隐身涂料的防腐蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了评价低红外发射率涂层的防腐蚀性能,估计其使用周期,本文采用塔菲尔极化曲线(Tafel)、电化学阻抗谱(EIS)两种电化学方法,结合浸泡试验研究以聚氨酯为粘合剂,铜粉、硅烷偶联剂改性铜粉、丙烯酸改性铜粉为填料的聚氨酯基低红外发射率涂料、以环氧改性聚氨酯为粘合剂,铜粉、硅烷偶联剂改性铜粉、丙烯酸改性铜粉为填料的环氧改性聚氨酯基低红外发射率涂料以及以三元乙丙橡胶(EPDM)、马来酸酐改性三元乙丙橡胶(EPDM-g-MAH)为粘合剂、铜粉为填料的三个系列的低红外发射率涂料在模拟海水环境(3.5wt.% NaCl溶液)下的电化学腐蚀行为,并借助开路电位( E_(ocp))、腐蚀电流密度( i_(corr))、涂层电阻( R_(coat))、涂层电容( C_(coat))、涂层特征频率( f_b)来分析评价同一体系涂层的防腐蚀性能。
     结果表明:
     聚氨酯基低红外发射率涂层,在浸泡初期,改性涂料表现出较好的防腐蚀性能,但随着浸泡时间延长改性涂料失效速率加快,在整个浸泡过程中未改性涂料的防腐蚀性能最好。但在长期浸泡过程中,亲水基团-COOH、-OC_2H_5的存在促进了水的渗入,加速了改性涂层的失效。环氧改性聚氨酯基低红外发射率涂层,在浸泡初期,以铜粉为填料的涂层表现出较好的防腐蚀性能,但随着浸泡时间延长其失效速率加快,在整个浸泡过程中防腐蚀性能最差。而经过丙烯酸改性铜粉为填料和经过硅烷偶联剂改性铜粉为填料的涂层在浸泡过程中表现出较好的防腐蚀性能。
     铜粉填充三元乙丙橡胶基和铜粉填充马来酸酐改性三元乙丙橡胶基的低红外发射率涂料,在浸泡初期在较短的时间内腐蚀介质均能渗入两种涂层内部,涂层表现出较弱的防护性能。
To review the corrosion-resistance properties of low infrared emissivity coatings and predict their lifetime, electrochemical measurement techniques including polarization curves (Tafel) and electrochemical impedance spectroscopy (EIS) techniques were employed to investigate the electrochemical corrosion behavior of three different series of low infrared emissivity coatings in simulated sea water(3.5 wt.% NaCl aq. solution). The coating series concernd includes polyurethane-based and EP modified PU-based coatings in which were filled with Cu powder, Cu powder modified by silane coupling agent , and Cu powder modified by acrylic acid respectively. EPDM and EPDM-g-MAH-based coatings filled with Cu powder were also investigated in detail. The corrosion-resistance properties of coatings were evaluated and concluded by comparing Eocp, Rcoat , Ccoat ,icorr and fb , of the samples under same conditions.
     The results show that at the initial stage of immersion, both polyurethane-based coatings filed with modified Cu powder behave a better corrosion-resistance. The degeneration of protection of the coatings to the substrate, however, begins to accelerate with the immersion time going on. As a comparision, the coating filed with unmodified Cu powder shows a much better protection ability. With the immersion time going on, water permeats through the coatings and causes a possible failure of protection and the process may accelerate due to the presence of hydrophilic groups, such as -COOH and -OC_2H_5 .
     For the series of EP modified PU-based low infrared emissivity coatings, the coating filled with Cu powder show a better protection to the substrates at the initial stage of immersion. With the time of immersion going on, the rate of protection failure tend to accelerate. It exhibits the the worst for its protection ability. But the coatings filled with acrylic acid and silane coupling agent modified Cu powder exhibit a much better corrosion-resistance ability.
     Cu powder filling EPDM and EPDM-g-MAH-based coatings can not prevent the penetration of corrosive species through the coatings effectively and, as a result, coatings become failure in a short time and lead to a poor protection ability.
引文
[1]余慧娟,徐国跃,沈轩,等.8~14μm波段低发射率涂料的制备与优化研究[J].兵器材料科学与工程,2008,31(6):49~52.
    [2]余慧娟,徐国跃,邵春明,等.EPDM基涂层在8~14μm波段红外低发射率的研究[J].红外技术,2008,30(3):154~157.
    [3]邵春明,徐国跃,郭腾超,等.改性聚乙烯作为低红外辐射材料的研究[J].红外技术,2008,30(7):412~415.
