MEMS惯性器件参数辨识及系统误差补偿技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微机电系统(MEMS)惯性传感器具有成本低、体积小、测量范围大、可靠性高和易于实现数字化等优点,基于MEMS惯性器件的导航、制导技术得到了迅速发展,并被广泛应用到汽车工业、生物医学工程、航天航空、精密仪器、移动通信、国防科技等领域。
     但是MEMS惯性器件存在测量精度低、噪声大等缺点,需要采取一些必要的措施以提高其精度,除了优化机械结构设计,提高电子线路的性能,以及采取屏蔽外部电磁干扰措施之外,另一种有效的途径是:从应用的角度对MEMS惯性器件和微惯性测量单元(MIMU)进行误差分析及补偿,提高系统的测量精度。为此,全文进行了以下几个方面研究:
     (1)提出了虚拟陀螺技术具体的实施方案,即在MIMU的每个测量轴上放置了3个单独的MEMS陀螺,组成一个阵列测量同一个角速度,然后通过多个同类传感器的信息融合技术,实现优于单个传感器的性能的目的。首先设计陀螺信号仿真器,仿真产生相关性很小、较小和很大时3种情况下的陀螺信号,验证所设计的虚拟陀螺系统的正确性。然后采集实际系统中MIMU的陀螺信号,分析得到其相关系数约为0.07,再用陀螺信号仿真器产生该相关强度的陀螺信号,7组数据的Monte-Carlo仿真分析发现,虚拟陀螺的精度提高了2.1~3.6倍,而实测数据融合的虚拟陀螺的精度最大提高2.7倍,最小1.9倍。因此,在比较仿真和试验结果后,找出了影响虚拟陀螺的精度的因素,并提出了提高虚拟陀螺精度的具体措施。
     (2)在实验室标定时,由于MIMU中的加速度计和陀螺均存在较大的测量噪声,尤其是陀螺敏感到的地球自转角速度ω_(ie)几乎全部被噪声淹没,因此标定中的两个基准量ω_(ie)和g(重力加速度)受到严重干扰。另外,MIMU的3个测量轴之间不正交的失准角非常大,有时达到5°以上,传统的标定模型和方法不再完全适用。课题中针对这两个问题提出了一种工程实用性强的高精度标定方法,分两级、两步完成对MIMU的标定。首先在元件级标定中,设计Kalman滤波器估计出加速度计和陀螺的零位、刻度因数和二次项系数等。其次进行IMU级标定,在该级标定时,先采用传统的标定方法对不正交角和安装误差角进行粗标定;然后在详细地推导出精确标定模型基础上,以粗标定的结果作为初值进行参数寻优,这样减少了参数寻优时发散的风险,加快了寻优的速度。在设计标定编排试验方案时,采用回归D-最优设计,对试验进行优化,这样准确地估计出MIMU中的陀螺、加速度计的刻度因数误差、不正交角和在三轴转台上的安装误差角等。最后通过试验验证该标定方法,试验结果表明新方法快速、有效,而且不需要额外的设备和繁琐的解耦计算,具有较强的通用性和简便性。
     (3)MIMU的动态误差是影响系统精度的主要因素。在分析引起系统动态误差的原因后,将动态误差分为刻度因数不对称性误差、非线性误差和由角加速度引起的误差三类,针对这三类误差提出了相应的补偿模型和方法,在通常的陀螺测量模型中增加角速度绝对值项|ω|,以补偿不对称性误差,然后对该改进的模型进行自适应分段,以补偿其非线性误差,最后利用三轴转台速率试验一次性辨识出角加速度项误差系数。补偿前后的试验结果表明,所设计的动态误差补偿方案将系统的姿态测量精度提高约5倍。
     (4)温度对惯性器件精度的影响主要与环境温度、温度变化速率、温度梯度有关。从惯性器件结构机理定量分析温度的影响,建立误差机理模型比较困难,因此尝试从试验的角度建立误差补偿模型,并针对传统的温度误差标定方法中的不足,提出了一种全温范围内改进的标定方法,新方法最大的特点是将零位和标度因数统一标定,建立以器件温度、器件温度变化率、环境温度、环境温度变化率和输出电压等5个量为输入,角速度、加速度测量为输出的MIMU全温范围内温度误差补偿模型,然后采用逐步回归分析方法,优化MIMU温度分段误差补偿模型,试验结果表明,经过补偿后的加速度计和陀螺在全温范围内误差分别保持在10mg和0.04°/s以内,这样有效地降低了温度非线性对MIMU测量精度的影响,从而提高了MIMU在全温度范围内的测量精度,达到了工程实用的目的。
     (5)研究了MEMSINS与倾角传感器(SPS003)、电子罗盘(EC)进行组合导航的方式,首先推导出MEMS INS和SP5003的姿态测量模型,然后采用频域辨识技术辨识出SP5003的测量模型中的参数和采用椭圆假设罗差补偿方法补偿EC的罗差,再将MEMSINS、SP5003、EC和陀螺等四者的测量模型进行组合,得到完整组合导航系统模型,最后设计一个最优状态观测器,对3个陀螺的常值漂移进行在线估计和补偿,提高了系统的航姿测量精度。组合系统在三轴转台上的摇摆试验和跑车试验都证明了这种异类传感器信息融合方法正确、有效。
Due to the advantages of MEMS inertial sensor, such as low cost, small size, high reliability, large measurement range and easy to digitations, the navigation technology using MEMS inertial sensors has been developed rapidly and widely used in such field as auto industry, biomedicine, aerospace, precision instruments, national defense, etc.
