等离子体基低能离子注入内表面鞘层特性的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对等离子体基低能离子注入(Plasma-Based Low-Energy Ion Implantation-PBLEII)技术改性金属圆管内表面,提出并建立了基于电子回旋共振(Electron Cyclotron Resonance-ECR)微波等离子体的PBLEII圆管内表面改性系统;利用磁化鞘层碰撞流体模型,模拟计算了磁场作用下离子注入能量、入射角度、注入剂量及鞘层扩展特性;研究了处理圆管临界半径与等离子体密度、脉冲负偏压、等离子体源半径及工作气压的关系,实现了PBLEII圆管内表面的工艺参数优化;利用发展的低压非稳态扩散流体模型,模拟计算了低脉冲负偏压和等离子体双极性扩散共同作用下,PBLEII圆管内表面脉冲鞘层演化规律及脉冲间隔内等离子体回复特性。旨在通过PBLEII内表面鞘层特性的数值研究,为制订PBLEII复杂表面改性的技术要求和工艺规范提供理论依据和指导。
     研发的PBLEII圆管内表面改性装置,主要包括:真空室、线性ECR微波等离子体源、低能离子注入电源、辅助加热源等。线性ECR微波等离子体源由微波源、同轴线波导、接地栅网电极和真空室外磁场线圈构成。在同轴波导外导体上沿螺旋线均匀分布方式开设缝隙辐射窗口,同轴线和栅网电极之间获得由2.45GHz微波源产生的均匀能量微波,在直流线圈产生的0.0875T磁场作用下,产生轴向和周向均匀分布的、密度为101-~1011cm-3的ECR微波等离子体,低能离子注入电源向管壁施加-0.4--2kV的脉冲负偏压,加速管内壁鞘层内的离子,实现低能离子注入。利用离子连续性方程、包含磁场作用的运动方程、Poisson方程和电子Boltzmann关系的磁化鞘层碰撞流体模型,计算了圆管内表面低能离子注入过程中磁场对注入参数的作用和注入参数的轴向均匀性。在等离子体密度1010cm-3、脉冲负偏压-2kV、等离子体源半径2.0cm、工作气压10-2Pa下改性内径6.0cm圆管内表面,0.0875T轴向匀强磁场仅使圆管内部离子注入角度增大0-6°,对内表面改性效果影响较小,在PBLEII圆管内表面鞘层扩展数值计算中可忽略装置外加磁场作用;在远离管端的内表面上离子注入角度小于10°,注入能量在1600eV左右,而在圆管端向管内轴向约2.0cm区域内离子以较大角度10~60°和较低能量400~1600eV注入,离子注入剂量在远离管端处较均匀,注入剂量达到门槛值1017cm-2所需时间约为5.0h,在距管端0.5cm处注入剂量出现峰值,注入剂量达到门槛值10"cm-2所需时间约为3.1h。低能离子注入和热扩散相复合的传质过程中,离子注入剂量决定了改性效果,处理圆管管端附近改性效果较为均匀。
     利用鞘层碰撞流体模型,计算了PBLEII所能处理的圆管半径与工艺参数的关系,在等离子体密度1010cm-3、脉冲负偏压-0.4--2kV、等离子体源半径1.0~2.0cm、工作气压10-2-10-1Pa下,改性时间10h里可保证内径10.0cm以下圆管获得1017cm-2的门槛值,-0.4--2kV的低脉冲负偏压可实现内径1.0cm圆管的有效注入;脉冲负偏压、等离子体源半径及工作气压是影响处理圆管上限尺寸的主要因素,等离子体密度1010cm-3、脉冲负偏压-2kV、等离子体源半径2.0cm,工作气压10-2Pa下,所能处理圆管内径上限值为26.5cm;脉冲负偏压稳定值和等离子体源半径是影响处理圆管下限尺寸的主要因素,脉冲负偏压-2kV,等离子体源半径0.93cm下,所能处理圆管内径下限值可达1.00cm。采用1010~1011cm-3的较高密度等离子体和-0.4~-2kV的低脉冲负偏压,PBLEII改性小尺寸圆管内表面可得到优异的改性效果。
     基于等离子体在较低气压下的双极性扩散机制,假设等离子体在非稳态扩散过程中每一时刻都是准平衡态、准电中性,用Lieberman提出的低压稳态离子迁移率描述离子的瞬时通量,结合描述连续离子流的流体运动方程和电子Boltzmann关系,发展出普适性的低压非稳态扩散流体模型,计算了圆管内表面低能离子注入过程中等离子体扩散对鞘层扩展的作用、等离子体回复规律以及占空比对离子注入剂量的影响,在等离子体密度1010cm-3、电子温度8eV、脉冲负偏压-2kV、脉宽10μs、等离子体源半径2.0cm、工作气压10-1Pa下改性内径6.0cm圆管内表面,等离子体非稳态扩散能促进鞘层扩展,使鞘层尺度在脉冲结束时由1.96cm增大约0.31cm;高电子温度和低工作气压使等离子体的回复过程加快,脉冲结束后仅1.3μs即回复至稳态的95%,且在2.8μs出现了过冲现象,10.0μs以后趋于稳态;离子注入能量受占空比影响很小,高于0.8的占空比导致等离子体不完全回复,但高占空比能大幅提高离子注入效率。占空比为0.3时,平均注入离子流密度仅0.86×104A/cm2,而占空比为0.9时,平均注入离子流密度可达2.60×10-4A/cm2。0.9占空比可使管内壁在10h改性时间里获得5.8×1019cm-2的超高离子注入剂量,提高脉冲负偏压占空比是增加PBLEII圆管内表面改性离子注入剂量的有效途径。
For inner surface modification of metallic tube by plasma-based low-energy ion implantation (PBLEII), a PBLEII inner surface modification system which based on the electron cyclotron resonance microwave plasma is developed in this paper. Using magnetized sheath collisional fluid model, the ion implantation energy, angle, dose, and sheath evolution characteristics under additional magnetic field were studied. The dependence of critical radius of tube on plasma density, negative voltage bias, plasma source radius and processing pressure were studied and the optimization of the process parameters for the inner surface modification by PBLEII is realized. Using the developed low-pressure non-steady diffusion fluid model, the pulsed sheath dynamics and plasma recovery characteristics during pulse-off time of PBLEII inner surface modification under low negative voltage pulses and plasma bipolar diffusion were studied. The numerical study on sheath characteristics of plasma-based low-energy ion implantation for inner surface modification is made, in order to provide the theoretical basis and guidance for setting the technical requirement and process specification of complex surface modification by PBLEII.
