微机械石英陀螺敏感元件的设计与制造研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MEMS是近年来比较热门的一个新兴的技术领域,具有广阔的发展前景。MEMS技术在惯性领域的发展应用催生了微惯性技术。微惯性技术的发展,主要集中在微机械加速度计和微机械陀螺这两大类产品领域内。而微机械石英陀螺是微机械陀螺中发展较快的一种。微机械石英陀螺,是二十世纪八十年代末出现的一种微惯性器件,属于中低精度陀螺。微机械石英陀螺,以其具有的成本低、体积小、结构简单、可靠性高等特点在现代精确打击战术武器的军事方面和民用汽车等非军事方面获得了广泛的应用,显示其是一种非常有前途的微机械振动陀螺。
     在研究微机械石英陀螺的国内外发展研究现状的基础上,对微机械石英陀螺的设计、制造和振动模式测试等方面进行了深入研究,研究的内容及成果如下:
     总结和研究了压电石英晶体的材料特性和微机械石英陀螺的动力学问题。指出柯氏力偶引起的扭转运动是实现石英陀螺的机械解耦的关键。同时在深入研究公理设计理论和振动陀螺原理的基础上,提出了振动陀螺的公理设计模型。振动陀螺的公理设计模型解决了陀螺设计中有运动耦合的问题,使得原先一些从经验、甚至直觉发展而来的微机械振动陀螺的设计准则有了科学的依据。这对微机械振动陀螺的规范化设计和创新是有较大的指导意义的。
     在振动陀螺的公理设计模型的指导下,对微机械石英陀螺的材料特性和现有的微机械石英陀螺结构进行了深入研究,提出了一种新的结构,即微机械梳齿石英陀螺。用有限元方法对其进行了模态研究,并分析了相关尺寸参数对微机械梳齿石英陀螺的振动模态的影响。推导建立了微机械梳齿石英陀螺的集总参数模型并据此开展了驱动模式和感测模式的定量研究。
     微机械石英陀螺的电路主要是驱动电路和检测电路。选用ADM8660实现升压,并采用专用函数信号发生器XR-2206产生恒频等幅正弦驱动信号。检测电路须实现陀螺元件输出信号的放大、解调和滤波功能。通过电荷放大器和锁定放大器得到了高信噪比的信号。最后运用Matlab对检测电路进行了仿真研究。仿真结果表明,采用锁定放大原理,只要处理好电路中的噪声和滤波的效果就可以得到很高的信噪比。研究了微机械石英陀螺加工制造中涉及到的问题。并结合现有条件,对超声波加工及超声加工石英机理等问题进行了研究。用超声成型加工方法加工出了微机械梳齿石英陀螺基片结构。
     针对MEMS结构的尺寸微小,共振频率高这一特点,开发研制了MEMS用的多载荷加载台。通过这一多载荷加载台,可以进行基础激励、温度和压力的精确控制,实现不同的真空环境下MEMS的静动态性能测试。同时也据此开展了微机械梳齿石英陀螺的振动模式的研究。
MEMS is rising new technology in recent years which has a bright future. MEMS promotes micro inertial technology in various applications of inertial field. Micro inertial technology includes micromachined accelerometers and micromachined gyroscopes, etc. Micromachined quartz gyroscope has developed faster than others in micromachined gyroscopes. Micromachined quartz gyroscope is one type micromachined inertial sensor, emerged in 1980s, which is classified to rate grade. Due to its lower cost, small volume, simple structure, high reliability, etc., micromachined quartz gyroscope has promising applications, such as military rate grade devices and non-military civil automobiles.
