时域有限元法及其截断边界条件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,有限元法(Finite Element Method,简称为FEM)已成为求解电磁场问题的有效的频域数值方法之一。时域有限元法(Finite Element Methodin Time Domain,简称TDFEM)能够直接在时域内求解电磁场问题。时域有限元法的研究始于20世纪80年代,并在随后的十几年中得到了快速的发展。
     本文研究基于求解时域二阶矢量波动方程的时域有限元法。文中首先阐述有限元法及时域有限元法的一般原理,然后结合系统的本征频率、频率采样条件以及时谐场对时间离散间隔的稳定性要求等,从一种新的途径导出时域有限元法的时间离散稳定性条件。
     时域有限元法的主要缺点是在每个时间步内都必需求解矩阵方程,因而系统的计算效率较低。为了提高系统的计算效率,可以进行两方面努力:一方面是减小系统矩阵的规模或改变其形式:另一方面是寻求更快的矩阵求解算法,本文讨论前一种措施。系统矩阵的规模主要取决于计算区域的大小和网格的粗细。为了减小系统矩阵的规模,除了使用高质量的网格剖分工具外,还可使用高效的截断边界条件。
     MEI(Measured Equation of Invariance,简称为MEI)方法最初作为吸收边界条件用于有限差分法。很快人们提出了时域MEI方法(MeasuredEquation of Invariance in Time Domain,简称TD-MEI),并成功地应用于FDTD,能够以较小的计算区域取得精确的解。本文将TD-MEI方法应用于时域有限元法,结合基函数的性质,从一阶吸收边界条件(Absorbing BoundaryCondition,简称ABC)反推出MEI测试方程,并据此构建时域测度不变方程吸收边界条件,或称为MEI-ABC。分析发现MEI-ABC能够保持系统矩阵的稀疏性。
     对于标量电磁问题的计算,MEI-ABC能够有效地减小计算区域。与一阶吸收边界条件相比,MEI-ABC在精度上具有明显的优势。数值算例证明,在相同的精度要求下,MEI-ABC的未知量更少。
     但是,对于矢量电磁问题的计算,MEI-ABC相对一阶吸收边界条件的优势有限,而且稳定性差。为此,本文基于MEI不变性,对MEI-ABC作了改进,构建一种时域阻抗边界条件(Surface Impedance Boundary Condition intime domain,简称TDSIBC),使精度有了很大的提高,但是计算代价也相应增加。
     相比MEI-ABC的快速优势,完全匹配层(Perfectly Matched Layer,简称PML)边界条件的计算速度较慢,但是精度更高。本文研究共形完全匹配层(Conformal Perfectly Matched Layer,简称CPML)技术,并应用于时域有限元法,取得了良好的结果。
     CPML可理解为广义PML,分析发现CPML的形状和介质参数与包围散射体的最小凸曲面有关。数值算例证明,与常规PML相比,使用CPML时,PML区域及整个计算区域更小,因而未知量减少,同时简化了每个时间步内的计算步骤,因而节省计算时间,且不降低精度
     本文研究的截断边界条件为今后的时域有限元分析提供了更多的选择余地。
At the present time, finite element method (FEM) has been acknowledged to be one of the efficient approaches to solve the electromagnetic problems in frequency domain. Finite element method in time domain (TDFEM) is able to solve directly the electromagnetic problems in time domain, and the investigation was started in 1980's. TDFEM has been greatly developed in the following decades.
     In this dissertation, TDFEM will be investigated based on solving the second-order vector wave equation in time domain. The principles of FEM and TDFEM are introduced first, and then considering the eigen-frequency of the system, frequency sampling condition and the stability of the time discretization for a harmonic field, the stability condition of time discretization for TDFEM will be derived by a new approach.
     The major disadvantage of TDFEM is that a matrix equation needs to be solved in each time step, and it will result in a lower calculation efficiency of the whole system. Reduction of the complexity of the size or the form of the system matrix and development of the more efficient matrix solver are the two approaches to increase the calculation efficiency, and the first approach will be discussed only in this dissertation. The size of the system matrix mainly depends on the sizes of the computation domain and the grids. Besides the employment of the mesh generators with high performance, one can employ the efficient truncation boundary conditions in order to reduce the size of the computation domain.
