3~5μm波段低发射率耐热型涂料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空航天技术的发展,发动机作为飞行器的最高热源具有明显高辐射的特点,其工作温度一般在750K~900K,其热辐射的能量主要分布在红外3~5μm范围内,这就要求红外低发射率涂料在高温下具有优异的热稳定性,虽然有较多的高温保护涂料的研究,但是这些研究都不涉及红外低发射率方面。
     本课题的目的在于制备在3~5μm波段具有低发射率的涂料,此涂料能在750K~900K条件下正常使用。通过选择合适的无机以及有机耐高温基体,添加不同类别的颜填料,制备具有低发射率的耐热涂料。对涂料的制备工艺参数进行优化设计;对涂料表征分析,测试发射率性能,力学性能和耐高温性能;对涂料的低发射率性能进行深入的研究,分析涂料的热失效机理,采用添加耐热添加剂进行改善。主要的研究结果和结论如下:
     1.氧化铅磷酸盐涂料经过500℃固化形成涂层,其常温下3~5μm波段发射率为0.51。涂料在高温固化过程中的脱水缩合和晶型转变,形成了紧密的结构和降低了红外吸收率,使红外发射率降低。
     2.成功制备了耐热型低发射率涂料,对涂料的制备过程进行优化,其中,铝粉添加量在30%~40%时,经过400℃固化2小时后,3~5μm波段发射率最低可达0.16~0.19。分析了颜填料含量、粗糙度、涂层厚度的影响。耐热型低发射率涂料具备低红外吸收和形成致密的片层连续结构的特点。
     3.有机硅基红外低发射率耐热涂料的耐受温度为500-600℃,具有良好的耐热性能和一定力学性能,实测过程中明显降低了中心锥的热辐射。
     4.分析了耐热型低发射率涂料在热失效的原因,分为树脂基体的高温分解和颜填料的高温氧化.
     5.选用氧化锌作为耐热添加剂,对提高有机硅基体的耐热型低发射率涂料的耐热性能有一定的效果。
In recent years, infrared guided weapons have become the main threats to aircrafts.As we know, the coating exterior surface of the aircraft with low emissivity materials can greatly decrease the probability of being detected by infrared detector. However, most of the low emissivity coatings present poor thermal resistance properties and can not be used at the high temperature components of aircraft, such as the exterior surface of the tailpipe, whose working temperature range is 450-700°C. Thus, the preparation of low emissivity coatings with good thermal resistance properties is of great importance for infrared stealth technology applications.
     In this paper, the thermal resistance coatings with low emissivity were prepared via a simple and convenient process. And the influence of chemical composition, surface structure, roughness and thickness on the emissivity was discussed. The experimental emissivity results are nearly consistent with optical theory analysis for the coatings. Furthermore, thermal ageing and thermal shock resistance of the coatings were also systematically investigated.
     1. The emissivity of the coating can reach to 0.51 in the 3~5μm and the coating can work at high temperature by solidification process. The condensation reaction and crystal phase change in the solidification process result in the tight structure and the decrease in infrared absorbance, which is the main factor of variable emissivity.
     2. Thermal resistance coatings with low infrared emissivity can reach to 0.16~0.19 in the 3~5μm. The influence of content of Al powders, roughness and thickness on the emissivity was systematically investigated. Reducing infrared absorption as well as the formation of dense continuous t laminar aluminium structure may account for the lower emissivity of coatings.
     3. Thermal resistance polysiloxane/Al coatings with low emissivity could be used at 500-600℃. The coatings exhibited favorable thermal ageing and excellent resistance to thermal shocking. The thermal radiation of center cone decreased to 40%.
     4. The emissivity property of low infrared emissivity coatings was studied during the thermal ageing and thermal shocking. This effect was explained by thermal oxidation of Al particles and polysiloxane degradation in the coatings.
     5. The thermal resistance property of low emissivity coatings can be enhanced by ZnO.
引文
1.李世祥.光电对抗技术[M].长沙:国防科技大学出版社, 2000.
    2.刘世良.红外隐身技术与热隐身材料的研究进展[J].飞航导弹, 1994, 4(15): 55~59.
    3.谢国华,吴瑞彬,吴伶芝等.红外隐身材料的现状与展望[J].宇航材料工艺, 2001, 5(4): 5~10.
    4.李新华.国外涂料型红外隐身材料研制现状和发展方向分析[J].红外技术, 1994, 16(1): 5~11.