     This dissertation placed emphasis on some issues of micromachined quartz gyroscope, based on review of present developments and research of micromachined quartz gyroscope at home and abroad. Design, manufacturing and vibrating testing of micromachined quartz gyroscope presented in this dissertation were summarized as
     follows:
     Material characteristics of quartz crystal and dynamic problems of micromachined quartz gyroscope have been summarized and studied. This dissertation proposes that torsion which has been produced by Coriolis moment is a key to realize machine decoupling of micromachined quartz gyroscope. The axiomatic design mode of the mechanical structure of Coriolis vibratory gyroscope is proposed, based on fundamental study of axiomatic design theory and operating principles of Coriolis vibratory gyroscope. The axiomatic design mode of vibratory gyroscope which resolved coupling problem of gyroscope design, provides scientific rule for micromachined quartz gyroscope design which is based on the experience, even the intuition. The axiomatic design mode has better instruction significance to standardized design and innovation of micromachined vibratory gyroscope.
     Based on the axiomatic design mode and investigation of material characteristics of quartz crystal & structure of micromachined quartz gyroscope, a micromachined comb quartz gyroscope is proposed in this dissertation. Its vibratory mode has been investigated by finite element analysis (FEA). Meanwhile, the impact of geometry size on vibrating mode has been revealed. Lumping parameter model of micromachined comb quartz gyroscope is established, therefore, quantitative investigation of drive mode and sense mode is conducted.
     Driving circuit and detected circuit constitute Micromachined comb quartz gyroscope circuit. Voltage rising is achieved using ADM8660. Sine drive signal with constant frequency & coequal amplitude of vibration is obtained using special signal XR-2206. Magnification, demodulation & filting of out signal of gyroscope are carried out by detected circuit. Using charging amplifier and locking amplifier,the signal of high signal-to-noise can be gained. At last, simulation of detected circuit is performed using MATLAB. According to the simulative result, using locking amplifier,high rate of signal-to-noise can be gained as long as deal with noise and filting of circuit. Some manufacturing problems of micromachined quartz gyroscope are studied.
     Combining present conditions, this dissertation discusses ultrasonic manufacture and manufacturing mechanisms of quartz. Finally, structure of micromachined comb quartz gyroscope is obtained by using the method of ultrasonic manufacture.
     In terms of structural features of MEMS with small size & ultra high frequency, multi-loading device uesd for MEMS is fabricated. Through multi-loading device,static & dynamic testing of MEMS can be performed in vacuum. Precise control of base excitation, temperature and pressure can be achieved. At the same time, according to the mentioned advantage points, vibrating modal investigation of micromachined comb quartz gyroscope is carried out.
引文