     MEI (Measured Equation of Invariance) method was first used for finite-difference method as an absorbing boundary condition (ABC). Before long, the measured equation of invariance in time domain (TD-MEI) was innovated and applied to FDTD, and an accurate solution was obtained with a small computation domain. In this work, the measuring equation is derived by using the property of the basic function and the first order ABC, and the MEI-ABC is constructed. The analysis shows that MEI-ABC can maintain the sparsity of the system matrix.
     For the scalar electromagnetic problems, MEI-ABC can significantly reduce the size of the computation domain, and MEI-ABC is greatly superior to the first order ABC in the accuracy of the solution. The numerical results show that MEI-ABC generates the number of the unknowns being less than that of the first order ABC with the same accuracy.
     However, for the vector electromagnetic problems, MEI-ABC has the superiority no longer, and it will be unstable. A modified MEI-ABC is presented based on the invariance of MEI method, the surface impedance boundary condition in time domain (TDSIBC) is used, and it increases the accuracy significantly. However, the cost of the computation will go up consequently.
     Compared with MEI-ABC, perfectly matched layer (PML) can obtain better accuracy while need more computation time. In this dissertation, the conformal perfectly matched layer (CPML) is investigated and applied to TDFEM.
     CPML can be considered as a generalized PML, and the analysis shows that the geometry of CPML and the local constitutive parameters of the media strongly depend on the smallest convex surface enclosing the scatterer. Compared with PML, CPML has less PML domain and computation domain, thus results in less requisition of the unknowns and reducation of the computation complexity in each time step, the computation time reduces consequently. The numerical results demonstrate that CPML can employ a smaller computation domain than that of PML with the same accuracy.
     Based on the results of this dissertation, the new truncation boundary conditions will be of benefit to the future development of TDFEM.
引文
[1]Stratton.J.A.Electromagnetic theory[M].New York:McGraw-Hill,1941.
    [2]Harrington.R.F.Time-harmonic electromagnetic fields[M].2nd Edition.New York:McGraw-Hill,2001.
    [3]Felson.L.B,Marcuwitz.L.Radiation and scattering of electromagnetic Waves [M].New Jersey:Prentice-Hill,1973.
    [4]Felson.L.B.Transient electromagnetic fields[M].New York:Springer-Verlag Berlin Herdelberg,1976.
    [5]Chen.H.C.Theory of electromagnetic waves[M].New York:McGraw-Hill,1983.
    [6]Wait.J.R.Electromagnetic wave theory[M].New York:Harper and Row,1985.
    [7]Chew.W.C.Waves and fields in inhomogeneous media[M].New York:Van Nostrand Reinhold,1990.
    [8]Wait.J.R.Electromagnetic wave in stratified media[M].the 2nd Edition.New York:Pergramon Press,1970.
    [9]黄席椿.论波速[M].高等教育出版社,1985.
    [10]Collin.R.E.Field theory of guided waves[M].New York:McGraw-Hill,1960.
    [11]Balanis.C.A.Advanced engineering electromagnetics[M].New York:John Wiley and Sons,1989.
    [12]Hansen.T.B,Yaghijian.A.D.Plane-wave theory of time-domain fields[M].New York:Wiley-IEEE Press,1999.
    [13]Tyras.G.Radiation and propagation of electromagnetic waves[M].New York:Academic Press,1969.
    [14]Moon.P,Spencer.D.E.Field theory for engineers[M].New Jersey:D.Van Nostrand Company,1961.
    [15]戴振铎(美)著.电磁理论中的并矢格林函数[M].鲁述译.武汉大学出版社,1995.
    [16]冯慈璋.极化与磁化[M].高等教育出版社,1986.
    [17]杨儒贵,陈达章,刘鹏程.电磁理论[M].西安交通大学出版社,1992.
    [18]林为干.电磁场理论[M].人民邮电出版社,1996.
    [19]傅君眉,冯恩信.高等电磁理论[M].西安交通大学出版社,2000.
    [20]杨儒贵.电磁定理和原理及其应用[M].西南交通大学出版社,2002.