     The developed PBLEII device for inner surface modification of the tube includes vacuum chamber, linear ECR microwave plasma source, low-energy ion implantation power, auxiliary heating source, etc.. The linear ECR microwave plasma source is consist of microwave source, coaxial line waveguide, grounded grid electrode and magnetic field coil outside the vacuum chamber. Radiation slots were slotted along the spiral line on the outer conductor of the waveguide, and the2.45GHz microwave was obtained between the coaxial line and the grid electrode by microwave source along the slots. Under the effect of0.0875T magnetic field produced by magnetic field coil, the plasma of1010~1011ions cm-3density can be generated uniformly along the axial and tangential directions, low-energy ion implantation power applied-0.4~-2kV negative voltage pulses onto the tube, ions in the sheath of the inner surface were accelerated by the pulses and realized the low-energy ion implantation. Using equation of ion continuity, equation of ion motion which is consist of magnetic field, Poisson's equation and Boltzmann relation of electron, the magnetized sheath collisional fluid model is established, the effect of magnetic field on the parameters of low-energy ion implantation and the uniformity of implantation parameters along axial direction were studied, calculating plasma density1010ions cm-3, negative voltage pulses steady value-2kV, plasma source radius2.0cm, processing pressure10-2Pa, low-energy ion implanting the inner surface of the tube with6.0cm radius, the axial uniform magnetic field of0.0875T only increased the ion implantation angle inside the tube for0~6°, and had no disadvantageous effect on the inner surface modification process, the effect of magnetic field can be ignored. On the inner surface where far away from the ends of the tube, the ion implantation angle is less than10°, the ion implantation energy is about1600eV, but in the area where less than2.0cm from the ends of the tube, the ion implanted with a larger angle of10~60°and a smaller energy of400-1600eV. The ion implantation dose is uniform far away from the ends of the tube, the necessary time to achieve the implantation dose threshold1017ions cm-2is about5.0h, a implantation dose peak appeared at the position0.5cm away from the ends of the tube, and the necessary time to achieve the implantation dose threshold1017ions cm-2is about3.1h. In the mass transfer process which combined by low-energy ion implantation and thermal diffusion, the modification effect was determined by the ion implantation dose and therefore, an acceptable modification effect can be obtained onto the area at the ends of the tube due to the sufficient ion implantation dose.
     Using the sheath collisional fluid model, the relationship of the radius of tube which can be treated by PBLEII and the processing parameters were studied, calculating plasma density1010ions cm-3, negative voltage pulses steady value-0.4~-2kV, plasma source radius1.0-2.0cm, processing pressure10-2~10-1Pa, modification time10h can provide1017ions cm-2implantation dose threshold for the radius of less than10.0cm tube, low negative voltage pulses of-0.4~-2kV can realize effective implantation of radius1.0cm tube theoretically; negative voltage pulses steady value, plasma source radius and processing pressure are the main influencing factors of the maximum radius of the tube, plasma density1010ions cm-3negative voltage pulses steady value-2kV, plasma source radius2.0cm, processing pressure10-2Pa, the maximum radius of tube is26.5cm; negative voltage pulses steady value and plasma source radius are the main influencing factors of the minimum radius of the tube, negative voltage pulses steady value-2kV, plasma source radius0.93cm, the minimum radius of the tube is1.00cm. For the high plasma density of1010~1011ions cm-3and low negative voltage pulses of-0.4~-2kV is used in the PBLEII process for inner surface modification, an acceptable effect can be obtained for small size tubes.