     However, MEMS inertial sensors have shortcomings like low measurement precision and high noise that need to be overcome. Besides optimizing the mechanism structure, enhancing the circuit performance and shielding external electromagnetic disturbance, another effective approach to fabricate moderate accuracy system with low precision inertial instrument is to analyze, modeling and filter the information of MEMS inertial sensors, to exploit new high calibration method, and to fuse information with alike or unlike sensors.
     To achieve the purpose what has been discussed above, the dissertation includes several works as follows:
     Contrive a great deal experiments to analyze the signals of gyros and accelerators in MIMU thoroughly. Those analyses method are spectrum analysis, autocorrelation function analysis, PSD analysis, Allan variance and wavelet analysis, and so forth. The results of experiments were used to know the performance index detail and then estimate the limit navigation precision of MEMS INS on the one hand. On the other hand, the noise statistics of gyros and accelerators provide gist for the parameter design of Kalman filter later, and so help avoiding emanation of Kalman filter due to the inaccurate statistics of model and observation noise.
     "Virtual Gyro" technology was presented to improve the sensor performance. The "Virtual Gyro", which has the same meaning with the JPL lab, was realized by using three MEMS gyros on each measure axes to get the same angular velocity and fusing the information by information fusion technology. This paper brings forward the implementation detail of "Virtual Gyro" technology after introducing its principle. Through simulating gyro signal under situations of awfully small, small and large relativity, the correctness of virtual gyro Kalman filter was validated. And then, practical gyro signals of MIMU was collected and processed. The experiment result shows that virtual improve the whole precision by about 1.9 times minimum and 2.7 time maximum. Besides, the dissertation put forward three methods to improve the relativity of gyro signal.
     Discussed high precision calibration means when there exists large misalignment in MIMU. This method includes two levels and two steps: component level calibration and MIMU level calibration. Component calibration analyzes the measurement error reason of MEMS inertial components according to the principle of gyro and accelerator first. And design Kalman filter to estimate the error index. In this level, the practical effect of Kalman filter was not as effective as simulation. The reason for this instance was due to the inaccuracy of model. In the end, advanced Kalman filter which absorbed process virtual noise had an excellent performance. MIMU calibration was a must because of the non-orthogonal angle and turntable installation error. An precision measurement model of MIMU was built first based on reasonable hypothesis for one thing and seeking parameters with restriction using least square method for another thing. The first step of calibration is coarse calibration using conventional method. In this step, three axis point to sky and ground for once separately and compute the coarse value of non-orthogonal angle. The second step is to design an optimal experiment project according the D-optimal principle for MIMU precision measurement model.
     Established dynamic error model and identified the coefficients to improve navigation system precision. Through testing method to establish the dynamic error measurement model, then parameter identification to calibration for MIMU and a mass of experiments to validate the model finally, the effectiveness of model and error compensation were proved.
     Cut down the influence of temperature on the inertial instruments. The influence of temperature on inertial instruments precision mainly related to environment temperature, temperature variation rate and temperature gradient, this paper develop compensation model due to the difficulty of mechanism model and put forward an advanced calibration method in whole temperature range to solve the defect of conventional temperature error calibration. This method takes component temperature, temperature variation rate, environment temperature and its rate, and output voltage for input, and takes angular velocity and accelerator measurement for output. It uses stepwise regression analysis to get optimized segment error compensation model. Significance analysis and experiment show that this advanced method cut down the influence of temperature variance to MIMU.
     Discussed integration navigation of MEMS INS and EC. From the angle of combination model, an optimized observation was designed to combine the output of gyros, accelerators, tilt sensor and magnetic compass, and so on. This integration can get relatively precision estimation of inclination and heading angle as well as the constant drift of three gyros.
引文
[1]张文栋(译).微传感器与微执行器全书[M].北京:科学出版社,2003
    [2]Weinberg M.,Bernstein J.,Cho S.,King A.T.,Kourepenis A.,Maciel P.A Micro machined Comb-Drive Tuning Fork rate Gyroscope[C],Proceedings of the Institute of Navigation 49th Annual Meeting,Cambridge,MA,June 21-23,1993:595-602P
    [3]Helsel M.,Gassner G.,Robinson M.and Woodruff J.A.A Navigation Grade Micro-Machined Silicon Accelerometer[C].Proceedings IEEE 1994 Position,Location and Navigation Symposium,Las Vegas,NV,April 11-15,1994:51-58P
    [4]Warren K.Electro statically Force-Balanced Silicon Accelerometer[J].NAVIGATION,Journal of the Institute of Navigation,1991,38(1):91-99P
    [5]Kourepenis A.,Petrovich A.and Weinberg M.Low Cost Quartz Resonant Accelerometer for Aircraft inertial Navigation[C].Proceedings of the IEEE International Conference on Solid State Sensors and Actuators,1991,June:24-28P
    [6]宋丽君.基于MEMS器件的航向姿态测量系统的研究.西北工业大学硕士学位论文[D],2007.