    [21]杨儒贵.电磁场与电磁波[M].第2版.高等教育出版社,2007.
    [22]彭仲秋.瞬变电磁场[M].高等教育出版社,1989.
    [23]汪文秉.瞬态电磁场[M].西安交通大学出版社,1991.
    [24]金亚秋.复杂系统中电磁波[M].复旦大学出版社,1995.
    [25]任朗.天线理论基础[M].人民邮电出版社,1980.
    [26]杨儒贵主编.高等电磁理论[M].高等教育出版社,2008.
    [27]陈传淼.科学计算概论[M].科学出版社,2007.
    [28]张均.电磁场边值问题的积分方程解法[M].高等教育出版社,1989.
    [29]刘梅林.二维时域有限元方法及其在电磁场分析中的应用[D].南京农业大学硕士论文.2006.
    [30]廖成.利用Thompson变换提高吸收边界条件的数值精度[D].西南交通大学博士后论文.1997.
    [31]吕英华.计算电磁学的数值方法[M].清华大学出版社,2006.
    [32]Harrington.R.F.Field computation by moment method[M].The MacMillan Company,1968.
    [33]Yee.K.S.Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J].IEEE Trans.Antennas Propagat.1966,14(5):302-307.
    [34]Engquist.B and Majda.A.Absorbing boundary conditions for the numerical simulation of waves[J].Mathematics of Computation.1977,31(139):629-651.
    [35]Mur.G.Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations[J].IEEE Trans.Electromagnetic Compatibility.1981,23(3):377-382.
    [36]Mei.K.K and Fang.J.Y.Superabsorption-a method to improve absorbing boundary conditions[J].IEEE Trans.Antennas Propagat.1992, 40(9):1001-1010.
    [37]Liao.Z.P,Wong.H.L,et al.A transmitting boundary for transient wave analyzes[J].Scientia Sinica(Series A).1984,27(10):1062-1076.
    [38]Berenger.J.P.A perfectly matched layer for the absorption of electromagnetic waves[J].Journal of Computational Physics.1994,114(7):185-200.
    [39]Gedney.S.D.An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices[J].IEEE Trans.Antennas Propagat.1996,44(12):1630-1639.
    [40]葛德彪,闫玉波.电磁波时域有限差分方法[M].西安电子科技大学出版社,2002.
    [41]王秉中.计算电磁学[M].科学出版社,2005.
    [42]余文华,苏涛,刘永俊,Mittra.R.并行时域有限差分[M].中国传媒大学出版社,2005.
    [43]Silvester.P.P.Finite element solution of homogeneous waveguide problems [J].Alta Freq.1969,38(5):313-317
    [44]Mei.K.K.Unimoment method of solving antenna and scattering problems [J].IEEE Trans.Antennas Propagat.1974,22(11):760-766.
    [45]Silvester.P.P and Hsieh.M.S.Finite-element solution of 2-dimensional exterior field problems[J].IEEE Proc.1971,118(12):1743-1747.
    [46]McDonald.B.H and Wexler.A.Finite-element solution of unbounded field problems[J].IEEE Trans.Microwave Theory Tech.1972,20(12):841-847.
    [47]Nedelec.J.C.Mixed finite elements in R~3[J].Numerische Mathematik.1980,35:315-341.
    [48]Marin.S.p.Computing scattering amplitudes for arbitrary cylinders under incident plane waves[J].IEEE Trans.Antennas Propagat.1982,30(11):1045-1049.
    [49]Jin.J.M,Volakis.J.L and Collins.J.D.A finite element-boundary intergral method for scattering and radiation by two-and three-dimensional structures[J].IEEE Trans.Antennas Propagat.1991,33(6):22-32.
    [50] Jiao. D. Advanced time-domain finite element method for electromagnetic analysis [D]. Ph.D. dissertation, Univ.Illinois,Urbana.2001.
    [51] Cangellaris. A. C, Lin. C. C and Mei. K. K. Point-matched time domain finite element methods for electromagnetic radiation and scattering [J].IEEE Trans. Antennas Propagat. 1987, 35(10): 1160-1173.