     Based on the plasma ambipolar diffusion mechanism under relatively lower pressure, assuming that during the plasma non-steady diffusion process the plasma is quasi-equilibrium and quasi-neutrality in every moment, the ion instant flux is described by the low-pressure steady ion mobility proposed by Lieberman,combined with the fluid motion equation which described the continuous ion flux and Boltzmann relation of electron,the low-pressure non-steady diffusion fluid model is established, the effect of plasma diffusion on the sheath expansion, plasma recovery behavior and the effect of duty cycle on the ion implantation dose were studied. Calculating plasma density1010ions cm-3, electron temperature8eV, negative voltage pulses steady value-2kV, pulse width10μs, plasma source radius2.0cm, processing pressure10-1Pa, low-energy ion implanting the inner surface of tube with6.0cm radius, the non-steady diffusion of plasma can promote the sheath expansion, and the sheath size increased about0.31cm from1.96cm at the end of the pulse; high electron temperature and low processing pressure accelerate the plasma recovery process, which recovers to95%of the steady state just1.3μs after the end of the pulse, at2.8μs there is an overshoot phenomenon and after10.0μs the recovery gradually tends to steady state; the effect of duty cycle on the ion implantation energy is little, the duty cycle higher than0.8results in the plasma incomplete recovery, but high duty cycle can increase the ion implantation efficiency substantially. When the duty cycle is0.3, the average implanted ion current density is only0.86×10-4A/cm2, but when the duty cycle is0.9, the average implanted ion current density is up to2.60×10-4A/cm2. The duty cycle of0.9can provide the inner surface of the tube an ultrahigh ion implantation dose of5.8×1019ions cm-2during10h modification time. For the inner surface modification process by PBLEII, increasing the duty cycle of negative voltage pulses is an effective approach to increase the ion implantation dose.
引文
[1]Conrad J R, Radtke J L, Dodd R A. Plasma source ion-implantation technique for surface modification of materials[J]. J. Appl. Phys,1987,62(11):4591-4596.
    [2]Tendys J, Donnelly I J, Kenny M J, Pollock J T A. Plasma immersion ion implantation using plasmas generated by radio frequency techniques [J]. Appl. Phys. Lett,1988,53(22):2143-2145.
    [3]Walter K C. Nitrogen plasma source ion implantation of Aluminum [J]. J. Vac. Sci. Technol. B,1994, 12(2):945-950.
    [4]Wang W, Booske J H, Baum C, Clothier C, Zjaba N, Zhang L. Modification of bearing steel surface by nitrogen plasma source ion implantation for corrosion protection[J]. Surf. Coat. Technol,1999, 111(1):97-102.
    [5]Tan L, Dodd R A, Crone W C. Corrosion and wear-corrosion behavior of NiTi modified by plasma source ion implantation[J]. Biomaterials,2003,24(22):3931-3939.
    [6]Collins G A, Hutchings R, Tendys J. Plasma immersion ion implantation of steels[J]. Mater. Sci. Eng. A,1991,139:171-178.
    [7]Walter K C, Dodd R A, Conrad J R. Corrosion behavior of nitrogen implanted aluminum[J]. Nucl. Instrum. Methods. Phys. Res. B,1995,106(1-4):522-526.
    [8]Qiu X, Dodd R A, Conrad J R, Chen A, Worzala F J. Microstructural study of nitrogen-implanted Ti-6A1-4V alloy[J]. Nucl. Instrum. Methods. Phys. Res. B,1991,59-60(2):951-956.
    [9]Liu J B, Iyer S S K, Hu C M, Cheung N W, Gronsky R, Min J, Chu P. Formation of buried oxide in silicon using separation by plasma implantation of oxygen[J]. Appl. Phys. Lett,1995,67(16): 2361-2363.
    [10]Lu X, Iyer S S K, Liu J B, Hu C M, Cheung N W, Min J, Chu P K. Separation of plasma implantation of oxygen to from silicon on insulator[J]. Appl. Phys. Lett,1997,70(13):1748-1750.
    [11]Chu P K, Qin S, Chan C, Cheung N W, Ko P K. Instrumental and process considerations for the fabrication of silicon-on-insulators(SOI) structures by plasma immersion ion implantation[J]. IEEE Trans. Plasma Sci,1998,26(1):79-84.
    [12]Zhu M, Liu W L, Song Z T, Fu R K Y, Chu P K, Lin C L. Formation of silicon-on-aluminum nitride using ion-cut and theoretical investigation of self-heating effects[J]. Mater. Lett,2005,59(4): 510-513.
    [13]Tong Q Y, Gutiahr K, Hopfe S, Gosele U. Layer splitting process in hydrogen-implanted Si, Ge, SiC, and diamond substrates [J]. Appl. Phys. Lett,1997,70:1390-1392.
    [14]Chu P K, Zeng X. Hydrogen induced surface blistering of sample chuck matrials in hydrogen plasma immersion ion implantation[J]. J. Vac. Sci. Technol. A,2001,19(5):2301-2306.
    [15]Sheng T, Felch S B, Cooper C B. Characteristics of plasma doping system for semiconductor device fabrication[J]. J. Vac. Sci. Technol. B,1994,12(2):969-972.
    [16]Mizuno B, Nakayama I, Takase M, Nakaoka H, Kubota M. Plasma doping for silicon [J]. Surf. Coat. Technol,1996,85(1-2):51-55.
    [17]Qian X Y, Cheung N W, Lieberman M A, Felch S B, Brennan R, Current M I. Plasma immersion ion implantation of SiF4 and BF3 for sub-100nm P+/N junction fabrication[J]. Appl. Phys. Lett,1991, 1991(59):348-350.