    [7]李新刚,袁建平.微机械陀螺的发展现状[J].力学进展,2003.33(3):289-301
    [8]Tanaka K,Mochida Y,Suzimoto M,et al.A micro machined vibrating gyroscope[J].Sensors and Actuators,1995,A50:111-116P
    [9]Weinberg M,Bernstein J,Cho S,et al.A micro-machined comb drive tuning fork gyroscope for commercial applications[C].In:2nd St.Petersburg International Conference on Gyroscopic Techno logy and Navigation.St.Petersburg,Russia,M ay,1995.
    [10]Greiff P,Antkowiak B,Campbell J,et al.Vibrating wheel micromechanical gyro[C].In:IEEE PLAN S,April,1996
    [11]Hashimoto M,Cabaz C,Minami K,et al.Silicon resonant angular rate sensor using electromagnetic excitation and capactive detection[J].J Mircromech Microeng,1995,5:219-225P
    [12]朱二辉.微机械陀螺的动力学特性研究[D]西安理工大学硕士学位论文,2006
    [13]www.dtic.mil/mctl/MCTL/IndexMCTLTechData.pdf
    [14]Bradford S.Davis,Tim Denison,Jinbo Kaung.A monolithic high-g SOI-MEMS accelerometer for measuring projectile launch and flight accelerations[J].Shock and Vibration,2006,13(2):127-135P
    [15]Yann Le Coq.Jocelyn A.Retter.Coherent matter wave inertial sensors for precision measurements in space[C].ARXIV:condmat/051520,26 Jan.,2005
    [16]Greiff,P.,Boxenhorn,B.,King,T.,Niles,L..Silicon monolithic micromechanical gyroscope [C].In:Proceedings of transducers'91,San Francisco,CA.June 1991:966-968
    [17]J.Bernstein,S.cho,A.T.King,Kourepenis,P Maciel,and M.Weinberg.A micromachined comb-drive tuning fork rate gyroscope[C].in Proc.IEEE Microelectromechanical Systems,Fort Lauderdate,FL,Feb.7-10,1993:143-148P
    [18]Putty,M.and Najafi,K..A micromachined vibrating ring gyroscope[C].In:Solid state sensor and actuator workshop,Hilton head Island,SC,June 1994:213-220P
    [19]W.A.Clark,R.T.Howe,and R.Horowitz,Surface Micromachined z-axis vibratory rate gyroscope[C],in Proc.Tech.Dig.Solid-State Sens.Actuator Workshop,Hilton Head Island,SC,June 3-6,1996:283-287P
    [20]T.Juneau,A.P Pisano,and J.H.Smith,Dual axis operation of a Micromachined rate gyroscope,in Tranducers,Chicago,1L,June 16-19,1997:883-886P
    [21]M.Lutz,W.golderer,J.Gerstenmeier,A precision yaw rate sensor in silicon micromachining[C],in Tech.Dig.9th Int.Conf.Solir-state Sensors and Actuators(Transducers'97),Chicago,IL,June 1997:847-850P
    [22]T.Juneau,A.P.Pisano,J.H.Simth,Dual axis operation of a micromachined rate gyroscope[C],in Tech.Dig.9th Int.Conf.Sold-state Sensors and Actuators (Transducers'97),Chicago,IL,June 1997:883-886P
    [23]F.Ayazi,K.Najafi,Design and fabrication of a high performance polysilicon Vibrating ring gyroscope[C],in Proc.IEEE Micro Electro Mechanical Systems workshop (MEMS'98) Heideberg,Germany,Feb.1998:621-626P
    [24]T.K.Tang et al.A packaged silicon MEMS vibratory gyroscope for microspacecraft[C].in Proc.10th IEEE Int.Con.Microelectromechanical Systems,Nagoya,Japan,Jan.26-30,1997:500-505P
    [25]Varadan V V,Varadan V K.MEMS-IDT based micro accelerators and gyroscope[C].Royal Pines Resort,Queensland,Aurtualia:1999 SPICE comference on Electronics and Structures for MEMS,1999,891 (3):134-144P
    [26]Y Mochida,M.Tamura,and K.Ohwada.A micromachined vibrating rate gyroscope with independent beams for the drive and detection modes[C].in Proc.12th IEEE Int.Conf Microelectromechanical Systems,Orlando,FL,Jan.17-21,1999:618-623P
    [27]Neil Barbour and George Schmidt.Inertial Sensor Technology Trends[J].I EEE SENSORS JOURNAL,2001,1(4):332-339P
    [28]Anderson R S,Hanson D S,Kourepenis A S.Evolution of low-cost MEMS inertial system technologies[C].ION GPS 2001,11-14 September 2001,Salt Lake City,Utah,USA
    [29]Hao Luo,Xu Zhu,Hasnain Lakdawala,L.Richard Carley and Gary K.Fedder.A Copper CMOS-MEMS Z-axis gyroscope,in Proc.15th IEEE Int.Conf Microelectromechanical Systems,Las Vegas,NV,Jan.21-25,2001:631-634P
    [30]Huikai Xie and Gary K.Fedder,.Fabrication,characterization,and analysis of a DRIE CMOS-MEMS gyroscope[J].Sensors Journal,IEEE Volume 3,Issue 5,Oct.2003:622-63 IP
