等离子体基低能氮离子注入AISI 420马氏体不锈钢的工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子体基低能离子注入技术是一种低温、低压表面改性技术,具有“低能离子注入+同步热扩散”的主要传质机制,能够实现对离子能量、离子注入剂量和离子注入剂量率的独立控制,具有高的渗氮效率和工艺稳定可靠性。这项技术可以有效地改善目前广泛工业化的等离子体热扩散处理工艺,在工业领域取得广泛发展。
     在350-550℃、0.63mA/cm2,4h等离子体基低能氮离子注入AISI420马氏体不锈钢,获得了层厚为80-110μm的含氮改性层,氮过饱和浓度为30%(原子分数),改性层的硬度达到了HV0.25N12-16GPa。350℃时,改性层中α-Fe(N)和γ'-Fe4N相含量较多,有少量CrN相析出;450℃时,改性层以α-Fe(N)和CrN相为主,γ'-Fe4N较少;550℃时,改性层以γ'-Fe4N相为主,CrN相较多,α-Fe(N)相较少。不同深度改性层XRD分析表明,350℃时,距表面30μm、70μm和100μm改性层均仅由α-Fe(N)和CrN两相组成。450℃和550℃时,距表面30gm和70μm改性层由α-Fe(N)和CrN两相组成,距表面100μm改性层由单一的α-Fe(N)相组成。
     在450℃、0.44mA/cm2和0.63mA/cm2,4h等离子体基低能氮离子注入AISI420马氏体不锈钢。束流密度为0.44mA/cm2时,获得了层厚约为12μm、具有单一εN相结构的改性层,改性层表面氮峰值浓度达到35-40at.%,表面硬度为HV0.25N15.8GPa,表面粗糙度为0.090μm;束流密度为0.63mA/cm2时,获得了层厚为90μm,由γ'-Fe4N、 α-Fe(N)和CrN相组成的改性层,改性层氮浓度约为30at.%,表面硬度约为HV0.25N14GPa,改性试样的表面粗糙度增加至0.221μm。
Plasma-based low-energy ion implantation (PBLEII) technology as a modified technology characterized with low temperature and low pressure has a major mass transfer mechanism of low energy ion implantation combined with simultaneous thermal diffusion. It can achieve the control of ion energy, ion implantation dose and ion implantation dose rate independently, and has high nitriding efficiency, high process stability and reliability. PBLEII technology can efficiently improve extensive industrial plasma thermal diffusion technology at present, has a wide development in the industrial field.
     AISI420martensitic stainless steel was modified by plasma-based low-energy nitrogen ion implantation at a range processing temperature of350-550℃and a current density of0.63mA/cm2for a treatment time of4h. The modified layer had a range thickness of80-110μm, a high supersaturated nitrogen concentration up to30%(atomic fraction) and surface microhardness of HVo.25N12-16GPa. The modified layer was mainly consisted of a-Fe(N) phase, with much γ'-Fe4N phase and a few CrN phase at350℃. Up to450℃, the modified layer was mainly consisted of a-Fe(N) and CrN phases, along with a few y'-Fe4N phase. Increasing temperature to550℃, the modified layer was mainly consisted of y'-Fe4N, with much CrN phase and a few a-Fe(N) phase. From XRD result of the modified layer in various depths, the modified layer was consisted of a-Fe(N) and CrN phases at the depth of30μm,70μm and100μm from the surface at350℃; the modified layer was consisted of a-Fe(N) and CrN phases at the depth of30μm and70μm while it was consisted of a α-Fe(N) monophase at the depth of100μm at450℃and550℃.
