic Phosphate Uptake in the DEPHANOX Process[J]. WaterScience and Technology. 1999,40(4-5): 177-185.
    
    [283] Nyberg U, Aspergren H, Andersson B, et al. Full-scale application of nitrogen removal with methanol ascarbon source. Water Science and Technology, 1992,26 (5-6): 1077-1086.
    
    [284] Malgorzata K K,Hanna H M, Eugeniusz K. Factors affecting the biological nitrogen removal fromwastewater[J]. Process Biochemistry,2006,41:1015- 1021.
    
    [285] 金春姬,余宗莲,高金淑,等.低C/P/N比污水生物脱氮所需外加碳源量的确定[J].环境科学与研究,2003,16(5):37-40.
    
    [286] 候红娟,王洪洋,周琪.进水COD浓度及C/N值对脱氮效果的影响[J].中国给水排水,2005,21(12):19-23.
    
    [287] 章非娟,杨殿海,傅威.碳源对生物反硝化的影响[J].给水排水,1996,22(7):26-28.
    
    [288] 徐亚同.废水的硝化工艺及其计算[J].环境污染与防治,1995,17(6):15-19.
    
    [289] 高廷耀,顾国维.水污染控制工程下册[M].北京:高等教育出版社,2004,179-180.
    
    [290] 王建龙,彭永臻,王淑莹.污泥龄A~2/O工艺脱氮除磷效果的影响[J].环境工程,2007,25(1):16-18.
    
    [291] 国家环境保护总局.城填污水处理厂污染物排放标准[S].2002.
    
    [292] 娄金生 谢水波 何少华.生物脱氮除磷的原理及应用[M].长沙:国防科技大学出版社,2002.
    
    [293] Kim C W,Koopman B,Bitton G.INT-dehydrogenase activity test for assessing chlorine and hydrogenperoxide inhibition off filamentous pure cultures and activated sludge[J].Water research,1994,28(5):1117-1121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700