    [52] Feliziani. M and Maradei. F. Point matched finite element-time domain method using vector elements [J]. IEEE Trans. Magnetics. 1994, 30(5):3184-3187.
    [53] Lee. J. F. WETD-a finite element time-domain approach for solving Maxwell's equations [J]. IEEE Microwave and Guided Wave Letters.1994, 4(1):11-13.
    [54] Gedney. S. D and Navsariwala. U. D. An unconditionally stable finite element time-domain solution of the vector wave equation [J]. Microwave and Guided Wave Letters. 1995, 5(10): 332-334.
    [55] Lee. J. F and Sacks. Z. S. Whitney elements time domain (WETD) methods [J]. IEEE Trans. Magnetics. 1995, 31(3): 1325-1329.
    [56] Lee. J. F, Lee. R and Cangellaris. A. C. Time-domain finite-element methods [J]. IEEE Trans. Antennas Propagat. 1997, 45(3): 430-442.
    [57] Jiao. D and Jin. J. M. A general approach for the stability analysis of the time-domain finite-element method for electromagnetic simulations [J].IEEE Trans. Antennas Propagat. 2002, 50(11): 1624-1632.
    [58] Jiao. D and Jin. J. M. An effective algorithm for implementing perfectly matched layers in time-domain finite-element simulation of open-region EM problems [J]. IEEE Trans. Antennas Propagat. 2001, 50(11):1615-1623.
    
    [59] Jiao. D and Jin. J. M, et al. Time-domain finite-element simulation of three-dimensional scattering and radiation problems using perfectly matched layers [J]. IEEE Trans. Antennas Propagat. 2003, 51(2): 296-305.
    [60] Wang. S, Lee. R and Teixeira. F. L. Anisotropic-Medium PML for vector FETD with modified basis functions [J]. IEEE Trans. Antennas Propagat.2006, 54(1): 20-27.
    [61]D.Jiao,M.Lu,et al.A fast time-domain finite element-boundary integral method for electromagnetic analysis[J].IEEE Trans.Antennas Propagat.2001,49(10):1453-1461.
    [62]Jiao.D,Ergin.A,et al.A fast time-domain higher order finite-element boundary-integral method for 3D electromagnetic scattering analysis[J].IEEE Trans.Antennas Propagat.2002,50(9):1192-1202.
    [63]Dibben.D.C and Metaxas.R.Time domain finite element anslysis of multimode microwave applicators[J].IEEE Trans.Magnetics.1996,32(3):942-945.
    [64]Rodriguez-Esquerre.V.F,Koshiba.M,and Hernandez-Figueroa.H.E.Finite-element time-domain analysis of 2-D photonic crystal resonant cavities[J].IEEE Photonics Technology Letters.2004,16(3):816-818.
    [65]Petersson.L.E.R and Jin.J.M.A two-dimensional time-domain finite element formulation for periodic structures[J].IEEE Trans.Antennas Propagat.2005,53(4):1480-1488.
    [66]Petersson.L.E.R and Jin.J.M.A three-dimensional time-domain finite-element formulation for periodic structures[J].IEEE Trans.Antennas Propagat.2006,54(1):12-19.
    [67]Lou.Z and Jin.J.M.Modeling and simulation of broadband antennas using the time-domain finite element method[J].IEEE Trans.Antennas Propagat.2005,53(12):4099-4110.
    [68]Jin.J.M,Lou.Z,et al.Finite element analysis of complex antennas and arrays[J].IEEE Trans.Antennas Propagat.2008,56(8):2222-2240.
    [69]陈晓光,金亚秋,聂在平.轴对称有耗介质电磁问题的时域有限元方法[J].地球物理学报.1999,42(2):268-276.
    [70]Shao.Z.H,Hong.W.Generalized Z-domain absorbing boundary conditions for time-domain finite-element method[J].IEEE APS Int.Symp.Dig.2000:765-768.
    [71]李思敏.时域有限元法与模式匹配法的混合法[D].电子科技大学博士论文.2003.
    [72]Chew.W.C and Weedon.W.H.A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates [J]. Microwave Optical Technology Letters. 1994, 7(9): 599-604.