[1] Feynman R. There's plenty of room at the bottom. IEEE J. MEMS, 1992, 1(1): 60-66
    [2] Feynman R. Infinitesimal machinery. IEEE J. MEMS, 1993, 2(1): 4-14
    [3] Fan L. S., Tai Y. C.,Muller R. S. IC-processed electrostatic micromotors. IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA. 1988. 666-669
    [4] Ho C. M., Tai Y. C. Micro-Electro-Mechanicalsystems (MEMS) and fluid flows. Annual Review of Fluid Mechanics, 1998, 30: 579-612
    [5]刘光辉,亢春梅. MEMS技术的现状和发展趋势.传感器技术, 2001, 20(1): 52-56
    [6]李得胜,王东红,孙金玮等. MEMS技术及其应用.第一版.哈尔滨:哈尔滨工业大学出版社, 2002. 1-10
    [7] Nexus. Market analysis taskforce issues market study report on MEMS/MST. Micromachine Devices, 1998. 1-5
    [8] Nexus. Market analysis for Microsystems 1996-2002. A Nexus Taskforce Report, 1998. 30-45
    [9] Nexus. Market analysis for Microsystems II 2000-2005. A Nexus Task Force Report, 2002. 20-18
    [10]王亚珍,朱文坚.微机电系统技术及发展趋势.机械设计与研究, 2004, 20(1): 10-13
    [11] Muller R. S., Lau K. Y. Surface-micromachined micro-optical elements and systems. Proceedings of the IEEE. 1998, 86(8): 1705-1720
    [12] Clark T. C., Nguyen, Linda P. B. et al. Micromachined devices for wireless communications. Proceedings of the IEEE, 1998, 86(8): 1756-1768
    [13]朱小山.生物芯片技术和几种生物芯片的研究: [清华大学硕士学位论文].清华大学图书馆, 2000
    [14]杨培根,龚智炳等.光电惯性技术.北京:兵器工业出版社, 1999
    [15] Baker G. N. Quartz rate sensor–from invention to applications. Proceeding of Symposium Gyro Technology. Stuttgart. 1992, 161-166
    [16]吕志清.音叉振动陀螺.压电与声光, 1989, 11(4): 15~27
    [17]张福学.压电晶体陀螺.北京:国防工业出版社,1981
    [18] Calif L. New inertial sensor uses quartz crystal technology, Aviation Week & Space Technology. 1992, 6(15): 101
    [19] Silva N. R., Murray W. G. Low cost quartz rate sensors applied tactical guidance IMUs. IEEE Proceedings of Position Location & Navigation Symposium, 1994. 37-42
    [20] Madni A. M., Costlow L. E., Knowles S. J. Common design techniques for BEI GyroChip quartz rate sensors for both automotive and aerospace/defense markets. Sensors Journal, IEEE. Oct. 2003, 3(5): 569 - 578
    [21] Madni M., Wan L. A., Layton M. R. A miniaturized yaw rate sensor for intelligent chassis control, Proceedings of IEEE Conf. Intelligent Transportation Systems. Nov. 1997. 320–325
    [22] Madni A. M., Costlow L. E. A third generation, highly monitored, micromachined quartz yaw rate sensor for safety-critical automotive stability control. Proceedings of IEEE Aerospace Conf. Mar. 2001. 2523–2534
    [23] Nonomura Y., Fujiyoshi M. Quartz rate gyro sensor for automotive control. Sensor & Actuators (A). 2004, 110: 136-141
    [24]精工爱普生与NGK联合开发最小的陀螺传感器. http://kczl.bjx.com.cn/dl/news/ 91568.html
    [25]王寿荣.硅微型惯性器件理论及应用.南京:东南大学出版社. 1997
    [26]贾玉斌.微石英角速度传感器的研究: [北京理工大学博士学位论文].北京理工大学图书馆, 1999
    [27]王莹.微型石英音叉陀螺研究: [北京理工大学博士学位论文].北京理工大学图书馆, 2001
    [28]邹江波,程言峰,张志宇.音叉式石英微机械陀螺.第十一届全国遥测遥控技术年会. 2000
    [29]谭德生,张巧云.石英微机械惯性传感器的加工技术.传感器世界. 2002, (10): 22-24
    [30]林日乐,张巧云,谢佳维等.微电子技术在石英微机械振动陀螺中的应用.中国惯性技术学报. 2004, (4)
    [31] Lynch D. D. Coriolis vibratory gyros. Symposium Gyro technology. Stuttgart. 1998
    [32]吕志清.哥氏振动陀螺.压电与声光, 2004, (4): 98-102
    [33] Yazdi N., Ayazi F., Najafi K. Micromacnined inertial sensors. Proceedings of IEEE. 1998, (86): 1640-1659