    [31]Geiger,W;Butt,W.U.;Gaisser,A.;Frech,J.Decoupled microgyros and the design principle DAVED[C],Micro Electro Mechanical Systems,2001.The 14th IEEE International Conference on 21-25 Jan.,2001:170-173P
    [32]Said Emre Alper,Tayfun Alkin,Symmetrical and decoupled nickel microgyroscope on insulating substrate[J].Sensors and Actuators A:Physical,Volume 115,Issues 2-3,21 September 2004:336-350P
    [33]Jun L.,Kejie L.,Summarize of research based on MIMU integration storage test system[C],Proceedings of the International Symposium on Test and Measurement,2004:61-64P
    [34]Byoung-doo Choi;Sangjun Park;Hyoungho Ko.The first Sub-deg/Hr Bias stability Silicon-microfabricated gyroscope[C].Solid-State Sensors.The 13th International Conference on Volume 1,5-9 Jun.,2005:180-183P
    [35]M.F.Zaman,A.Sharma,B.V Amini.The Resonating Star Gyroscope[C].Micro Electro Mechanical Systems,2005.18th IEEE International Conference on 30 Jan.-3 Feb.2005:355-35gP
    [36]李荣冰等.基于MEMS技术的微型惯性导航系统的发展现状.中国惯性技术学报[J],2004,12(6):88-94页
    [37]Kourepenis A,Connelly J,Sitomer J.Low cost MEMS inertial measurement unit[A].ION NTM 2004[C].Jan 26-28,2004,San Diego,California,USA
    [38]Wayne Soehren,Brain Schipper.A MEMS-based guidance,navigation,and control unit[C].Position Location and Navigation Symposium,IEEE,2002(4):189-195P
    [39]Cardarelli D.An integrated MEMS inertial measurement unit[C].Position Location and Navigation Symposium,2002 IEEE.15-18 April 2002:314-319P
    [40]Scaysbrook,I.W.,Cooper,S.J.,Whitley,E.T.A miniature,gun-hard MEMS IMU for guided projectiles,rockets and missiles[C].Position Location and Navigation Symposium,2004.PLANS 2004,26-29 April 2004:26-34P
    [41]Nadim Maluf;Kirt Williams.An Introduction to Microelectro mechanical Systems Engineering(second edition)[M].Attach House,2002
    [42]Jaffe,R.;Aston,T.;Madni,A.M.;Advances in Ruggedized Quartz MEMS Inertial Measurement Units[C].Position,Location,And Navigation Symposium,2006 IEEE/ION.April 25-27,2006:390-399P
    [43]http://www.systron.com
    [44]http://www.dodsbir.net/sitis/archives_display_topic.asp?Bookmark=28561
    [45]http://www.motionnode.com
    [46]http://www.memsense.com/?gclid=COT01obulpECFQwbegod-TjWZQ
    [47]Johnson,W.M.;Phillips,R.E.;Space avionics stellar-inertial subsystem.Digital Avionics Systems[C],2001.DASC.The 20th Conference,Vol.2,14-18 Oct.2001 Page(s):8D2/1-8D2/9
    [48]OsianderR,DarrinM G,Champion JL.MEMS and Micorostructures in Aerospace Application[M].CRC Press,2006
    [49]Mohr,B.B.;Fitzpatrick,D.L.;Micro air vehicle navigation system[J].Aerospace and Electronic Systems Magazine,IEEE.Vol.23,Issue 4,April 2008:19-24P
    [50]Shkel,A.M.;Type Ⅰ and Type Ⅱ Micromachined Vibratory Gyroscopes[J].Position,Location,And Navigation Symposium,2006 IEEE/ION,April 25-27,2006:586-593P
    [51]刘安鹏,基于MEMS技术的微型组合导航系统建模[D],西北工业大学硕士学位论文,2005
    [52]王喆垚.微系统设计与制造[M].北京:清华大学出版社,2008
    [53]C.C.Painter and A.M.Shkel,Structural and Thermal Modeling of a Z-Axis Rate Integrating Gyroscope[J],Journal of Micromechanics and Microengineering,13(2),March 2003:229-237P
    [54]Chris C.Painter and Andrei M.Shkel,Active Structural Error Suppression in MEMS Rate Integrating Gyroscopes[J].IEEE Sensors Journal,2003,3(5):595-606P
    [55]W.O.Davis and A.P.Pisano.Nonlinear Mechanics of Suspension Beams for a Micromachined Gyroscope[C].Technical Proceedings of the 2001International Conference on Modeling and Simulation of Microsystems,2001:270-273P
    [56]S.V.Iyer,H.Lakdawala,T.Mukherjee and G.Fedder,Modeling Methodology for a CMOS-MEMS Electrostatic Comb[C].in Design,Test,Integration and Packaging of MEMS/MOEMS(DTIP '02),2002,Cannes,France:114-125P
    [57]S.V.Iyer,Y.Zhou and T.Mukherjee,Analytical Modeling of Cross-axis Coupling in Micromechanical Springs[C],in Technical Proceedings of the Second International Conference on Modeling and Simulation of Microsystems(MSM '99),1999,San Juan,PR,USA.:632-635P
    [58]陆元九.惯性器件(上、下)[M],北京:宇航出版社,1997,P607.