    [18]Felch S B, Fang Z, Koo B W, Liebert R B, Walther S R, Hacker D. N+/P ultra-shallow junction formation with plasma immersion ion implantation[J]. Surf. Coat. Technol,2002,156(1-3):229-236.
    [19]Matossian J N. Plasma ion implantation technology at Hughes Research Laboratories[J]. J. Vac. Sci. Technol. B,1994,12(2):850-853.
    [20]Sakudo N, Mizutani D, Ohmura Y, Endo H, Yoneda R, Ikenaga N, Takikawa H. Surface modification of PET film by plasma-based ion implantation[J]. Nucl. Instrum. Methods. Phys. Res. B, 2003,206:687-690.
    [21]Sakudo N, Endo H, Yoneda R, Ohmura Y, Ikenaga N. Gas-barrier enhancement of polymer sheet by plasma-based ion implantation[J]. Nucl. Instrum. Methods Phys. Res. B,2005,196(1-3):394-397.
    [22]Sakudo N, Shinohara T, Amaya S, Endo H, Okuji S, Ikenaga N. Ion implantation into concave polymer surface[J]. Nucl. Instrum. Methods. Phys. Res. B,2006,242(1-2):349-352.
    [23]Leutenecker R, Wagner G, Louis T, Gonser U, Guzman L, Molinari A. Phase transformations of a nitrogen-implanted austenitic stainless steel (X10 CrNiTi 18-9)[J]. Mater. Sci. Eng. A,1989,115: 229-244.
    [24]Williamson D L, Li W, Wei R, Wilbur P J. Solid solution strengthening of stainless steel surface layers by rapid, high-dose, elevated temperature nitrogen ion implantation [J]. Mater. Lett,1990,9(9): 302-308.
    [25]Byeli A V, Shikh S K, Khatko V V. Friction and wear of high speed steel doped with low energy nitrogen ions[J]. Wear,1992,159(2):185-190.
    [26]Williamson D L, Ozturk O, Wei R, Wilbur P J. Metastable phase formation and enhanced diffusion in f.c.c. alloys under high dose, high flux nitrogen implantation at high and low ion energies[J]. Surf. Coat. Technol,1994,65(1-3):15-23.
    [27]Lei M K, Zhang Z L. Plasma source ion nitriding:a new low-temperature, low-pressure nitriding approach [J]. J. Vac. Sci. Technol. A,1995,13(6):2986-2990.
    [28]Anwand W, Parscandola S, Richter E, Brauer G, Coleman P G, Moller W. Slow positron implantation spectroscopy of high current ion nitrided austenitic stainless steel[J]. Nucl. Instrum. Methods. Phys. Res. B,1998,136-138:768-772.
    [29]Rao K R M, Mukherjee S, Roy S K, Richter E, Moller W, Manna I. Plasma immersion ion implantation of nitrogen on austenitic stainless steel at variable energy for enhanced corrosion resistance[J]. Surf. Coat. Technol,2007,201:4919-4921.
    [30]Terreault B. Some fundamental problems in low-energy ion implantation[J]. Surf. Coat. Technol, 2002,156(1-3):13-23.
    [31]Tian X B, Leng Y X, Kwok T K, Wang L P, Tang B Y, Chu P K. Hybrid elevated-temperature, low/high-voltage plasma immersion ion implantation of AISI304 stainless steel [J]. Surf. Coat. Technol,2001,135(2-3):178-183.
    [32]Tian X B, Kwok S C H, Wang L P, Chu P K. Corrosion resistance of AISI304 stainless steel treated by hybrid elevated-temperature, low-voltage/high-voltage nitrogen plasma immersion ion implantation [J]. Mater. Sci. Eng. A,2002,326(2):348-354.
    [33]Chu P K, Chen J Y, Wang L P, Huang N. Plasma-surface modification of biomaterials[J]. Mater. Sci. Eng. R,2002,36(5-6):143-206.
    [34]Zeng P, Hu S J, Xie G R, Huang N C, Wu Q B. The influence of low-energy ion beams bombardment on microstructure and properties of Ti and Ti-N films[J]. Rare. Metal. Mat. Eng,2002, 31(3):175-178.
    [35]Lopez-Callejas R, Munoz-Castroa A E, Valencia R, Barocio S R, Granda-Gutierrez E E, Godoy-Cabrera O G, Mercado-Cabrera A, Pena-Eguiluz R, de la Piedad-Beneitez A. Surface modification of stainless steel drills using plasma-immers-ion nitrogen ion implantation[J]. Vacuum, 2007,81(10):1385-1388.
    [36]Li G J, Peng Q, Li C, Wang Y, Gao J, Chen S Y, Wang J, Shen B L. Effect of DC plasma nitriding temperature on microstructure and dry-sliding wear properties of 316L stainless steel [J]. Surf. Coat. Technol,2008,202(12):2749-2754.
    [37]Ye J J, Lai Z W, Wen Y H, Li N. Wear characteristics of a new type austenitic stainless steel[J]. Journal of Materials Science[J]. J. Mater. Sci,2010,45(3):701-705.