    [34] Ueda T., Kohsao F., Yamazaki D. Quartz crystal micromechanical devices. Proceedings of International Conference of Solid-State sensors and Actuators. 1985:113-116
    [35] Danel J. S., Michel F., Delapierre G. Micrmachimimg of quartz and its application to an accelerometer sensor. Sensors and Actuators. 1990, (A21-A23): 971-977
    [36] Hedlund C., Uif L., Urban B. Anisotropic etching of Z-cut quartz. Micromechine & Microengineering. 1993, (3): 65-73
    [37] Fujiyishi M., Nonomura Y. Modeling and vibration analysis of quartz yaw rate sensor to reduce mechanical coupling. International symposium on micromechatronics and human. 2001
    [38]周岩,刘晓胜等.石英器件加工工艺及最新进展.中国机械工程. 2000, 11(6): 668-671
    [39]刘东华.激光切割.激光杂志, 1992, 13 (4): 207-213
    [40] S?derkvist J. Piezoelectric beams and vibrating angular rate sensors, IEEE Trans. UFFC. 1991, 38(3): 271-280
    [41]贾玉斌,孙雨南等.压电梁弯曲振动方程及等效体力的计算.北京理工大学学报. 1999, 10(5): 599-603
    [42]印平,娄平宜等.石英音叉陀螺抗冲击特性的计算机模拟.中国惯性技术学报. 2000, 6(2): 40-44
    [43] Jia Y. B., Sun Y. N., Qin B. K. Electrode location efficiency and equivalent circuit for flexure vibration of piezoelectric beam. Journal of Beijing Institute of technology. 1999(4): 410-415
    [44]王莹,孙雨南等.微石英音叉陀螺激励与检测电极的研究.北京理工大学学报, 2001, 8(4): 503-507
    [45] WANG Y., Sun Y. N., Qin B. K. Finite element simulation of the vibratory characteristics for quartz tuning fork gyroscope. Journal of Beijing Institute of technology. 2002, (2): 155-158
    [46]王莹,孙雨南等.微石英音叉陀螺角速度信号提取方法的研究.北京理工大学学报, 2003, 4(2): 241-244
    [47]王莹,孙雨南等.微型石英音叉陀螺模态特性的设计.传感器技术. 2002, (12): 15-17
    [48]廖兴才,孙雨南等.微石英音叉电学参数的有限元分析.北京理工大学学报, 2003, 8(4): 469-472
    [49] LIAO X. C., SUN Y. N., Qin B. K. Drive signal frequency-lock method based on 90°phase shift for quartz angular-rate sensor. Journal of Beijing Institute of technology. 2005, (1): 1-3
    [50]唐琼,崔芳等.石英音叉微细加工若干问题探讨.微细加工技术. 2004, 6(2):66-71
    [51] Gupta P. k., Jenson C. E. Rotation rate sensor with center mounted tuning fork, USA. Patent 5,396,144. March 7, 1995
    [52] Knowles S. J. Inertial Rate Sensor Tuning fork, USA. patent 6,262,520B1, July 17, 2001
    [53]森图里亚(Stephen Senturia,美)著,刘泽文等译.微系统设计.北京:电子工业出版社. 2004
    [54]叶元烈.机械现代设计方法学.北京:中国计量出版社. 2000
    [55]王凤岐,张连洪,邵宏宇.现代设计方法.天津:天津大学出版社, 2004
    [56]丁俊武,韩玉启,郑称德.现代产品设计理论研究综述.机械制造. 2005, 43(12): 8-10
    [57]徐利治著.数学方法论选讲.武汉:华中理工大学出版社. 2000
    [58] Zeng Y. Axiomatic approach to the modeling of product conceptual design processes using set theory. [Ph. D Dissertation]. The University of Calgary, 2001
    [59] Braha D., Maimon O. A Mathematical theory of design: foundations, algorithms and applications. New York: Kluwer Academic Publishers. 1998
    [60] Suh N. P. Axiomatic Design: Advances and Applications. New York: Oxford University Press, 2001
    [61] Bras B., Mistree F. Robust design using compromise decision support problem. Engineering Optimization. 1993, 21(2): 213-239
    [62] Lee K. D., Suh N. P., Oh J. H. Axiomatic design of machine control System. Annals of the CIRP. 2001, 50(1): 109-114
    [63] Do S. H., Park G. J. Application of design axioms for glass bulb design and software development for design automation. ASME Journal of Mechanical Design. 2001, 123: 322-329