    
    [73] Pekel. U and Mittra. R. A finite element method frequency domain application of the perfectly matched layer(PML) concept [J]. Microwave and Optical Tech- nology Letters. 1995, 9(3): 117-122.
    
    [74] Pekel. U and Mittra. R. An application of the perfectly matched layer (PML) concept to the finite element method frequency domain analysis of scattering problems [J]. IEEE Microwave and Guided Wave Lettes. 1995,5(8): 258-260.
    
    [75] Sacks. Z. S, Kingsland. D. M, et al. A perfectly matched anisotropic absorber for use as an absorbing boundary condition [J]. IEEE Trans. Antennas Propagat. 1995,43(12): 1460-1463.
    
    [76] Gedney. S. D. An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices [J]. IEEE Trans. Antennas Propagat. 1996,44(12): 1630-1639.
    
    [77] Wu. J. Y, Kingsland. D. M, Lee. J. F, et al. A comparison of anisotropic PML to berenger's PML and its application to the finite-element method for EM scattering [J]. IEEE Trans. Antennas Propagat. 1997, 45(1): 40-45.
    [78] Jiao. D and Jin. J. M. An effective algorithm for implementing perfectly matched layers in time-domain finite-element simulation of open-region EM problems [J]. IEEE Trans. Antennas Propagat. 2001, 50(11):1615-1623.
    
    [79] Jiao. D, Jin. J. M, et al. Time-domain finite-element simulation of three-dimensional scattering and radiation problems using perfectly matched layers [J]. IEEE Trans. Antennas Propagat. 2003, 51(2): 296-305.
    [80] Rylander. T and Jin. J. M. Perfectly matched layer in three dimensions for the time-domain finite element method applied to radiation problems [J].IEEE Trans. Antennas Propagat. 2005, 54(1): 20-27.
    
    [81] Wang. S, Lee. R and Teixeira. F. L. Anisotropic-Medium PML for vector FETD with modified basis functions [J]. IEEE Trans. Antennas Propagat.2006, 54(1): 20-27.
    [82]Jin.J.M.The Finite Element Method in Electromagnetics[M].the 2nd Edition.New York:John Wiley and Sons,Inc,2001.
    [83]班永灵,聂在平,于哲峰.结合高阶矢量FE/BI方法的快速WCAWE计算[J].电子学报.2007,35(1):170-174.
    [84]班永灵,聂在平.高阶FE-BI方法及一种新型的预条件技术[J].电波科学学报.2007,22(2):196-203.
    [85]Jiao.D,Lu.M,et al.A fast time-domain finite-element-boundary-integral method for 2D electromagnetic transient analysis[J].IEEE APS Int.Symp.Dig.2000:1160-1163.
    [86]Jiao.D,Lu.M,et al.A fast time-domain finite element-boundary integral method for electromagnetic analysis[J].IEEE Trans.Antennas Propagat.2001,49(10):1453-1461.
    [87]Jiao.D,Ergin.A,et al.A fast time-domain higher order finite-element boundary-integral method for 3D electromagnetic scattering analysis[J].IEEE Trans.Antennas Propagat.2002,50(9):1192-1202.
    [88]White.D.A.Orthogonal vector basis functions for time domain finite element solution of the vector wave equation[J].IEEE Trans.Magnetics.1999,35(3):1458-1461.
    [89]Jiao.D and Jin.J.M.Three-dimensional orthogonal vector basis functions for time-domain finite element solution of vector wave equations[J].IEEE Trans.Antennas Propagat.2003,51(1):59-66.
    [90]Lou.Z,Petersson.L.E.R,et al.Total-and scattered-field decomposition technique for the finite element time-domain modeling of buried scatterers[J].IEEE Trans.Antennas and Wireless Propagation Letters.2005,4:133-137.
    [91]Lou.Z and Jin.J.M.A novel dual-field time-domain finite-element domaindecomposition method for computational electromagnetics[J].IEEE Trans.Antennas Propagat.2006,54(6):1850-1862.
    [92]Monorchio.A and Mittra.R.A hybrid finite-element finite-difference time-domain(FE/FDTD) technique for solving complex electromagnetic problems[J].IEEE Microwave and Guided Wave Letters.1998,8(2): 93-95.