    [38]Noli F, Misaelides P, Pavlidou E, Lagoyannis A. Application of ion beam analysis techniques for the investigation of the oxidation and corrosion resistance of low-energy high-flux nitrogen-implanted stainless steel[J]. Nucl. Instrum. Methods. Phys. Res. B,2012,270:1-8.
    [39]Lei M K, Zhang Z L. Plasma source ion nitriding of pure iron:formation of an iron nitride layer and hardened diffusion layer at low temperature[J]. Surf. Coat. Technol,1997,91(1-2):25-31.
    [40]Lei M K, Zhang Z L. Microstructure and corrosion resistance of plasma source ion nitrided austenitic stainless steel[J]. J. Vac. Sci. Technol. A,1997,15(2):421-427.
    [41]Lei M K, Zhang Z L. Nitrogen-induced h.c.p. martensite formation in plasma source ion nitrided austenitic stainless steel[J]. J. Mater. Sci. Lett,1997,16(19):1567-1569.
    [42]Lei M K, Wang P, Huang Y, Yu Z W, Yuan L J, Zhang Z L. Tribological studies of plasma source ion nitrided low alloy steel [J]. Wear,1997,209(1-2):301-307.
    [43]Lei M K, Huang Y, Li H Y, Zhang Z L. Wear characteristics of plasma source ion nitrided 1Cr18Ni9Ti austenitic stainless steel[J]. Tribology,1997,17:206-213.
    [44]Lei M K, Zhang Z L. Plasma source ion carburizing of steel for improved wear resistance [J]. J. Vac. Sci. Technol. A,1998,16(2):524-529.
    [45]Lei M K, Huang Y, Zhang Z L. In situ transformation of nitrogen-induced h.c.p. martensite in plasma source ion nitrided austenitic stainless steel [J]. J. Mater. Sci. Lett,1998,17(14):1165-1167.
    [46]Lei M K. Phase transformations in plasma source ion nitrided austenitic stainless steel at low temperature[J]. J. Mater. Sci,1999,34(24):5975-5928.
    [47]Lei M K, Zhu X M. Effects of nitrogen-induced h.c.p. martensite formation on corrosion resistance of plsama source ion nitrided austenitic stainless steel[J]. J. Mater. Sci. Lett,1999,18(18): 1537-1538.
    [48]Lei M K, Zhang Z L, Ma T C. Plasma-based low-energy ion implantation for low-temperature surface engineering [J]. Surf. Coat. Technol,2000,131(1-3):317-325.
    [49]Lei M K, Zhu X M. In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels[J]. Biomaterials,2001,22(7):641-647.
    [50]王洋,雷明凯,张仲麟.微波ECR等离子体辅助磁控溅射沉积装置的研制[J].真空,1994,(6):19-23.
    [51]雷明凯,王大庸,张仲麟.采用电子回旋共振微波等离子体增强的溅射沉积薄膜技术[J].真空科学与技术,1996,16(4):299-305.
    [52]Lei M K, Yuan L J, Zhang Z L, Ma T C. Cubic-BN-like structure of B-C-N films synthesized by plasma source ion nitriding[J]. Chin. Phys. Lett,1999,16(1):71-73.
    [53]Lei M K, Chen J D, Wang Y, Zhang Z L. Plasma source low-energy ion enhanced deposition of thin films[J]. Vacuum,2000,57(4):327-338.
    [54]Leyland A, Fancey K S, James A S, Matthews A. Enhanced plasma nitriding at low pressures:A comparative study of d.c. and r.f. techniques[J]. Surf. Coat. Technol,1990,41(3):295-304.
    [55]Meletis E I, Yan S. Formation of aluminum nitride by intensified plasma ion nitriding[J]. J. Vac. Sci. Technol. A,1991,9(4):2279-2284.
    [56]Matson D W, Merz M D, McClanahan E D. High rate sputter deposition of wear resistant tantalum coatings[J]. J. Vac. Sci. Technol. A,1992,10(4):1791-1796.
    [57]Hytry R, Moller W, Wilhelm R, Keudell A V. Moving-coil waveguide discharge for inner coating of metal tubes[J]. J. Vac. Sci. Technol. A,1993,11(5):2508-2517.
    [58]Ensinger W. An apparatus for sputter coating the inner walls of tubes[J]. Rev. Sci. Instrum,1996, 67(1):318-321.
    [59]Ensinger W, Volz K, Enders B. Inner wall coating of cylinders by plasma immersion ion implantation for corrosion protection [J]. Surf. Coat. Technol,2000,136(1-3):202-206.
    [60]Sun M, Yang S Z, Li B. New method of tubular material inner surface modification by plasma source ion implantation[J]. J. Vac. Sci. Technol. A,1996,14(2):367-369.
    [61]Liu B, Liu C Z, Cheng D J, Zhang G L, He R, Yang S Z. A new method for inner surface modification by plasma source ion implantation (PSII)[J]. Nucl. Instrum. Methods Phys. Res. B, 2001,184(4):644-648.
    [62]Tian X B, Gong C Z, Huang Y X, Jiang H F, Yang S Q, Fu K Y, Chu P K. Theoretical investigation of plasma immersion ion implantation of cylindrical bore using hollow cathode plasma discharge[J]. Surf. Coat. Technol,2009,203(17-18):2727-2730.