    [64] Skin M. K., Hong S. W., Park G. J. Axiomatic design of the motor-driven tilt/telescopic steering system for safety and vibration. Journal of Automobile Engineering. 2001, 215(2): 179-187
    [65] Helander M. G., Li L. Axiomatic design in ergonomics and an extension of the information axiom. Journal of Engineering Design, 2002, 13(4): 321-340
    [66] Park G. J., Kang B. S., Song K. N. et al. Design of a spacer grid using axiomatic design. Journal of Nuclear Science and Technology. 2003, 40(12): 989-997
    [67]刘正兴,杨耀文.机电耦合有限单元及动力方程.上海交通大学学报. 1997, 31(7): 31-36
    [68] Hermann J. Determination of the electromechanical coupling factor of quartz barvibrating in flexure or length-extention. Proceeding 29th Symposium on Frequency control. 1975: 26-34
    [69] Stwart J. T. Finite element modeling of resonant microelectromechanical structures sensing applications. 1994 IEEE Ultrasonics Symposium, 1994: 643-646,
    [70] Rodamker M. Finite element analysis of a quartz angular rate sensor, 1989 Ansys Conference Proceedings Swanson Analysis System Inc. 1989, (3): 35-48
    [71]王矜奉,姜祖桐,石瑞大.压电振动.北京:科学出版社. 1989
    [72]秦自楷.压电石英晶体.北京:国防工业出版社, 1980
    [73] Lindholm D., Tate D., Harutunian V. Consequences of design decisions in axiomatic design. Society for Design and Process Science. 1999, 3(4): 1-12
    [74]张瑞红.公理设计的使能技术研究. [河北工业大学博士学位论文].河北工业大学图书馆, 2004
    [75] Babic B. Axiomatic design of flexible manufacturing systems. International Journal of Production Research. 1999, (37)5: 1159-1173
    [76] Albano L. D., Suh N. P. Axiomatic design and concurret engineering. Computer Aided Design. 1994, 26(7): 499-504
    [77]李锦明.电容式微机械陀螺仪设计.北京:国防工业出版社. 2006
    [78]刘宗林,李圣怡,吴学忠.解耦型静电力闭环微陀螺.传感技术学报, 2005, 18(2)
    [79] Weinberg S. M. Quartz resonant gyroscope or quartz resonant tuning fork gyroscope. USA.Patent 5,388,458. Feb. 1995
    [80] Tomikawa, Yoshiro. Vibratory gyro. USA. Patent 5,451,828. Sep. 1995
    [81] Konno, Masashi. Angular velocity sensor. USA. Patent 5,824,900. Apr. 1998
    [82] Konno, Masashi. Angular velocity sensor. USA. Patent 6,237,415. May 2001
    [83] Inoue, Takeshi. Piezo-electric vibration gyroscope. USA. Patent application 20,010,010,173. July 2002
    [84] Kikuchi T., Tomikawa Y. Finite element method simulation of double-T type vibrators for flatly supported piezoelectric vibratory gyro-sensor. Japanese Journal of applied physics. 2001, (61): 3628-3631
    [85] Kikuchi T., Osugi Y., Tani M. et al. Flat quartz angular rate sensor for automotive application. SAE. 2000, (10): 45-48
    [86] Hideryo M., Ishihara M., Syusaku K. et al. Quartz crystal element for angular rate sensor. 2000 IEEE/EIA International Frequency Control Symposium. 2000
    [87] Wang Y., Sun Y. N., Qin B. K. Study on the compensation forthe dynamic characteristics of angular rate microsensor made of quartz. SPIE. 2000: 347-350.
    [88]谭博学,苗汇静主编.集成电路原理及应用.北京:电子工业出版社. 2003
    [89]高普占著.微弱信号检测.北京:清华大学出版社. 2004
    [90]李金田.压电传感器与前置放大器的配接.传感器技术. 2004
    [91]谢自美主编.电子线路设计试验测试.武汉:华中科技大学出版社. 2003
    [92]吴琦.石英音叉陀螺的微弱信号检测. [北京理工大学硕士学位论文].北京理工大学图书馆,2000
    [93] S?derkvist J. Design of a solid state gyroscopic sensor made of quartz. Sensor and actuators. 1990, (A21-A23): 293-296.