    [59]柴卫华.捷联系统初始对准及惯性器件测试技术研究[D].哈尔滨工程大学硕士学位论文,2005
    [60]范胜林等,捷联系统陀螺静态漂移参数标定[J],中国惯性技术学报,2000.3,8(1):42-46页
    [61]陈璞等,速率偏频激光陀螺标定方法讨论[J],中国惯性技术学报,2001,9(2):44-47页
    [62]宋旭滨.捷联惯导系统中陀螺初始测漂[J].航天控制,1993,No.3:36-42页
    [63]胡汉文,刘新文.捷联惯性部件标度系数、常值漂移的标定[J],导航,1990,No.1:9-17页
    [64]吴光欲,一种实用的陀螺漂移系数测试方法[J],航天控制,1998,No.3:62-66页
    [65]熊永明,杨五强.伺服法陀螺测试的建模方法[J],导航,1991.9,No.3:29-35页
    [66]高钟毓.微机械陀螺原理与关键技术[J].仪器仪表学报,1995,17(1):40-44
    [67]李建利,房建成.改进的MEMS陀螺静态误差模型及标定方法[J],宇航学报,2007,28(6):1614-1618页
    [68]李荣冰,刘建业,孙永荣.MEMS-IMU构型设计及惯性器件安装误差标定方法[J].中国惯性技术学报,2007,15(5):526-529页
    [69]张海鹏,房建成.陀螺标度因数与输入轴失准角解耦测试研究[J].宇航学报,2007,28(5):1161-1166页
    [70]Eun-Hwan Shin,Naser EI-Sheimy.A new calibration method for strapdown inertial navigation systems[J].Z.Vermess.127.2002:41-50P
    [71]Z F Syed,P Aggarwal,C Goodall.A new multi-position calibration method for MEMS inertial navigation systems[J].MEASUREMENT SCIENCE AND TECHNOLOGY,2007,No.18:1897-1907P
    [72]李杰,洪惠惠,张文栋.MEMS微惯性测量组合标定技术研究[J].传感技术学报,2008,21(7):1169-1173页
    [73]陈熙源等,捷联陀螺漂移误差模型辨识及其应用[J],东南大学学报,1997,27(8):19-23页
    [74]张卫东等,捷联惯性测量组合标定的仿真研究[J],中国惯性技术学报,2000,3(2):10-15页
    [75]Averil B.Chatfield.Fundamentals of High Accuracy Inertial Navigation[M].Published by American Institute of Aeronautics and Astronautics,Inc.1997:79-99P
    [76]滕玉琨.惯性平台速率转动标定方法的滤波器设计与误差分析[J],导航,1996,No.3:56-61页
    [77]崔鹏辉.捷联惯导系统的测漂定标[D].哈尔滨工程大学硕士毕业论文,2000
    [78]李冠华.一种新的速率陀螺测试方法[J].宇航计测技术,1999,19(3):56-59页
    [79]芮俊丽.捷联系统陀螺仪动、静态误差补偿研究[J].导航,1999,No.4:17-22页
    [80]姜复兴.捷联陀螺动态误差系数的正交三轴速率试验标定及其实验设计[J].中国惯性技术学报,1997,5(2):32-36页
    [81]陈熙源.捷联陀螺动态误差系数的标定方法研究[J].东南大学学报,1998:28(2):114-119页
    [82]李建利,杜敏,陈凡红.硅MEMS陀螺动态误差建模及系统仿真[J].系统仿真学报,2008,20(3):567-569页
    [83]李汉舟,刘修彦.挠性捷联惯性导航系统误差补偿技术[J].中国惯性技术学报,2007,15(4):403-406页
    [84]李建利,房建成,盛蔚.MEMS陀螺标度因数误差分析及分段插值补偿[J].北京航空航天大学学报,2007,33(9):1064-1067页
    [85]万彦辉,裴听国.陀螺系统非线性误差的自适应补偿技术[J].战术导弹控制技术,2003,No.2:12-15页
    [86]刘波,李学锋.速率捷联惯导系统陀螺仪误差分段补偿技术研究[J].航天控制,2005,23(1):72-75.页
    [87]张志鑫,夏金桥,蔡春龙.光纤陀螺标度因数分段标定的工程实现[J].中国惯性技术学报,2008,16(1):99-103页
    [88]Malcolm Varnham,Timothy S.Norris,James Mclnnes,et al.Scale factor compensation for piezo-electric rate sensors[P].USA:5540094,1996
    [89]Wolfgang Tschanun.Method and device for stabilizing the scale factor of a fiber optic gyroscope[P].USA:6373048,2002
    [90]Yang Jing,ChangWook,Bang Won chul,et al.Analysis and compensation of error in the input device based on inertial sensors[C].The International Conference on Information Technology:Coding and Computing.Michigan:IEEE,2004
    [91]Rongsheng Li,Hacienda Heilghts.Autonomous gyro scale factor and misalignment calibration[P].USA:6298288,2001
    [92]Frederick Aronowitz.In-flight scale factor calibration of ring laser gyro systems[P].USA:5076694,1991
    [93]Manfred Krings.Method for determining and compensating the scale factor error caused by a wavelength change in a GPS-based inertial navigation system[P].USA:7130744,2006
    [94]Rongsheng Li,Yeong-Wei Wu,David L.Augenstein.Attitude determination system and method with outer-loop gyro scale-factor non-linearity calibration[P].USA:6615117,2003
    [95]冯培德,李四海.两种零速校准方案的比较[J].中国惯性技术学报.1993,1(3):1-4页