    [63]Sheridan T E. Transient sheath in a cylindrical bore for finite-rise-time voltage pulses[J]. Surf. Coat. Technol,1996,85(3):204-208.
    [64]Garcia L G, Goedert J. Numerical investigation of the influence of vacuum space on plasma sheath dynamics[J]. Phys. Lett. A,1999,255(4-6):311-317.
    [65]Sun Q, Ma X, Xia L F. Effect of pulse waveform on plasma sheath expansion in plasma-based ion implantation[J]. Nucl. Instrum. Methods. Phys. Res. B,2000,170(3-4):397-405.
    [66]Kim Y W, Kim G H, Han S, Lee Y, Cho J, Rhee S Y. Measurement of sheath expansion in plasma source ion implantation[J]. Surf. Coat. Technol,2001,136(1-3):97-101.
    [67]Ma X X, Yukimura K, Muraho T. Ion sheath evolution and plasma replenishment inside an 80-mm-diameter pipe for plasma-based ion implantation and deposition[J]. Nucl. Instrum. Methods Phys. Res. B,2003,206:787-790.
    [68]Ikehata T, Shioya K, Araki T, Sato N Y, Mase H, Yukimura K. Sheath formation and ion flux distribution inside the trench in plasma-based ion implantation[J]. Nucl. Instrum. Meth. Phys. Res.B, 2003,206:772-776.
    [69]Rauschenbach B, Mandl S. Plasma-sheath expansion around trenches in plasma immersion ion implantation[J].Nucl. Instrum. Methods. Phys. Res. B,2003,206:803-807.
    [70]Mandl S, Thorwarth G, Stritzker B, Rauschenbach B. Two-dimensional texture and sheath evolution in metal plasma immersion ion implantation[J]. Surf. Coat. Technol,2005,200(1-4):589-593.
    [71]Schiesko L, Carrere M, Cartry G, Layet J M. Positive sheath behaviour in low pressure Argon plasma[J]. J. Nucl. Mater,2007,363-365:1016-1020.
    [72]Stamate E, Sugai H. Controlling the ion flux on substrates of different geometry by sheath-lens focusing effect[J]. Thin Solid Films,2007,515(12):4853-4859.
    [73]Holtzer N, Stamate E, Toyoda H, Sugai H. Investigation of the ion dose non-uniformity caused by sheath-lens focusing effect on silicon wafers[J]. Thin Solid Films,2007,515(12):4887-4891.
    [74]Li X C, Tian L C, Wang Y N. Sheath dynamics in a cylindrical PET-film for plasma immersion ion implantation[J]. Vacuum,2010,84(9):1118-1122.
    [75]Wood B P. Displacement current and mutiple pulse effects in plasma source ion implantation[J]. J. Appl. Phys,1995,73(10):4770-4778.
    [76]Briehl B, Urbassek H M. Plasma recovery in plasma immersion ion implantation:dependence on pulse frequency and duty cycle[J]. J. Phys. D:Appl. Phys,2002,35(5):462-467.
    [77]Chung K J, Jung S W, Choe J M, Kim G H, Hwang Y S. Self-consistent circuit model for plasma source ion implantation[J]. Rev. Sci. Instrum,2008,79(2):502-507.
    [78]Lieberman M A. Model of plasma immersion ion implantation [J]. J. Appl. Phys,1989,66(7): 2926-2929.
    [79]Scheuer J T, Shamim M, Conrad J R. Model of plasma source ion implantation in planar, cylindrical, and spherical geometries [J]. J. Appl. Phys,1990,67(3):1241-1245.
    [80]Vahedi V, Lieberman M A, Alves M V, Verboncoeur J P, Birdsall C K. A one-dimensional collisional model for plasma-immersion ion implantation [J]. J. Appl. Phys,1991,69(4):2008-2014.
    [81]Stewart R A, Lieberman M A. Model of plasma immersion ion implantation for voltage pulses with finite rise and fall times [J]. J. Appl. Phys,1991,70(7):3481-3487.
    [82]Sheridan T E. Pulsed sheath dynamics in a small cylindrical bore[J]. Phys. Plasmas,1994,1: 3485-3489.
    [83]Widner M M, Alexeff I, Jones W D, Lonngren K E. Ion acoustic wave excitation and ion sheath evolution[J]. Phys. Fluids,1970,13(10):2532-2540.
    [84]Emmert G A, Henry M A. Numerical simulation of plasma sheath expansion with application to plasma source ion implantation[J]. J. Appl. Phys,1992,71(1):113-117.
    [85]Hong M P, Emmert G A. Two-dimensional fluid modeling of time-dependent plasma sheath[J]. J. Vac. Sci. Technol. B,1994,12(2):889-896.
    [86]Sheridan T E, Alport M J. Two-dimensional model of ion dynamics during plasma source ion implantation[J]. Appl. Phys. Lett,1994,64(14):1783-1785.
    [87]Sheridan T E. Pulsed-sheath ion dynamics in a trench [J]. J. Phys. D:Appl. Phys,1995,28(6): 1094-1098.
    [88]Paulus M, Stals L, Rude U, Rauschenbach B. Tow-dimensional simulation of plasma-based ion implantation[J]. J. Appl. Phys,1999,85(2):761-766.