     AISI420martensitic stainless steel was modified by plasma-based low-energy nitrogen ion implantation at a processing temperature of450℃and a current density of0.44mA/cm2and0.63mA/cm2for a treatment time of4h. With a current density of0.44mA/cm, an εN monophase modified layer with a thickness of12μm formed on the AISI420martensitic stainless steel. It has a high supersaturated nitrogen concentration up to35%-40%(atomic fraction) and surface microhardness of HV0.25N15.7GPa. The modified sample has a low surface roughness of0.090μm. With a current density of0.63mA/cm2, the modified layer consisted of γ'-Fe4N, α-Fe(N) and CrN phases had a thickness of90μm, a high supersaturated nitrogen concentration up to30%(atomic fraction) and surface microhardness of HV0.25N14GPa. The surface roughness of the modified sample reached to0.221μm.
引文
[1]Wierzchon T. Properties of surface layers on Titanium alloy produced by thermochemical treatments under glow discharge conditions [J]. Surface and Coatings Technology,1997,96(2-3):205-209.
    [2]赵化侨.等离子体化学与工艺[M].合肥:中国科学技术大学出版社,1993[4]:32-36.
    [3]张芸星.先进离子束注入技术的工业应用[J].材料导报,2001,15(2):4-6.
    [4]张通和,吴瑜光.离子注入表面强化技术[M].北京:冶金工业出版社,1993:136-139.
    [5]Conrad J R. Method and apparatus for plasma source ion implantation. US Patent 4764394,1987.
    [6]Conrad J R. Plasma source ion implantation:A new approach to ion beam modification of materials [J]. Materials Science and Engineering,1989, A116:197-203.
    [7]Tendys. J, Donnelly I J, Kenny M J, et al. Plasma immersion ion implantation using plasmas generated by radio frequency techniques [J]. Applied Physics Letters,1988,53:2143-2145.
    [8]Collins G A, Hutchings R, Tendys J. Plasma immersion ion implantation of steels [J]. Materials Science and Engineering,1991, A139:171-178.
    [9]Lei M K, Zhang Z L, Ma T C. Plasma-based low-energy ion implantation for low-temperature surface engineering [J]. Surface and Coatings Technology,2000,131:317-325.
    [10]Byelia A V, Shikha S K, Khatkoa V V. Friction and wear of high speed steel doped with low energy nitrogen ions [J]. Wear,1992,159:185-190.
    [11]Williamson D L, Ozturk O, Wei R, et al. Metastable phase formation and enhanced diffusion in f.c.c. alloys under high dose, high flux nitrogen implantation at high and low ion energies [J]. Surface and Coatings Technology,1994,65:15-23.
    [12]桥本政哲.不锈钢及其应用[M].北京:冶金工业出版社,2011.
    [13]吴承建,陈国良,强文江.金属材料学[M].北京:冶金工业出版社,2006.
    [14]徐增华.金属耐蚀材料第五讲马氏体不锈钢[J].腐蚀与防护,2001,22:229-231.
    [15]赵昌盛.不锈钢的应用及热处理[M].北京:机械工业出版社,2010.
    [16]Bhambri S K. Intergranular fracture in 13 wt% chromium martensitic stainless steel [J]. Journal of Materials Science,1986,21:1741-1746.
    [17]Carterl Tim J. Common failures in gas turbine blades [J]. Engineering Failure Analysis,2005,12: 237-2471.
    [18]Li C X, Bell T. Corrosion properties of plasma nitrided AISI 410 martensitic stainless steel in 3.5% NaCl and 1% HC1 aqueous solutions [J]. Corrosion Science,2006,48:2036-2049.
    [19]刘光明.表面处理技术概论[M].北京:化学工业出版社,2011.
    [20]Yang J Q, Liu Y. Ye Z Y, et al. Microstructure and tribological characteristics of nitrided layer on 2Crl3 steel in air and vacuum [J]. Surface and Coatings Technology,2009,204:705-712.
    [21]Zhang Z L, Bell T. Structure and corrosion resistance of plasma nitrided stainless steel [J]. Surface Engineering,1985,1:131-136.
    [22]Michael A. L, Allan J L. Principles of plasma discharges and materials processing second edition [M]. A John Wiley and Sons, Inc Publication,2005.