    [4]汪小舟.红外隐身涂料的制备及性能研究[D].东南大学,2006.
    [5]程从亮.8~14μm低发射率红外隐身涂料研究[D].南京工业大学,2005.
    [6]沐磊,王丽熙,黄芸,等.红外隐身涂料的研究与发展趋势[J].材料导报,2007,21(1):122~125.
    [7]庄海燕,郑添水,任润桃,等.红外隐身涂料的研究现状及发展趋势[J].材料开发与应用,2006,21(3):43~46.
    [8]宋兴华,於定华,马新胜,等.涂料型红外隐身材料研究进展[J].红外技术,2004,26(2):9~12.
    [9]张树海,苟瑞君.隐身技术的研究进展[J].华北工学院学报,2002,23(2):100~104.
    [10]王庭慰,程从亮,张其土.8~14μm低发射率红外隐身涂料研究[J].光学技术,2005,31(4):598~600.
    [11]王自荣,余大斌,孙晓泉.红外隐身涂料颜料发射率研究[J].上海航天,2000,(1):24~26.
    [12]马格林,曹全喜,黄云霞.红外和雷达复合隐身材料-掺杂氧化物半导体[J].红外技术,2003,25 (4):77~80.
    [13]翁小龙,张捷,刘孝会.热红外低辐射率涂料的研制[J].表面技术,2001,30(4):36~38.
    [14]邵春明,徐国跃,余慧娟,等.改性三元乙丙橡胶用于红外隐身涂层的研究[J].宇航材料工艺, 2008,(3):62~65.
    [15]于斌,齐鲁.多功能隐身材料的研究与应用现状[J].红外技术,2003,25(3):63~66.
    [16]王晶晶,金晓鸿,任润桃,等.防腐蚀涂料性能的电化学检测方法[J].材料开发与应用,2008,23(3):61~65.
    [17]陈丽姣,李宁,胡会利,等.检测涂层防护性能的电化学方法[J].涂料工业,2008,38(5):53~57.
    [18]周立新,程江,杨卓如.有机涂层防腐性能的研究与评价方法[J].腐蚀科学与防护技术,2004,16(6):375~380.
    [19]张金涛,胡吉明,张鉴清.有机涂层的现代研究方法材[J].料科学与工程学报,2003,21(5): 763~768.
    [20]王宏刚,毛绍兰,张基勇,等.耐高温环氧/有机硅润滑涂料的研究[J].涂料工业,2001,2:7~8.
    [21]王也泰,王淑江编.现代涂料及应用[M].济南:山东大学出版社,1988:23~29.
    [22]刘旭文.有机涂层/金属体系在不同失效环境下的EIS研究[D].北京化工大学,2007.
    [23]扬锋,吴庆余,李淑柱,等.防腐蚀涂料[J].涂料工业,1999,(9):32~35.
    [24]张智.环氧和富锌两类复合涂层在几种复合腐蚀环境中失效行为的EIS研究[D].北京化工大学,2008.
    [25]付东,徐滨士,张伟,等.有机涂层起泡微观机制研究进展[J].材料保护,2007,40(2):42~45.
    [26] Nguyen T, Hubbard J B. Unified model for the degradation of organic coatings on steel in a neutral electrolyte [J].Journal of Coating Technology, 1996, 68(885): 45~56.
    [27] Funke W. Blistering of paint films and filiform corrosion [J].Progress in organic coatings, 1981, 9(1): 29~46
    [28] Leidheiser H. Corrosion of painted metals-a review [J]. Corrosion, 1982, 38(7): 374~383.
    [29] Appleman B R. Painting over soluble salts: A perspective [J]. Journal of p
    [30] rotective coatings & Linings, 1987, 10(4): 68~82.
    [31] Touyeras, George F, Cabala B. Study of adherence loss for paint films coated onto polymeric substrates by induced blistering [J]. Journal of adhesion science and technology, 1997, 11(2): 263~279.
    [32] Funke W. Toward a unified view of the mechanism responsible for paint defects by metallic corrosion [J]. Ind Eng Chem Prod Res Dev, 1985, 24(3): 343~347.
    [33] Hamade R F, Dillard D A. Assessing the effects of shearcompression and peel on the cathodic degradation of elastomer-to-metal adhesive bonds [J]. International journal of adhesion and adhesives, 2005, 25(2): 147~163.
    [34] Chuang T J, Nguyen T, Lee S. Micromechanic model for cathodic blister growth in painted steel [J]. Coatings technology, 1999, 71(895): 75~85.