    5. B. Wang, X. Q. Sun, Z. R. Wang. Study on stealth effect evaluation of infrared coating [J]. Chinese Journal of Quantum Electronics, 2004, 21(4): 538~541.
    6.常本康,蔡毅.红外成像阵列与系统[M].北京:科学出版社, 2006:.
    7.陈衡.红外物理学[M].北京:国防工业出版社, 985.
    8.蔣耀庭,王躍.红外隐身技术与发展[J].红外技术, 2003, 25(5): 7~9.
    9.刘永峙,韩爱军,李校远.红外隐身材料的研究现状与发展方向[J].材料导报, 2004, 18(2): 216~218.
    10.陈永甫.红外辐射红外器件与典型应用[M].北京:电子工业出版社, 2004.
    11.葛新石.金属及其它物质的热辐射性质表[M].北京:科学出版社, 1958.
    12.胡素芬.近代物理基础[M].杭州:浙江大学出版社, 1988.
    13.徐光宪,王祥云.物质结构(第二版) [M].北京:高等教育出版社, 1987.
    14. Atikins. P. W. QUANTA - A Handbook of Concepts[M]. Oxford: Oxford Press, 1979.
    15. Herzberg.G. Molecular spectra and molecular structure[M]. 3rd, New York: D. Van Nostrand, 1953.
    16.汤大新.影响涂料红外辐射特性的几个重要因素[J].红外研究, 1985, 4(4): 323~328.
    17. Snell .J. F.“Radiometry and Photometry”in Handbook of Optics[M]. New York: Mc- Graw-Hill, 1978.
    18. Worthing. A. G. Temperature Emisstivities and Emittance. Temperature, it measurement and control in Science and Industry[M]. New York: Reinhold, 1941.
    19. Clauss .F. J. Surface Effects on Spacecraft Materials[M]. New York: John Wiley and Sons, 1959.
    20.丁黎梅.物质发射率的间接测量法[J].红外技术, 1999, 21(5): 67~70.
    21.俞伦鹏,王文革.固体材料表面光谱发射率测量[J]. MISSILES AND SPACE VEHICLES,1997, 22(7): 102~104.
    22.仁菁.低发射率硫化物半导体颜料的制备及机理研究[D].南京航空航天大学, 2007.
    23.邹南治,朱又迈,赵广福.关于红外半球全发射率与温度关系的讨论[J].红外技术, 1997, 19(3): 1~4.
    24.刘世良.红外隐身技术发展综述[J].中国航天, 1994 , 2(7): 4~44.
    25.沐磊,王丽熙,黄芸,张其土.红外隐身涂料的研究与发展趋势[J].材料导报, 2007 , 21(1): 122~125.
    26.施德恒,刘万福.红外隐身技术述评[J].应用光学, 1996 , 17 (5): 1~5.
    27.战凤昌,李锐良.专用涂料[M].北京:化学工业出版社, 1996.
    28.宋兴华,於定华,马新胜,汪中进.涂料型红外隐身材料研究进展[J].红外技术, 2004, 26(2): 9~12.
    29.张卫东,冯小云,孟秀兰.国外隐身材料研究进展[J].宇航材料工艺, 2000, 30 (3): 1~4.
    30.王庭慰,程从亮,张其土. 8~14μm波长低红外发射率涂料的研究[J].光学技术, 2005, 31(4): 598~600.
    31.胡传炘.隐身涂层技术[M].北京:化学工业出版社, 2004.
    32.宋兴华,於定华,马新胜,汪中进.红外低发射率ATO粉末的制备及其特性研究[J].红外技术, 2003, 25(6): 49~53.
    33.吴剑锋,何广军,赵玉芹.飞机尾向的红外辐射特性计算[J].空军工程大学学报(自然科学版), 2007, 7 (6): 26~28.
    34.高南.功能涂料[M].北京:中国标准出版社, 2005.
    35.白学福,梁永辉,江文杰.红外搜索跟踪系统的关健技术和发展前景[J].国防科技,2007.1: 6-8.
    36.孙谷清.耐高温涂料研究[D].天津:天津大学, 2008.
    37.王政阅.磷酸盐耐热涂层的制备及固化机理的研究[D].天津:天津大学, 2007.
    38.王敏.耐温有机胶粘剂的发展现状[J].合成技术及应用, 2007, 22 (1):33~36.
    39.盛磊.俄罗斯宇航工程中常用的胶粘剂[J].航天返回与遥感, 2001, 22 (2): 48~55.