    [89]Tian X B, Zeng Z M, Zeng X C. Efficacy of high-frequency, low-voltage plasma immersion ion implantation of a bar-shaped target[J]. J. Appl. Phys,2000,88(5):2221-2225.
    [90]Liu C S, Wang D Z. Ion dynamics of pulsed plasma source ion implantation in the sheath of a hemispherical bowl-shaped target[J]. Surf. Coat. Technol,2002,171(1-3):119-123.
    [91]Ghomi H, Sharifian M, Niknam A R. Effects of potential and duration of pulse width on sheath dynamics related to a target with a groove in two-dimensional simulation [J]. J. Appl. Phys,2006, 100(11):3301-3305.
    [92]Ghomi H, Shamim M, Shokri B. Numerical analysis of ion-implantation in target with a rectangular groove[J]. Vacuum,2007,81(10):1292-1295.
    [93]Friedman A, Parker S E, Ray S L, Birdsall C K. Multiscale particle-in-cell plasma simulation[J]. J. Comput. Phys,1991,96(1):54-70.
    [94]Faehl R, Volder B D, Wood B P. Application of particle-in-cell simulation to plasma source ion implantation[J]. J. Vac. Sci. Technol. B,1994,12(2):884-888.
    [95]Sheridan T E. Ion focusing by an expanding, two-dimensional plasma sheath[J]. Appl. Phys. Lett, 1996,68(14):1918-1920.
    [96]Sheridan T E. Particle-in-cell simulation of the pulse sheath in a trench[J]. IEEE Trans. Plasma Sci, 1996,24(1):57-58.
    [97]Sheridan T E. Simulation of plasma-based ion implantation of a sawtooth target[J]. Surf. Coat. Technol,1997,93(2-3):225-228.
    [98]Kwok D T K, Lu Q Y, Li L H, Fu R K Y, Chu P K. Theoretical investigation of sheath expansion and implant fluence uniformity in enhanced glow discharge plasma immersion ion implantation [J]. Appl. Phys. Lett,2008,93(9):1501-1503.
    [99]Meige A, Leray G, Raimbault J L, Chabert P. Sheath and presheath in ion-ion plasmas via particle-in-cell simulation [J]. Appl. Phys. Lett,2008,92(6):1501-1503.
    [100]Li L H, Li J H, Kwok D T K, Wang Z, Chu P K. Plasma sheath physics and dose uniformity in enhanced glow discharge plasma immersion ion implantation and deposition [J]. J. Appl. Phys,2009, 106(1):3313-3315.
    [101]Liu J, Huppert G L, Sawin H H. Ion bombardment in rf plasma[J]. J. Appl. Phys,1990,68(8): 3916-3934.
    [102]Wang D Z, Ma T C, Gong Y. A monte carlo simulation model for plasma source ion implantation[J]. J. Appl. Phys,1993,73(9):4171-4175.
    [103]Wang D Z, Ma T C, Deng X L. Energy and angle distributions of ions striking a spherical target in plasma source ion implantation[J]. J. Appl. Phys,1994,75(3):1335-1339.
    [104]Gong Y, Liu J Y, Song Y H, wEN X J, Deng X L, Ma T C. Monte carlo simulation of ion transprot process in ECR microwave plasma with negative bias[J]. Vacuum,2002,65(3-4):353-359.
    [105]Miyagawa Y, Ikeyama M, Miyagawa S, Nakadate H. Computer simulation of plasma for plasma immersed ion implantation and deposition with bipolar pulses[J].Nucl. Instrum. Methods Phys. Res. B,2003,206:767-771.
    [106]Briehl B, Urbassek H M. Simulation of sheath dynamics and current nonuniformity in plasma-immersion ion implantation of a patterned surface[J]. J. Appl. Phys,2003,93(8):4420-4431.
    [107]Miyagawa Y, Ikeyama M, Miyagawa S, Tanaka M, Nakadate H. Plasma analysis for the plasma immersion ion implantation processing by a PIC-MCC simulation[J]. Comput. Phys. Commun,2007, 177(1-2):84-87.
    [108]Shamim M, Scheuer J T, Conrad J R. Measurements of spatial and temporal sheath evolution for spherical and cylindrical geometries in plasma source ion implantation[J]. J. Appl. Phys,1991,69(5): 2904-2908.
    [109]Xia Z Y, Chan C. Modeling and experiment on plasma source ion implantation[J]. J. Appl. Phys, 1993,73(8):3651-3656.
    [110]于炯,宫野,王德真.等离子体源离子注入鞘层随时空演化的研究[J].核聚变与等离子体物理,1995,15(4):8-13.
    [111]Sheridan T E. Sheath expansion into a large bore[J]. J. Appl. Phys,1996,80(1):66-69.
    [112]Zeng X C, Kwok T K, Liu A G, Chu P K, Tang B Y. Plasma immersion ion implantation of the interior surface of a large cylindrical bore using an auxiliary electrode[J]. J. Appl. Phys,1998,83(1): 44-49.
    [113]Zeng Z M, Kwok T K, Tian X B, Tang B Y, Chu P K. Investigation of dose uniformity on the inner races of bearings treated by plasma immersion ion implantation[J]. J. Appl. Phys,1999,81(1): 120-123.