    [93]Ooi.B.L,Fan.Y.J.Efficient hybrid TDFEM-PSTD method[J].Electronics Letters.2005,41(11):637-638.
    [94]李荣华.边值问题的Galerkin有限元法[M].科学出版社,2005.
    [95]金建铭(美)著.电磁场有限元方法.王建国译.西安电子科技大学出版社,1998.
    [96]Bossavit.A and Verite.J.C.A mixed FFM-BIEM method to solve 3-D eddy current problems[J].IEEE Trans.Magnetics.1982,18(3):431-435.
    [97]Jin.J.M and Liepa.V.V.Application of hybrid finite element method to electromagnetic scattering from coated cylinders[J].IEEE Trans.Antennas Propagat.1988,36(1):50-54.
    [98]Pearson.L.W,Whitaker.R.A and Bahrmasel.L.J.An exact radiation boundary condition for finite-element solution of electromagnetic scattering on an open domain[J].IEEE Trans.Magnetics.1989,25(7):3046-3048.
    [99]Engquist.B and Majda.A.Radiation boundary conditions for acoustic and elastic wave calculations[J].Comm.Pure Appl.1979,32:313-357.
    [100]Engquist.B and Majda.A.Absorbing boundary conditions for wave-like equations[J].Meth.Comput.1977,31:629-651.
    [101]Bayliss.A and Turkel.E.Radiation boundary conditions for wave-like equations[J].Comm.Pure Appl.1980,33:707-725.
    [102]Bayliss.A,Gunzburger.M and Turkel.E.Boundary conditions for the numerical solution of elliptic euqations in exterior regions[J].SIAM J.Appl.Math.1982,42:430-451.
    [103]Peterson.A.F.Absorbing boundary conditions for the vector wave equation [J].Microwave and Optical Technology Letters..1988,1(4):62-64.
    [104]Webb.J.P and Kanellopoulos.V.N.Absorbing boundary conditions for the finite element solution of the vector wave equation[J].Microwave and Optical Technology Letters.1989,2(10):370-372.
    [105]Yao Bi.J.L,Nicolas.L and Nicolas.A.Vector absorbing boundary conditions for nodal or mixed finite elements[J].IEEE Trans.Magnetics. 1996,32(5):848-853.
    [106]Deeley.E.M.A vector absorbing boundary condition for vector potential satisfying the Lorentz gauge[J].IEEE Trans.Magnetics.1996,32(5):858-861.
    [107]Sun.W and Balanis.C.A.A general class of vector absorbing boundary conditions for FEM applications[J].IEEE APS Int.Symp.Dig.1994:394-397.
    [108]Mei.K.K,Pous.R,et al.The measured equation of invariance:a new concept in field computations[J].IEEE APS Int.Symp.Dig,Chicago,1992:2047-2050.
    [109]Mei.K.K,Pous.R,et al.The measured equation of invariance:a new concept in field computations[J].IEEE Trans.Antennas Propagat.1994,42(3):320-328.
    [110]Gordon.R,Mittra.R,et al.An efficient numerical boundary condition for the truncation of the finite element meshes for the analysis of electromagnetic scattering by complex bodies[J].IEEE APS Int.Symp.Dig,1993:288-291.
    [111]Boag.A,Mittra.R and Brauer.J.R.A new absorbing boundary condition for finite difference and finite-element analysis of open structures[J].IEEE Microwave and Optical Technology Letters.1994,7(6):395-398.
    [112]张骅.旋转对称目标散射的有限元法研究[D].西北工业大学博士论文.2006.
    [113]Lee.J.F,Lee.R and Cangellaris.A.C.Time-domain finite element method [J].IEEE Trans.Antennas Propagat.1997,45(3):430-442.
    [114]Lu.M,Wang.J,et al.Fast evaluation of two-dimensional transient wave fields[J].Journal of Computational Physics.2000,114(7):185-200.
    [115]洪伟,孙连友等著.电磁场边值问题的区域分解算法[M].科学出版社,2005.
    [116]赵永久.吸收边界条件的研究及其应用[D].西安电子科技大学博士论文.1998.