    40.谢鸽平.高温钢铁隔热包覆涂料的研制及其性能的研究[D].武汉:武汉材料保护研究所, 2008.
    41. H.J. Yu, G.Y. Xu, X.M. Shen, X.X. Yan, C.W. Cheng. Low infrared emissivity of polyurethane/Cu composite coatings[J]. Appl. Surf. Sci. 2009, 255 (12): 6077~6081.
    42. B.V. Cockeram , D.P. Measures, A.J. Mueller. The development and testing of emissivity enhancement coatings for themophotovoltaic (TPV) radiator applications[J]. Thin Solid Films. 1999, 355-356: 17~25.
    43. B.V. Cockeram, J.L. Hollenbeck. The spectral emittance and long-term thermal stability of coatings for thermophotovoltaic (TPV) radiator applications[J]. Surf. Coat. Tech. 2002, 157 (2): 274~281.
    44. L.Y. Liu, R.Z.Gong, Y.S.Cheng, F.G. Zhang, H.H.He. Emittance of a radar absorber coated with an infrared layer in the 3~5μm window[J]. Optics Express. 2005, 13(25): 10382~10391.
    45. E. Ando, M. Miyazaki. Durability of doped zinc oxide/silver/doped zinc oxide low emissivity coatings in humid environment[J]. Thin Solid Films. 2008, 516 (14): 4574~4578.
    46. B.P. Lin, J.N. Tang, H.J. Liu, Structure and infrared emissivity of polyimide/mesoporous silica composite films[J]. J. Solid State Chem. 2005, 178 (3): 650~654.
    47. H.J. Yu, G.Y. Xu, X.M. Shen, X.X. Yan, R. Huang, F.L. Li. Preparation of leafing Cu and its application in low infrared emissivity coatings[J]. J. Alloy. Compd. 2009, 484 (1): 395~399.
    48. C. Hu, G.Y. Xu, X.M. Shen, Preparation and characteristics of thermal resistance polysiloxane/Al composite coatings with low infrared emissivity[J]. J. Alloys Compd. 2009, 486 (1): 371~375.
    49.周兴保.航空涂料的种类及要求[J].化工新型材料, 1997, 9: 26~28.
    50.村田友昭.耐热耐水性の无机质涂料につぃて[J].涂装と涂料(日), 1978, 372(8): 299~301.
    51.夏德宏,余涛,吴祥宇等.热辐射波在介质内的散射机理[J].北京科技大学学报, 2006, 28(2):175~178.
    52.张光寅,蓝国祥.晶格振动光谱学[M].北京:高等教育出版社, 1991.
    53.徐文兰,沈学础.含片状粒子涂层的热辐射[J].红外与毫米波学报, 1996, 15(2): 151-155.
    54.孙举涛,黄玉东,曹海琳等.耐高温有机硅树脂的合成及其耐热和固化性能研究[J].航空材料学报, 2005, 25(1): 25~29.
    55. Jwlwna D J, Milutin N G. The thermogravimetric analysis of some polysiloxanes[J]. Polym. Degrad. Stab. 1998, 61(4): 87~93.
    56.徐文兰.含颗粒涂层的等效光学常数[J].物理学报, 1998, 47 (9): 1555~1563.
    57. W. Bauer, H. Ortel, M. Rink, Proc, International Symposium on Temperature and Thermal Measurements in Industry and Science[M]. 8ed, Berlin: Germany, 2001.
    58. R. Carminati, J.J. Greffet, A. Sentenac, in: J.S. Lee (Ed.), Proceedings of the 11th. International Heat Transfer Conference[C]. Kyongju: Korean Society of Mechanical Engineers, 1998.
    59. X.D. He, Y.B. Li, L.D. Wang, Y. Sun, S. Zhang. High emissivity coatings for high temperature application: Progress and prospect[J]. Thin Solid Films. 2009, 517 (1):5120~5129.
    60.徐文兰,张栓勤等.可见光隐身涂料设计[J].物理学报, 2004, 53 (9):3215~3219.
    61.徐文兰,罗宁胜,张珉等.非均匀涂层的热辐射[J].红外研究, 1990, 9(5):384~388.
    62.刘凌云,龚荣洲,聂彦等.涂层的热红外发射率计算模型[J].光子学报, 2006, 35(12): 1093~1097.
    63. Fu-Yu Hshieh. Shielding Effects of Silica-ash Layer on the Combustion of Silicones and Their Possible Applications on the Fire Retardancy of Organic Polymers[J]. Fire Mater. 1998, 22(1): 69~76.