    [114]Sheridan T E, Goeckner M J. Collisional sheath dynamics [J]. J. Appl. Phys,1995,77 (10): 4967-4972.
    [115]Sheridan T E. Ion-matrix sheath in a cylindrical bore[J]. J. Appl. Phys,1993,74(8):4903-4906.
    [116]Sun M, Yang S Z, Chen X C. Measurements of spatial and temporal sheath evolution inside tubular material for inner surface ion implantation [J]. J. Vac. Sci. Technol. A,1996,14(6):3071-3074.
    [117]Zeng X C, Liu A G, Kwok T K, Chu P K, Tang B Y. Pulsed sheath dynamics in a small cylindrical bore with an auxiliary electrode for plasma immersion ion implantation [J]. Phys. Plasmas,1997, 4(12):4431-4434.
    [118]Zeng X C, Kwok T K, Liu A G, Chu P K, Tang B Y, Sheridan T E. Plasma immersion ion implantation of the interior surface of a small cylindrical bore using an auxiliary electrode for finite rise-time voltage pulses [J]. IEEE Trans. Plasma Sci,1998,26(2):175-180.
    [119]Wang J L, Zhang G L, Fan S H, Yang W B, Yang S Z. Pulsed Ion Sheath Dynamics in a Cylindrical Bore for Inner Surface Grid-Enhanced Plasma Source Ion Implantation[J]. Chin. Phys. Lett,2002, 19(10):1473-1475.
    [120]Wang J L, Zhang G L, Fan S H, Yang W B, Yang S Z. Influence of grid and target radius and ion-neutral collisions on grid-enhanced plasma source ion implantation process[J]. J. Phys. D:Appl. Phys,2003,36(10):1192-1197.
    [121]Lieberman M A, Lichtenberg A J. Principles of plasma discharges and materials processing[M]. New Jersey:John Wiley & Sons Inc.,2005.
    [122]Glukhoy Y, Rahman M, Popov G, Usenko A, Walitzki H J. Characterization of a high-density plasma immersion ion implanter with scaleable ECR large-area plasma source[J]. Surf. Coat. Technol,2005,196(1-3):172-179.
    [123]王均宏.漏泄同轴电缆辐射模式分析及高次模抑制[J].通信学报,2000,21(12):17-22.
    [124]Keidar M, Monteiro O R, Anders A, Boyd I D. Magnetic field effect on the sheath thickness in plasma immersion ion implantation[J]. Appl. Phys. Lett,2002,81(7):1183-1185.
    [125]Tang D L, Fu R K Y, Tian X B, Peng P, Chu P K. Influence of magnetic field on magnetized hydrogen plasmas in plasma immersion ion implantation[J]. Nucl. Instrum. Methods. Phys. Res. B, 2003,206:803-812.
    [126]Farhad Masoudi S. Effect of pressure on plasma sheath in a magnetic field[J]. Vacuum,2007,81(7): 871-874.
    [127]Phelps A V. Cross Sections and Swarm Coefficients for Nitrogen Ions and Neutrals in N 2 and Argon Ions and Neutrals in Ar for Energies from 0.1 eV to 10 keV[J]. J. Phys. Chem. Ref. Data 1991, 20(3):557-573.
    [128]雷明凯,袁力江,刘福利,张仲麟.制冷机环状阀片的氮离子注入改性[J].机械工程材料,1995,19(6):29-30.
    [129]Lei M K, Zhu X P, Wang X J. The oxidation resistance of ion-implanted g-TiAl base intermetallics[J]. Oxid. Met,2002,58(3-4):361-374.
    [130]Li Y, Zheng B C, Lei M K. Engineering the tube size for an inner surface modification by plasma-based ion implantation[J]. Vacuum,2012,86(9):1278-1283.
    [131]Fu R K Y, Fu K L, Tian X B, Chu P K. Effects of mesh-assisted carbon plasma immersion ion implantation on the surface properties of insulating silicon carbide ceramics [J]. J. Vac. Sci. Technol. A,2004,22(2):356-360.
    [132]Hubbard P, Dowey S J, Partridge J G, Doyle E D, McCulloch D G. Investigation of nitrogen mass transfer within an industrial plasma nitriding system Ⅱ:Application of a biased screen [J]. Surf. Coat. Technol,2010,204(8):1151-1157.
    [133]Kikkawa S, Sugiyama H, Ohmura T, Kanamaru F, Hinomura T, Nasu S. Formation of iron nitrides applying N+ion implantation [J]. Vacuum,1996,47(6-8):863-866.
    [134]Tagliente M A, Falcone R, Mello D, Esposito C, Tapfer L. On the influence of carbon implantation on the structural properties of hard TiN coatings studied by glancing incidence X-ray diffraction [J]. Nucl. Instrum. Methods. Phys. Res. B,2001,179(1):42-54.
    [135]Chung K J, Choe J M, Kim G H, Hwang Y S. Dynamic sheath expansion in a non-uniform plasma with ion drift [J]. Plasma Sources Sci. T,2011,20(4):5014-5022.
    [136]雷明凯.等离子体基低能离子注入技术[J].真空科学与技术,1999,19(4):265-272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700