    [117]Jevtic.J.O and Lee.R.A theoretical and numerical analysis of the measured equation of invariance [J]. IEEE Trans. Antennas Propagat. 1994,42(8): 1097-1104.
    [118] Jevtic. J. O and Lee. R. An analytical characterization of the error in the measured equation of invariance [J]. IEEE Trans. Antennas Propagat. 1995,43(10): 1109-1115.
    [119] Jevtic. J. O and Lee. R. How invariant is the measured equation of invariance? [J]. IEEE Microwave and Guided Wave Lettes. 1995, 5(2): 45-47.
    [120] Mei. K. K and Liu. Y. Comments on "A theoretical and numerical analysis of the measured equation of invariance" [J]. IEEE Trans. Antennas Propagat. 1995,43(10): 1168-1170.
    [121] Mei. K. K. Comment on "How invariant is the measured equation of invariance" [J]. IEEE Microwave and Guided Wave Lettes. 1995, 5 (11):417.
    [122] Hong. W and Mei. K. K. Application of the measured equation of invariance to the scattering problems of an anisotropic medium cylinder [J].IEEE APS Int. Symp. Dig. 1994: 2306-2309.
    [123] Hong. W, Liu. Y. W and Mei. K. K. Application of the measured equation of invariance to solve scattering problems involving a penetrable medium [J]. Radio Science. 1994, 29(7): 879-906.
    [124] 陈志宁,洪伟,章文勋.用MEI-FD方法分析 Chiral媒质的电磁散射问题[J].电波科学学报. 1995, 10(1,2): 115-123.
    [125] Chen. Z, Hong. W and Zhang. W. Electromagnetic scattering from a chiral cylinder-general case [J]. IEEE Trans. Antennas Propagat. 1996, 44(7):912-917.
    
    [126] Chen. Z, Hong. W and Zhang. W. Application of FD-MEI to the electromagnetic scattering from transversally anisotropic inhomogeneous cylinders [J]. IEEE Trans. Antennas Propagat. 1998, 40(5): 103- 110.
    [127] Sun. W, Dai. W and Hong. W. Fast parameter extraction of general interconnects using geometry independent measured equation of invariance [J]. IEEE Trans. Microwave Theory and Techniques. 1997, 45(5): 827-836.
    [128]Hong.W,Sun.W and Dai.W.Fast parameters extraction of multilayer and multiconductor interconnects using geometry independent measured equation of invariance[J].IEEE MCMC-96 Proceeding,1996:105-110.
    [129]Chen.J and Hong.W.Scattering analysis of 3-D body by MEI[J].IEEE APS Int.Symp.Dig.1997:310-313.
    [130]Qian.Z and Hong.W.Image reconstruction of conducting cylinder based on FD-MEI and genetic algorithms[J].IEEE APS Int.Symp.1998:718-721.
    [131]Wright.D.B and Cangellaris.A.C.Finite element grid truncation schemes based on the measured equation of invariance[J].Radio Science,1994,29(4):907-921.
    [132]Gothard.G.K,Rao.S.M,Sarkar.T.K and Palma.M.S.Finite element solution of open region electrostatic problems incorporating the measured equation of invariance[J].IEEE Microwave and Guided Wave Lettes.1995,5(8):252-254.
    [133]Mei.K.K and Liu.Y.W.On time domain measured equation of invariance [J].URSI Meeting,Seattle,Washington State,1994.
    [134]Mei.K.K.Measured equation of invariance and its application in frequency and time domain[J].EUROEM Dig.,Bordeaux,France,June,1995:925-932.
    [135]Liu.Y.W,Mei.K.K and Yung.K.N.Measured equation of invariance in time domain[J].IEEE APMC1997,1997:477-479.
    [136]Liu.Y.W,K.Lan,Liao.C and MEI.K.K,Time domain MEI method for radiation of a line source[J].IEE Electronic Letters,Jan.1999.
    [137]Liu.Y.W,Liao.C and et al.Absorbing boundary conditions for measured equation ofinvariance in time domain[J].IEEE APS Int.Symp.1998:1050-1053.