    [96]林玉荣,邓正隆,激光陀螺捷联惯导系统中惯性器件误差系统级标定[J].哈尔滨工业大学学报,2001,33(1):112-115页
    [97]许刚,陆凯,田蔚风.惯导与GPS组合系统中实时自适应卡尔曼滤波技术的研究[J].中国惯性技术学报.1996,4(3):1-5页
    [98]H.Rehbinder and X.Hu,Nonlinear state estimation for rigid-body motion with low-pass sensors[J],Systems&Control Letters,Elsevier,Netherlands,2000,40(3):183-190P
    [99]John Leavitt,Athanasios Sideris,James E.Bobrow.High Bandwidth Tilt Measurement Using Low-Cost Sensors[J].IEEE/ASME TRANSACTIONS ON MECHATRONICS,2006,11(3):320-327P
    [100]A.J.Baerveldt and R.Klang,A low-cost and low-weight attitude estimation system for an autonomous helicopter[C],in Proc.IEEE Conf.Intelligent Engineering Systems,1996,391-395P
    [101]陈熙源,函数型神经网络在捷联陀螺非线性估计中的应用[J].盐城工学院学报,2000,13(1):8-10页
    [102]Baglio S,Savalli N,Castorina S.Theoretical study,modeling and realization of resonant gyroscopes with optical output.Sensors[A].Proceedings of IEEE[C].Vol.2,June 12-14,2002:1069-1074.P
    [103]李晓莹,胡敏,张鹏等.交叠式Allan方差在微机械陀螺随机误差辨识中的应用,西北工业大学学报[J].2007,25(2):225-229页
    [104]李战,冀邦杰,国琳娜.光纤陀螺漂移信号的Allan方差分析[J].鱼雷技术.2007,No.4:28-30页
    [105]郭秀中.惯导系统陀螺仪理论[M].国防工业出版社,1996:1-17页
    [106]杨叔子,吴雅.时间序列分析的工程应用(第二版)[M].武汉:华中理工大学出版社,1991
    [107]苏岩,王寿荣,周百令.AR模型在动力调谐陀螺仪漂移补偿中的应用[J].中国惯性技术学报[J],1997,(3):24-28页
    [108]柳贵福,张树侠.光纤陀螺零漂数据滤波方法的研究[J].中国惯性技术学报,2001,9(4):66-69页
    [109]张智永,范大鹏,李凯.微机电陀螺零点漂移数据滤波方法的研究[J].中国惯性技术学报,2006,14(4):67-69页
    [110]吉训生.王寿荣.硅微陀螺漂移数据滤波方法研究[J].传感技术学报.2008,21(2):333-336页
    [111]梯度RBF神经网络在MEMS陀螺仪随机漂移建模中的应用[J].中国惯性技术学报,2006,14(4):44-48页
    [112]朱利平.基于神经网络的微硅陀螺输出补偿系统研究[J].南京航空航天大学硕士学位论文,2005
    [113]李冠中,王雷.基于模糊神经网络的MEMS陀螺温度漂移建模[J],厦门大学学报(自然科学版),2008,47(4):511-513页
    [114]赵世峰,张海,范耀祖.MEMS陀螺随机漂移多尺度滤波方法[J].中国惯性技术学报,2007,15(2):229-232页
    [115]吉训生,王寿荣.小波变换在MEMS陀螺仪去噪声中的应用[J].传感技术学报,2006,19(1):150-152页
    [116]张文博,李凯,朱尤攀等.光电稳定跟踪平台中微机电陀螺滤波方法研究[J].红外技术,2006,28(5):249-252页
    [117]用哲,张良杰.基于小波分析的陀螺漂移趋势项提取[J].中国惯性技术学报,1999,7(4):8-41页
    [118]卢海曦,夏敦柱,周百令.基于遗传小波神经网络的MEMS陀螺误差建模[J].中国惯性技术学报,2008,16(2):216-219页
    [119]傅建国,王孝通,李博等.MEMS陀螺随机误差模型研究[J].传感器技术,2005,24(3):75-77页
    [120]杨金显,袁赣南,周卫东.基于局域波分解的微机械陀螺信号提取研究[J].宇航学报,2008,29(4):1341-1344页
    [121]马建军,李文强,郑志强.MIMU随机误差分析与建模[J].压电与声光.2007,29(4):483-486页
    [122]Schwarz,K.P.,Wei,M.:INS/GPS Integration for Geodetic Applications[D].Lecture Notes ENG0623,Department of Geomatics Engineering,the University of Calgary,Canada,2000
    [123]Merhav,S.Areospace Sensor Systems and Applications[M].Springer-Verlag New York,Inc.1996
    [124]El-Sheimy,N.(2003),ENGO 623 Lecture Notes:Inertial Techniques and INS/DGPS Integration[D].Department of Geomatics Engineering,The University of Calgary,Winter 2003
    [125]Z F Syed,P Aggarwal,C Goodall,X Niu and N El-Sheimy.A new multi-position calibration method for MEMS inertial navigation systems[J].MEASUREMENT SCIENCE AND TECHNOLOGY,2007,18:1897-1907P
    [126]Allan,D.W.(1966),Statistics of Atomic Frequency Standards[C].Proceedings of IEEE,1966,54(2):221-230P
    [127]Allan,D.W.(1987),Time and Frequency(Time-Domain) Characterization,Estimation,and Prediction of Precision Clocks and Oscillators[J].IEEE Transportations on Ultrasonics,Ferroelectrics,and Frequency Control,34(6):647-654P
    [128]IEEE Std 1139-1988,IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology
    [129]IEEE Std 952-1997 IEEE Standard Specification Format Guide and Test Procedure for Single -Axis Interferometric Fiber Optic Gyros
    [130]IEEE Std 1293-1998 IEEE Standard Specification Format Guide and Test Procedure for Linear,Single-Axis,Non-gyroscopic Accelerometers
    [131]Hou Haiying.Modeling Inertial Sensors Errors Using Allan Variance:[Master Thesis].Calgary,Alberta:Department of Geomatics Engineering,University of Calgary,2004
    [132]李晓莹,胡敏,张鹏等.交叠式Allan方差在微机械陀螺随机误差辨识中的应用[J].西北工业大学学报,2007,25(2):225-229页
    [133]彭启琮,张有正.频率稳定度描述:Allan方差估值的置信度问题[J].电子学报,1983,11(3):1-10页
    [134]高宁.陀螺漂移信号的小波去噪及其误差模型的研究[D].天津大学硕士学问论文,2003
    [135]周雪梅.基于多尺度估计理论的组合导航系统研究[D].哈尔滨工程大学博士学位论文,2006
    [136]郝颖.动力调谐陀螺仪的关键技术研究[D].哈尔滨工程大学博士学位论文,2006
    [137]李东明.捷联式惯导系统初始对准方法研究[D].哈尔滨工程大学博士学位论文,2006
    [138]Seokyu Kim,Byeungleul Lee,Joonyeop Lee,and Kukjin Chun,A GYROSCOPE ARRAY WITH LINKED-BEAM STRUCTURE,2001,30-33.0-7803-5998-4/01
    [139]David S.Bayard,et al.High accuracy inertial sensors from inexpensive components.United States Patent.US6882964,2005
    [140]David S.Bayard.High Accuracy Inertial Sensors from Inexpensive Components[R].JPL Task898
    [141]David S B,Scot t R P.Combining Multiple Gyroscope Outputs for Increased Accuracy[R].NASA JPL New Technology Report NPO230533
    [142]胡敏.基于阵列技术的MEMS虚拟陀螺技术研究[D].西北工业大学硕士学位论文,2006
    [143]张鹏.微机械陀螺的高精度“虚拟”实现方法研究[D]..西北工业大学硕士学位论文,2007
    [144]陈北鸥,孙文胜,张桂宏等.捷联组合(设备无定向)六位置测试标定[J].导弹与航天运载技术.2001,No.3:23-27页
    [145]张海鹏,房建成.陀螺标度因数与输入轴失准角解耦测试研究[J].宇航学报,2007,28(5):1161-1166页
    [146]高炳祥,万德钧.Kalman滤波器虚拟噪声补偿技术在陀螺随机常值漂移标定中的应用[J].中国造船,1995,No.4:86-89页
    [147]Sage A P.Adaptive filtering with unknown prior statistics[M].Joint Automatic Control Conference,1967:768-771页
    [148]林士谔主编.动力调谐陀螺仪[M].北京:国防工业出版社,1983:328-330页
    [149]陆元九主编.惯性器件[M].北京:宇航出版社,1993:515-518页
    [150]刘复若,范跃祖.动力调谐陀螺仪最佳多位置试验的选择[J].航空学报,1983,No.2:61-72页
    [151]姜复兴.惯导测试设备原理与设计[M].哈尔滨:哈尔滨工业大学出版社,2000
    [152]王建中.二次回归旋转试验设计在纺织中的应用[J].现代商检科技,1997,No.7:11-14页
    [153]张金槐.线性模型参数估计及其改进[M].长沙:国防科技大学出版社,1992
    [154]刘复若,范跃祖.动力调谐陀螺仪最佳多位置试验的选择[J].航空学报,1983,No.2:61-72页
    [155]欧阳文森,朱建军,李永春等.应用Matlab优化工具箱处理附线性不等式约束的最小二乘平差问题[J].测绘工程,2006,15(3):8-11页
    [156]Eun-Hwan Shin,Naser EI-Sheimy.A new calibration method for strapdown inertial navigation systems[J].Z.Verrness.127.2002:41-50P
    [157]Z F Syed,P Aggarwal,C Goodall.A new multi-position calibration method for MEMS inertial navigation systems[J].MEASUREMENT SCIENCE AND TECHNOLOGY,2007,No.18:1897-1907
    [158]Lagarias,J.C.,J.A.Reeds,M.H.Wright,and P.E.Wright,Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions[J].SIAM Journal of Optimization,1998,9(1):112-147P
    [159]Leland Robert P.Adaptive Tuning for Vibrational Gyroscopes[C]//Proceeding of t he 40t h IEEE Conference on Decision and Cont rol,Oriando,Florida USA,2001,3447-3451P
    [160]吴学忠,肖定邦,李圣怡.自动增益控制在振动式微陀螺驱动中的应用[J].传感技术学报,2006,19(3),790-792页
    [161]赵振昊.动力调谐陀螺仪误差机理及误差模型辨识的研究[D].哈尔滨工业大学硕士学位论文,2006:33-43页
    [162]高伟.光纤陀螺捷联惯导系统[D].哈尔滨工程大学博士学位论文,2003
    [163]姜复兴,王卫阳,吴广玉.捷联陀螺动态误差系数的正交三轴速率试验标定及其试验设计[J],中国惯性技术学报,1997,5(2):32-36页