    [94] Rodamaker M., Newell C. R. Finite element analysis of a quartz angular rate sensor. ANSYS Conference Proceedings. 1989, (3): 35-48
    [95] Norihiko S., Yoshiro T. Vibratory gyro-sensor using vertically set quartz crystal trident type tuning fork resonator. Japanese Journal of Applied Physics. 1999, 38(5B): 3127-3219
    [96] Noboru W., Masaaki O. Suppression of null signals in LiTaO3 crystal fork vibratory gyroscope. 1995 IEEE Ultrasonics Symposum, 1995: 423-427
    [97] Mitsuharu C., Noboru W. Temperature self-compensated Lithium Tantalate piezoelectric gyroscope for higher stability. Japanese Journal of Applied Physics. 39(5B): 3069-3072
    [98]郑伟涛.薄膜材料与薄膜技术.北京:化学工业出版社. 2004
    [99]吴晨曦,陈晓明,成国煌.超硬材料加工技术及发展现状.机械工程师. 2003, (4): 3-6
    [100]吕正兵,徐家文.工程陶瓷超声加工的基础实验研究.电加工与模具. 2004, (2): 57-60
    [101]张建华.精密与特种加工技术.北京:机械工业出版社. 2003
    [102] Guzzo P. L., Raslan A. A., Daniel B. J. et al. Relationship between quartz crystal orientation and the surface quality obtained by ultrasonic machining. Proceedings of the 1999 Joint Meeting of the European. 1999, 2(4): 792-795
    [103]吕捷,王鸣.微机电系统(MEMS)的干涉测量方法的研究进展.激光杂志, 2003, 24(5): 4-6
    [104] Fiedler R. M., Wagner U., Bernhard W. Reliability of MEMS-a methodical approach. Microelectronics Reliability. 2002, 42(9-11): 1771-1776
    [105] Walter L. Reflex ions on the future of microsystem. Sensors and Actuators (A). 1999, 72(1): 1-5
    [106] Hartzell A. L., Woodilla D. J. MEMS reliability, characterization, and test. Proceedings of SPIE, 2001, (4558): 1-5
    [107]谢勇君. MEMS微结构动态测试方法及关键技术研究. [华中科技大学博士学位论文].华中科技大学图书馆, 2006
    [108] Burdess J. S., Harris A. J., Wood D. et al. A System for the dynamic characterization of Microstructures. IEEE/ASME Journal of Microelectromechanical Systems. 1997, 6(4): 322-328
    [109] Ngoi B. K. A., Venkatakrishnan K., Tan B. et al. Two-axis-scanning laser doppler vibrometer for microstructure. Opt. Comm. 2000, 182(1-3): 175-185
    [110] Lawton R. A., Abraham M., Lawrence E. Characterization of non-planar motion in MEMS involving scanning laser interferometry. Proceedings of SPIE. 1999, (3880): 46-50
    [111] Blackshire J. L., Sathish S. Characterization of MEMS transducer performance using near-field scanning interferometry. IEEE Transactions on Ultrasonics. Ferroelectrics and Frequency Control. 2002, 49(5): 669-674
    [112] Daniel J. B., Hergert F. H. A System for Automatic Electrical and Optical Characterization of Microelec tromechanical Devices. Journal of Microelectromechanical Systems, 1999, 18(4): 346-350
    [113] Davis C. Q., Freeman D. M. Using a Light Microscope to Measure Motions with Nanometer Accuracy. Optical Engineering, 1998, 37: 1299-1304
    [114] Hart M. R., Conant R. A., Lau K. Y., et al. Stroboscopic Interferometer System for Dynamic MEMS Characterization. IEEE/ASME Journal of Microelectromechanical Systems, 2000, 9(4): 409-418
    [115] Chou Y. F., Wang L. C. Modal testing for Microstructures. Proceedings of the International Modal Analysis conference-IMAC. 1999, (2): 1783-1788
    [116] Ozdoganlar O. B., Hansche B. D., Carne T. G. A review of experimental modal analysis methods for microelectromechanical systems (MEMS), Proceedings of the International Modal Analysis conference, 2002
    [117]诸德超,刑誉峰主编.程伟,李敏编著.工程振动基础.北京:北京航空航天大学出版社. 2004
    [118] Http://www.piceramic.com/tutorial
    [119] EerNisse E. P., Wiggins R. B. Resonator temperature transducer with no activity dips. Proceedings of the 40th Annual Frequency Control Symposium. 1986: 216-223

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700