    64. W.J. Zhou, H. Yang. Flame retarding mechanism of polycarbonate containing methylphenyl-silicone [J]. Thermochim. Acta. 2007, 452 (1): 43~48.
    65. Y. Tang, M. Lewin. New aspects of migration and flame retardancy in polymer nanocomposites[J]. Polym. Degrad. Stab. 2008, 93 (11): 1986~1995.
    66. Z.B. Huang, D.M. Zhu, F. Lou, W.C. Zhou, An application of Au thin-film emissivity barrier on Ni alloyAppl[J]. Surf. Sci. 2008, 255 (5): 2619~2623.
    67. H.J. Zhou, W.P. Cai, L.D. Zhang. Synthesis and structure of indium oxide nanoparticles dispersed within pores of mesoporous silica[J]. Materials Research Bulletin, 1999, 34(6): 845~849.
    68. B.P. Lin, H.J. Liu, S.X. Zhang, C.W.i Yuan.Structure and infrared emissivity of silicon-containing[J]. J. Solid State Chem. 2004, 177 (9): 3849~3852.
    69. G. Leftherioties, P. Yianoulis. Characterisation and stability of low-emittance multiple coatings for glazing applications[J].Sol. Energy Mater. Sol. Cells. 1999, 58 (1): 185~197.
    70. E. Ando, M. Miyazaki. Durability of doped zinc oxide/silver/doped zinc oxide low emissivity coatings in humid environment[J]. Thin Solid Films. 2008, 516 (14): 4574~4577.
    71. G. Camino, S.M. Lomakin, M. Lageard. Thermal polydimethylsiloxane degradation. Part 2. The degradation mechanisms[J]. Polymer, 2002, 43(7): 2011~2015.
    72. A. Miszczyk, K. Darowicki. Accelerated ageing of organic coating systems by thermal treatment[J]. Corrosion Science. 2001, 43 (6): 1337~1343.
    73. J. Rams, A. Ure?a, A.J. López. Hardness recovery of ceramic coated aluminium matrix composites using thermal-shock resistant sol–gel silica coatings[J]. Materials Letters, 2008, 62 (28): 4315~4318.
    74.付善菊,韩哲文,吴平平.聚硅氧烷热稳定性研究进展[J].高分子通报, 2001, 2(1): 40~47.
    75. F.S.Chuang. Analysis of thermal degradation of diacetylene-containing polyurethanecopolymers[J]. Polym. Degrad. Stab. 2007, 92(7): 1393~1407.
    76. S.A. Kumar, T.S.N. S. Narayanan. Thermal properties of siliconized epoxy interpenetrating coatings [J]. Prog. Org. Coat. 2002, 45 (4): 323~330.
    77. G. Camino, S.M. Lomakin, M. Lazzari. Thermal polydimethylsiloxane degradation. Part 1. The degradation mechanisms[J]. Polymer, 2001, 43 (7): 2395~2402.
    78. S.K. Dhoke, A.S. Khanna, T.J.M. Sinha. Effect of nano-ZnO particles on the corrosion behavior of alkyd-based waterborne coatings[J]. Prog. Org. Coat. 2009, 64 (4): 371~382.
    79. K. Wang, S. Cho, J.L. Hong, C. Chung. Effects of ZnO Nano Particles on Thermal Stabilization of Polymers[J].Polymer Engineering and Science Eptember. 2004, 44(9): 1702~1706.
    80. S.K. Dhoke, R. Bhandari, A.S. Khanna. Effect of nano-ZnO addition on the silicone-modified alkyd-based waterborne coatings on its mechanical and heat-resistance properties[J]. Prog. Org. Coat. 2009, 64(1): 39~46.
    81. A.P. Kumara, D. Depana, N.S. Tomer, R.P. Singh. Nanoscale particles for polymer degradation and stabilization-Trends and future perspectives[J]. Progress in Polymer Science, 2009, 34 (6): 479~515.
    82. J.T. Wu, S.Y. Yang, S.Q. Gao, A.J. Hu, J.G. Liu, L. Fan. Preparation, morphology and properties of nano-sized Al2O3/polyimide hybrid films[J].European Polymer Journal, 2005, 41 (1):73~81.
    83. Milena Marinovic-Cincovic, Zoran V. Saponjic, Vladimir Djokovic, Slobodan K. Milonjic, Jovan M. Nedeljkovic. The influence of hematite nano-crystals on the thermal stability of polystyrene[J]. Polym. Degrad. Stab. 2006, 91 (2): 313~316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700