    [138]廖成.时域MEI方法初探[J].电波科学学报.2000,15(3):323-327.
    [139]杨丹,廖成,钟选明.时域MEI方法在矩形导体柱散射问题中的应用[J].微波学报.2003,19(1):16-19.
    [140]Liao.C and Wang.M.Conformal Thompson-FDTD method using MEI-ABC[J].IEEE ISAPE2000,2000:672-675.
    [141]文舸一.测度不变方程法及其应用[J].电子学报.1995,23(3):73-77.
    [142]Rius.J.M,Pous.R amd Cardama.A.Integral formulation of the measured equation of invariance:a novel sparse matrix boundary element method[J].IEEE Trans.Magnetics.1996,32(3):962-967.
    [143]Liu.Y.W,Mei.K.K and Yung.K.N.Differential formulation of on-surface measured equation of invariance for 2-D conducting scattering [J].IEEE Microwave and Guided Wave Lettes.1998,8(2):99-101.
    [144]Chen.J,Hong.W and Jin.J.M.An iterative measured equation technique for electromagnetic problems[J].IEEE Trans.MTT.1998,46(1):25-30.
    [145]Liu.Y.W and Mei.K.K.A new approach to decompose MoM matrix to sparse matrices by using the concept of MEI method[J].IEEE APS Int.Symp.1999:788-791.
    [146]Liu.Y.W,Zhao.Y.W and Mei.K.K.Acceleration of on-surface MEI method by new metrons and FMM for 2-D conducting scattering[J].IEEE Trans.Antennas Propagat.2000,48(8):1255-1257.
    [147]Lou.Z,Gu.M and Xu.Y.Measured equation fo invariance solution of 2-D scattering problems using line sources as metrons[J].IEEE APS Int.Symp.2003:323-326.
    [148]Xu.Y.S and Chen.H.M.Validity of the measured equation of invariance [J].IEEE Trans.Antennas Propagat.1999,47(12):1301-1304.
    [149]郭美丽.MEI方程病态性研究[D].电子科技大学硕士论文.2006.
    [150]Zhang.S,Liu.Y and Yang.R.Application of TD-MEI method in FEMTD [J].IEEE Proceeding APMC2005.Suzhou,China:1840-1841.
    [151]Zhang.S,Liu.Y and Yang.R.A new absorbing boundary condition for FEMTD[J].IEEE Proceeding ISAPE2006.Guilin,China:926-928.
    [152]Zhang.S,Liu.Y and Yang.R.Application of MEI-ABC in edge-based finite element method in time domain[J].IEEE Proceeding ICMMT2008.Nanjing,China:764-765.
    [153]南京工学院数学教研组.积分变换[M].第三版.高等教育出版社,1989.
    [154]Chew.W.C,Jin.J.M and E.Michielssen.Complex coordinate stretching as a generalized absorbing boundary condition[J].Microwave and Optical Technology Letters.1997,15(6):363-369.
    [155]Teixeira.F.L and Chew.W.C.A general approach to extend Berenger's absorbing boundary condition to anisotropic and dispersive media[J].IEEE Trans.Antennas Propagat.1998,46(9):1386-1387.
    [156]Teixeira.F.L and Chew.W.C.General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media[J].IEEE Microwave and Guided Wave Letters.1998,8(6):223-225.
    [157]Xu.X and Sloan.R.Arbitrarily oriented perfectly matched layer in the frequency domain[J].IEEE Trans.MTT.2000,48(3):461-463.
    [158]Teixeira.F.L and Chew.W.C.Analytical derivation of a conformal perfectly matched absorber for electromagnetic waves[J].Microwave and Optical Technology Letters.1998,17(4):231-236.
    [159]Ozgun.O and Kuzuoglu.M.Non-Maxwellian locally-conformal PML absorbers for finite element mesh truncation[J].IEEE Trans.Antennas Propagat.2007,55(3):931-937.
    [160]任朗,廖成,王敏锡.数学物理基础[M].西南交通大学出版社,2002.
    [161]刘昆,王晓斌,廖成.图形处理器_GPU_加速时域有限元的二维辐射计算[J].电波科学学报.2008,23(1):111-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700