    [35]杨丽霞,张三平,林俺,等.有机涂层渗水率及金属界面腐蚀的研究进展[J].材料保护,2001,34(10):28~30
    [36] Mc Cafferty E. Use of activity coefficients to calculate the equilibrium conditions within a localized corrosion cell on iron [J]. Journal electrochemical society, 1981, 128(1): 39~44.
    [37] BruntN A. Blistering of paint layers as an effect of swelling by water [J]. Journal of the oil and colour chemists association, 1964, 47(1): 31~42.
    [38] Hamade R F, Dillard D A. Assessing the effects of shear compression and peel on the cathodic degradation of elastomer-to-metal adhesive bonds [J]. International journal of adhesion andadhesives, 2005, 25(2): 147~163.
    [39] Martin J W, Embree E, Tsao W. Non-osmotic defect controlled cathodic disbondment of a coating from a steel substrate [J]. Journal of coatings technology, 1990, 62(790): 25~33.
    [40] Geenen FM. An impedance spectroscopy study of the degradation mechanism for model epoxy coating on mild steel [J]. Progress in organic coatings, 1990, 18: 299~312.
    [41] Nguyen T, Hubbard J B, Mc Fadden GBA. Mathematically model for the cathodic blistering of organic coatings on steel immersed in electrolytes [J].Journal of coatings & technology, 1991, 794(63): 43~52.
    [42]潘肇基.有机涂层湿附着力的研究[J].材料保护,1994,27(2):9~12.
    [43] Senkevich, Jay J. Degradation of an alkyd polymer coating characterized by AC impedance [J]. Journal of materials seienee. 2000, 35(6): 1359~1364.
    [44]金晓鸿,胡雪娇,叶美琪,等.船体水上防锈漆体系加速试验方法研究[J].材料开发与应用,1996,11(3):16~21.
    [45]张金涛,胡吉明,张鉴清.有机涂层的现代研究方法[J].材料科学与工程学报,2003 21(5):763~768.
    [46] F. Mamsfeld. Use of electrochemical impedance spectroscopy for the study corrosion protection by Polymer eoatings [J]. J. APPI. Electrochem. 1995, 25: 187.
    [47] Sekine I. Recent evaluation of corrosion protective paint films by electrochemical methods [J]. Progress in organic coating, 1997, 31:73~80.
    [48] H. Marchebois, C. Savall, J. Bernard, S. Touzain. Electrochemical behavior of zinc-rich powder coatings in artificial sea water [J].Electrochimica Acta,2004, 49: 2945~2954.
    [49] Lewis R E, Barbin D K. Selecting internal coating for gas well tubulars [J]. Material performance, 1998, 13(4): 28~34.
    [50]赵霞.有机涂层失效过程的电化学阻抗谱响应特征研究,[D].中国海洋大学.
    [51]虞兆年.防腐蚀涂料和涂装[M].北京:化学工业出版社,2002:218~221.
    [52]李玮.环氧重防腐涂层体系失效过程的电化学阻抗谱研究,[D].北京化工大学,2007.
    [53]虞兆年.防腐蚀涂料和涂装[M].北京:化学工业出版社,2002:221~223.
    [54]虞兆年.防腐蚀涂料和涂装[M].北京:化学工业出版社,2002:223~224.
    [55]虞兆年.防腐蚀涂料和涂装[M].北京:化学工业出版社,2002:227~230.
    [56]黄宁.红外光谱法在涂料剖析中的应用[J].涂料工业,1999,1:37~41.
    [57]吴瑾光.近代傅立叶变换红外光谱技术及应用[M].北京:科学技术文献出版社,1994.51.
    [58]周立新,程江,杨卓如.有机涂层防腐性能的研究与评价方法[J].腐蚀科学与防护技术,2004,16(6):375~380.
    [59]严川伟,何刚,刘宏伟,等.用显微红外方法研究涂层中物质传输规律[J].腐蚀科学与防护技术,2000,12(1):45~47.
    [60]严川伟,余家康,林海潮,等.激光拉曼光谱在金属腐蚀研究中的应用腐蚀科学与防护技术,1998,10(3):163~170.
    [61]陈丽姣,李宁,胡会利,等.检测涂层防护性能的电化学方法[J].2008,38(5):53~57.
    [62]刘小平.涂层防腐蚀的电化学研究[J].涂料工业,1999 ,(2):37~41.
    [63]张鉴清,曹楚南.电化学阻抗谱方法研究评价有机涂层[J].腐蚀与防护,1998,19(2):99~104.
    [64]吴丽蓉,胡学文,许崇武.用EIS快速评估有机涂层防护性能的方法[J].腐蚀科学与防护技术,2000,12(3):182~185.