    [23]E. Rolinski. Effect of plasma nitriding temperature on surface properties of austenitic.stainless steel [J]. Surface Engineering,1987,3:35-40.
    [24]Lei M K, Zhang Z L. Plasma source ion nitriding:A new low-temperature, low-pressure nitriding approach [J]. Vacuum Science and Technology A,1995,13:2986-2990.
    [25]Lei M K, Zhang Z L. Microstructrue and corrosion resistance of plasma source ion nitrided austenitic stainless steel [J]. Vacuum Science and Technology A,1997,15:421-427.
    [26]梁健.面心合金高氮面心亚稳相的X射线衍射理论及其应用研究[D].大连:大连理工大学硕士学位论文,2009.
    [27]Sun Y, Li X Y, Bell T. X-ray Diffraction characterisation of low temperature plasma nitrided austenitic stainless steels [J]. Material Science,1999,34:4793-4082.
    [28]Christiansen T, Somers M A J. On the crystallographic structure of S-phase [J]. Script Material,2004, 50:35-37.
    [29]Onate J I, Dennis J K, Hamilton S. Wear behavior of nitrogen-implanted AISI 420 martensitic stainless steel [J]. Surface and Coatings Technology,1990,42:119-121.
    [30]Marchev K, Cooper C V, Giessen B C. Observation of a compound layer with very low friction coefficientin ion-nitrided martensitic 410 stainless steel [J]. Surface and Coatings Technology,1998, 99:229-233.
    [31]Sun Y, Bell T, Wood G. Wear behaviour of plasma-nitrided martensitic stainless steel [J]. Wear,1994, 178:131-138.
    [32]Alphonsa I, Chainani A, Raole P M, et al. A study of martensitic stainless steel AISI 420 modified using plasma nitriding [J]. Surface and Coatings Technology,2002,150:263-268.
    [33]Pinedo C E, Monteiro W A. On the kinetics of plasma nitriding a martensitic stainless steel type AISI 420 [J]. Surface and Coatings Technology,2004,179:119-123.
    [34]Kim S K, Yoo J S, Priest J M, et al. Characteristics of martensitic stainless steel nitrided in a low-pressure RF plasma [J]. Surface and Coatings Technology,2003,163:380-385.
    [35]Manova D, Thorwarth G, Mandl S, et al. Variable lattice expansion in martensitic stainless steel after nitrogen ion implantation [J]. Nuclear Instruments and Methods in Physics Research B,2006,242: 285-288.
    [36]Manova D, Mandl S, Neumann H, et al. Infulence of annealing conditions on ion nitriding of martensitic stainless steel [J]. Surface and Coatings Technology,2006,200:6563-6567.
    [37]Xi Y T, Liu D X, Han D. Improvement of erosion and erosion-corrosion resistance of AISI 420 stainless steel by low temperature plasma nitriding [J]. Applied Surface Science,2008; 254: 5953-5958.
    [38]Xi Y T, Liu D X, Han D. Improvement of corrosion and wear resistances of AISI 420 martensiticstainless steel using plasma nitriding at low temperature [J]. Surface and Coatings Technology,2008,202:2577-2583.
    [39]雷明凯,王克胜,欧伊翔,等.泵阀用2Cr13马氏体不锈钢等离子体基低能氮离子注入研究[J].金属学报,2011;47:1490-1494.
    [40]Sobiecki J R, Mankowski P, Patejuk A. Improving the performance properties of valve martensitic steel by glowdischarge-assisted nitriding [J]. Vacuum,2004; 76:57.
    [41]Lei M K, Zhu X M. Plasma-based low-energy ion implantation of austenitic stainless steel for improvement in wear and corrosion resistance [J]. Surface and Coatings Technology,2005,193: 22-28.
    [42]Lei M K, Zhu X M. In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels [J]. Biomaterials,2001,22:641-647.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700