    [164]Taib,M.N.,Narayanaswamy,R..Multichannel Calibration Technique for Optical-fibre Chemical Sensor using Artificial Neural Network.Sensors and Actuators B[Chemical],1997,B39(1-3):365-370P
    [165]Dempsey,G.L.,Alig,J.S.,etc.Control Sensor Linearization using Artificial Neural Networks,Analog Integrated Circuits and Signal Processing.1997,13(3):321-322P
    [166]Attari,M.,Boudjema,F.,Heniche,M..An Artificial Neural Network to Linearize a G(Tungsten vs.Tungsten 26%Rhenium) Thermocouple Characteristic in the Range of Zero to 2000 Degrees C.In:Proceedings of the IEEE International Symposium on Industrial Electronics,New York:IEEE Press,1995:176-180P
    [167]蔡煜东,姚林声.传感器非线性校正的人工神经网络方法[J].仪器仪表学报,1994,15(3):299-302页
    [168]王庆玮,王安等.色度传感器非线性误差校正的神经网络模型[J].传感器技术,1998,17(2):21-23页
    [169]朱庆保.传感器特性曲线的自适应分段最佳拟合及应用[J].传感器技术,2002,21,(1):34-37页
    [170]万彦辉,裴听国.陀螺系统非线性误差的自适应补偿技术[J].战术导弹控制技术,2003,No.2:12-15页
    [171]王淑娟,吴广玉.惯性器件温度误差补偿方法综述[J].中国惯性技术学报,1998,6(3):44-49页
    [172]Shcheglov K,Evans C,Gutierrez R.et al.Temperature dependent characteristics of the JPL silicon MEMS gyroscope[A].2000 IEEE Aerospace Conference Proceedings[C].Piscataway NJ USA:IEEE,2000.403-411P
    [173]Liu R Y,Adams G;Lindquist E,Atherton L.Test results from a tactical grade IMU using fiber optic gyros and quartza ccelerometers[C]//Proceedings of the 1996 IEEE Position,Location and Navigation Symposium,1996:42-48P
    [174]Michael A H,Jose A R,Jin S.Dynamic attitude measurement sensor and method[P].US Patent:6 421 622,July 16,2002
    [175]郭鹏飞,任章,杨云春.一种低精度惯性测量单元的精确标定技术[J].中国惯性技术学报,2007,15(1):20-23页
    [176]田蔚风,金志华.陀螺漂移模型变量的最优选择[J].中国惯性技术学报,1996,4(2):22-26页
    [177]孙畅,富立,刘文丽.微陀螺零偏在线补偿方法及仿真[J].弹箭与制导学报,2008,28(3):52-54页
    [178]www.xbow.com,Crossbow Technology Inc.,CXTILT02 datasheet.
    [179]L.Ojeda and J.Borenstein,FLEXnav:Fuzzy logic expert rule-based position estimation for mobile robots on rugged terrain[C],in Proc.2002IEEE Int.Conf.Robotics and Automation,Washington,DC,2002:317-322P
    [180]H.Rehbinder and X.Hu,Nonlinear state estimation for rigid-body motion with low-pass sensors[J].Systems&Control Letters,Elsevier,Netherlands,2000,40(3):183-190P
    [181]John Leavitt,Athanasios Sideris,James E.Bobrow.High Bandwidth Tilt Measurement Using Low-Cost Sensors[J].IEEE/ASME TRANSACTIONS ON MECHATRONICS,2006,11(3):320-327P
    [182]A.J.Baerveldt and R.Klang,A low-cost and low-weight attitude estimation system for an autonomous helicopter[C],in Proc.IEEE Conf.Intelligent Engineering Systems,1996:391-395P
    [183]张学孚,陆怡良.磁通门技术[M].北京:国防工业出版社,1995:348-359页
    [184]Michel Moulin,Jean-Claude Goudon,Jean-Marie Marsy,etal.Process for compensating the magnetic disturbances in the determination of a magnetic heading and devices for carrying out this process[P].United States Patent number:4414753,1981
    [185]胡寿松.自动控制原理[M].北京:国防工业出版社,1994.37-74页
    [186]陈雪冬.力平衡式加速度计闭环伺服系统动态数学模型[J].传感器技术,2001:20(5),5-8页
    [187]Adcock J,Potter Ron.A frequency domain curve fitting algorithm with improved accuracy[C].Proceedings of the 3rd International Modal Analysis Conference,Orlando Florida,1985,1:541-547P
    [188]Adcock James L.Curve fitter for pole-zero analysis[J].Hewlett-Packard Journal,1987,1:33-36P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700