    [65] M Mahdavian, M M Attar.Another approach in analysis of paint coatings with EIS measurement phase angle at high frequencies [J]. Corrosion Science, 2006, (48): 4152 ~4157.
    [66]张鉴清,孙国庆,曹楚南.评价有机涂层防护性能的EIS数据处理[J].腐蚀科学与防护技术,1994,6(4):318~324.
    [67]周立新,程江,杨卓如.有机涂层防腐性能的研究与评价方法[J].腐蚀科学与防护技术, 2004,16(6):375~378.
    [68] Vogelsang J, Strunz W. New interpretation of electrochemical data obtained from organic barrier coatings [J]. Electrochimical, Acta, 2001, 46(24-25): 3817~3826.
    [69] Schiller C A, Strunz W. The evaluation of experimental dielectric data of barrier coatings by means of different models [J]. Electrochimica Acta, 2001, 46(24-25): 3619~3625.
    [70]钟国鸣,陈纪文.防止涂料腐蚀的电化学检验方法[J].广东科技,2009,5(212):101~102.
    [71] Skerry B S, Eden D A. Characterisation of coatings performance using electrochemical noise analysis [J]. Progress in organic coatings, 1991, 19(4): 379~396.
    [72] Khobaib M, Rensi A, Matakis T, etal. Real time mapping of corrosion activity under coatings [J]. Progress in organic coatings, 2001, 41: 266~272.
    [73]田昭武.电化学研究方法[M].北京:科学出版社,1984:70~131.
    [74]田昭武.电化学研究方法[M].北京:科学出版社,1984:250~341.
    [75]程从亮,李萍.聚氨酯涂料红外发射率性能研究[J].激光与红外,2007,37(10): 1067~1070.
    [76]张志刚,辜志俊,廖永贵,等.人工破损涂层的电化学阻抗谱研究[J].电化学,2000,6(4):473~477.
    [77] S-Y.Zhang,Y.Kong,Z-S.Zhang and X-Y.Zhang.Hydrophobic interfacing layers for improvement of corrosion protection by polymeric coatings [J]. Journal of applied electrochemistry, 2003, 33: 1063~1068.
    [78]何杰,阎瑞,马世宁.电化学方法研究环氧涂层/基体在3.5%NaCl溶液中的腐蚀行为[J].中国表面工程,2006,19(2):47~50.
    [79]赵建国.Q235钢在OPP盐水体系中的电化学腐蚀行为[J].腐蚀与防护,2008,29(8):454~456.
    [80]张鉴清.富锌涂层的电化学阻抗谱特性[J].中国腐蚀与防护学报,1996,(3):175~180.
    [81]薛丽莉,许立坤,李庆芬,等.水性环氧铝粉涂层/碳钢体系的腐蚀电化学行为[J].电化学,2007,13(2):171~176.
    [82] Hirayama R, Haruyama S. Electrochemical impedance for degraded coated steel having pores [J]. Corrosion, 1991, 47:952.
    [83] K. T. Liu, L. G.Duh. Electrochemical impedance study of TiAlN film coating on a Ni-based alloy in 0.9% NaCl [J]. J Mater Sci(2008) 43: 3589~3595.
    [84]杨立红,刘福春,韩恩厚.纳米氧化锌改性聚氨酯复合涂层的防腐蚀性能[J].材料研究学报,2006,20(4):354~360.
    [85]刘旭文,熊金平,曹京宜,等.EIS法研究3种配套涂层体系的腐蚀电化学行为[J].化工学报,2008,59(3):659~664.
    [86]曹京宜,熊金平,李水冰,等.利用EIS高频区参数评价两种环氧涂层的性能[J].化工学报,2008,59(11):2851~2856.
    [87]李玮,禹熊,金平,等.不同表面处理条件下复合涂层体系失效过程的EIS特征[J].化工学报,2008,59(2):124.
    [88]邓朝霞,叶代勇,魏丹,等.环氧改性水性聚氨酯的合成工艺及性能[J].涂料工业,2007,37(4):37~40.
    [89]王春艳,朱传方,万婷,等.环氧改性脂肪族水性聚氨酯的合成与性能[J].应用化学,2006,23(4):441~443.
    [90]张凯,马艳,范敬辉,等.低发射率红外隐身涂料研究进展[J].化学推进剂与高分子材料,2008,6(1):21~25.
    [91]黄嵘,徐国跃,程传伟,等.EPDM基红外隐身涂层耐热性及使用寿命预测研究[J].红外技术,2008,30(12):693~696.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700